Lie algebroid gauge theories and applications to T-duality

Peter Bouwknegt

Mathematical Sciences Institute The Australian National University Canberra, ACT 2601, AUSTRALIA

Conference on "Gauge Theory and Complex Geometry" CIRM, Luminy, 18-22 June 2018 Talk based on:

PB, Mark Bugden, Ctirad Klimčík and Kyle Wright, Hidden Isometry of "T-duality without Isometry" JHEP 08 (2017) 116, arXiv:1705.09254

Mark Bugden, "A Tour of T-duality – Geometric and Topological Aspects of T-dualities", PhD Thesis 2018

Kyle Wright, "Generalised Geometries and Lie Algebroid Gauging in String Theory", PhD Thesis 2018 A 2D non-linear sigma model describes maps X from a 2-dimensional surface ('worldsheet') Σ to an N-dimensional manifold M ('target'), equipped with additional structure

For example

$$S[X] = \frac{1}{2} \int_{\Sigma} G_{ij}(X) \, dX^i \wedge \star dX^j + B_{ij}(X) \, dX^i \wedge dX^j$$

Symmetries of sigma model

Given a set of vector fields $v_a(X) = v_a^i(X)\partial_i$ forming a Lie algebra \mathfrak{g}

$$[v_a, v_b] = C^c{}_{ab}v_c$$

Consider the infinitesimal transformations

$$\delta_{\epsilon} X^{i} = v_{a}^{i}(X) \, \epsilon^{a}$$

we have

$$\delta_{\epsilon} S = \int_{\Sigma} \epsilon^{a} \left((\mathcal{L}_{v_{a}} G)_{ij} \, dX^{i} \wedge \star dX^{j} + (\mathcal{L}_{v_{a}} B)_{ij} \, dX^{i} \wedge dX^{j} \right)$$

The sigma model action is invariant under these transformations if

$$\mathcal{L}_{v_a}G=0\,,\qquad \mathcal{L}_{v_a}B=0$$

If this is the case, we can *gauge* the model by promoting the global symmetry to a local one (i.e. take $\epsilon \in C^{\infty}(\Sigma, \mathfrak{g})$)

Introducing gauge fields $A\in\Omega^1(\Sigma,\mathfrak{g})$ the gauged action is given by

$$\mathcal{S}[X, \mathcal{A}] = rac{1}{2} \int_{\Sigma} G_{ij}(X) \, DX^i \wedge \star DX^j + B_{ij}(X) \, DX^i \wedge DX^j$$

where

$$DX^i = dX^i - v^i_a A^a$$

are the covariant derivatives.

The gauged action S[X, A] is invariant with respect to the following (local) gauge transformations:

$$\delta_{\epsilon} X^{i} = v_{a}^{i} \epsilon^{a}$$
$$\delta_{\epsilon} A = d\epsilon