Lie algebroid gauge theories

and
applications to T-duality

Peter Bouwknegt

Mathematical Sciences Institute
The Australian National University
Canberra, ACT 2601, AUSTRALIA

Conference on “Gauge Theory and Complex Geometry”
CIRM, Luminy, 18-22 June 2018

Peter Bouwknegt Lie algebroid gauge theories and applications to T-duality



Reference

Talk based on:

PB, Mark Bugden, Ctirad Klim¢ik and Kyle Wright,
Hidden Isometry of “T-duality without Isometry”
JHEP 08 (2017) 116, arXiv:1705.09254

Mark Bugden, “A Tour of T-duality — Geometric and Topological
Aspects of T-dualities”, PhD Thesis 2018

Kyle Wright, “Generalised Geometries and Lie Algebroid
Gauging in String Theory”, PhD Thesis 2018

Peter Bouwknegt Lie algebroid gauge theories and applications to T-duality



The 2D (non-linear) sigma model

A 2D non-linear sigma model describes maps X from a
2-dimensional surface (‘worldsheet’) ¥ to an N-dimensional
manifold M (‘target’), equipped with additional structure

For example

SIX] = 1 /Z Gy(X) dX A xdXI + B;(X) aX' A aXi

Peter Bouwknegt Lie algebroid gauge theories and applications to T-duality



Symmetries of sigma model

Given a set of vector fields va(X) = vi(X)d; forming a Lie
algebra g
[Va, vb] = CCapVe

Consider the infinitesimal transformations
6 X" = Vi(X) e
we have

5.S = / (L, G ,,dX’/\*dX/+(EVaB),-/-dX’/\dX/)

The sigma model action is invariant under these
transformations if

‘CVaGZOa EVaBZO

If this is the case, we can gauge the model by promoting the
global symmetry to a local one (i.e. take e € C*™(L, g))
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The gauged action

Introducing gauge fields A € Q' (X, g) the gauged action is
given by

S[X, Al =} /z Gj(X) DX’ A xDX! + Bj(X) DX’ A DX

where ‘ ‘ .
DX' = dX' — v} A?

are the covariant derivatives.
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Gauge invariance

The gauged action S[X, A] is invariant with respect to the
following (local) gauge transformations:

5X! = vl e?

5. A=de+[A ¢ = (de? + C3p AP )T,

where T3 is a basis of g.

Now suppose we want the gauged sigma model to be
equivalent to the the ungauged model. Then we need to fix the
gauge’
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Gauge fixing

Introduce the curvature F € Q?(Z, g)
F=dA+ANA=(dA% + JC3hc AP N A°) T, = F2T,

and an ‘auxiliary field’ X € C>(%, g*), with infinitesimal
transformation rules

§cF? = CapcFPe®
665\(3 = —Ccab }\(c,fb
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Gauge fixing

Consider the action

SIX, A X] =} /Z (G,-,-(X) DX’ A «DX! + Bj(X) DX’ A Dxf)
+ / Xa F2
>

The equation of motion for )A(a gives F2 =0.

To solve this equation we need to lift the action of g to an action
of the group G (g = Lie G)
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Example: Group manifold

Letg: X — G
Slg] = ;/z(g1dgé*g‘dg)e
Invariant under left action of he G

Slhg] = S[g]

while
Stgtl = § [ (Ad(h")g""dg ¢ Ad(h™") =g do)g
pX

So, invariant under right action of G if G is Ad-invariant (Killing
form)
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Example: Gauged

In that case we can gauge in the standard way, and obtain the
gauged model (with F-term)

Slg, A X] = ;/2(9‘1D90*9“09)G+/z<5(, F)
where

g 'Dg=g 'dg- A
F=dA+AAA

and gauge symmetry, for h € G

g—gh
A— h'Ah+h'dh
X — Ad*(h~ )X
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Example: Gauged model

Solving F = 0 gives A= —dkk~" for k € C*(X,G), and
substituting

g 'Dg — g 'dg + dkk~" = k((gk)d(gk)) k"

l.e.
Slg. A = —dkk~"] = S[gk]

so after ‘fixing the gauge’ we recover the ungauged model.
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(Non-abelian) T-duality

On the other hand, first solving the equation of motion for A,
and then fixing the gauge, gives dual model

3[X]=1 / G(X) dXa A %d Xy
>
with dual metric

éqab = Gab - Ccaby(c
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T-duality
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Gauging without isometries?

The existence of global symmetries is a very stringent
requirement. A generic metric will not have any Killing vectors.

Question: Is it possible to follow the same procedure when
the vector fields are not Killing vectors?

Kotov and Strobl' introduced a method of gauging a sigma
model without requiring the model to possess isometries.

[1403.8119]
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Gauging without isometry

Their method uses Lie algebroids, and generalises the
standard gauging in two notable ways:

@ The structure constants of the Lie algebra are promoted to
structure functions:
[Va, Vb] = Ca(X) Vo
@ The gauge invariance of the gauged action doesn’t require
the original vector fields to be isometries:
L,,G#0 Ly,B#0

Peter Bouwknegt Lie algebroid gauge theories and applications to T-duality



Gauging without isometry

The set-up involves a Lie algebroid Q, amap X : ¥ — M,

XQ—=Q-—L-T1Mm

P

sy X M—=swM

together with a gauge field
Ac Q' (Z, X*Q)
a connection V on Q
V:r(Q) —Tr(TMe Q) =" (M)2T(Q)

and infinitesimal gauge parameter e € C*°(%, X* Q).
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Non-isometric T-duality

Upon choosing a basis e, of sections of Q, and defining
matrix-valued one-forms w?, by

Vea = wbaeb
the conditions on G and B become

EVaG = Wba V vaG
Ly,B=wPaAu,B

where v, = p(es).
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The gauged action

The gauged action
S“IX, Al = ;/ Gj DX' A«DX! + Bj DX' A DX/
>

is invariant under the modified (infinitesimal) gauge
transformations

5.X = Vi e

5 A% = de? + C3APeC + w3y eP DX’

Problems:

@ Infinitesimal gauge transformations do not necessarily
close

@ How to lift this to a global (groupoid) action?
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Non-isometric T-duality

Chatzistavrakidis, Deser, and Jonke? apply this non-isometric
gauging procedure to T-duality

The curvature is now given by
F2 = dA? + 1 Ce(X)AP A A® — Wi AP A DX

and

~

6EXa = _CcabEbXC —|— Vé (,L)Cbl Eb XC

Problem: In all their examples their ‘non-isometric T-duality’ is
equivalent to non-abelian T-duality.

2[1509.01829] and [1604.03739]
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A necessary condition for gauge invariance

A necessary condition for gauge invariance of the
non-isometrically gauged action with F-term, is that w?, is flat

Rba = dwba + wbc A (JJCa = O

This tells us that w?, is of the form K=" dK for some K?,(X).
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A field redefinition

Using this K, we can perform the following field redefinitions:

A? = K2,A°
Xa=Xp(K~ )P,
Va = VII)(K_1)ba

Note that

DX’ = dX' — ViA? = dX' — viA? = DX’
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Equivalence!

The gauged action can now be rewritten in terms of the new
fields (X', A2, X3).
S*IX, A, X] = ;/ Gj DX' A«DX! + B DX' A DXf+/ XaF?
X >
= S[X, A X]

where B B L
Fa = dA?+ JCocAP N A°
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The gauge transformations become the usual non-abelian
gauge transformations, and a short computation reveals

£;,G=0 L;B=0

Finally, gauge invariance of the action also requires that the
structure functions C¢,4,(X) be constants.
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Conclusion: Infinitesimal gauge invariance of the
non-isometrically gauged Lie algebroid sigma model implies
that the connection V“ is flat, and that there exists a Lie
algebra g(Q,w), with constant structure functions C?,. which is
equivalent to this model upon field redefinition (‘change of basis
of the Lie algebroid’).

Corollary: Non-isometric T-duality is equivalent to non-abelian
T-duality.
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Example: revisited

If, in our example,

Slg] = ;/z(g‘1dgé*g‘1dg)e
the metric G is not Ad-invariant, then we can still
non-isometrically gauge with respect to the right action.

It turns out that by performing the field redefinitions this model
is equivalent to isometrically gauging the left action.

Peter Bouwknegt
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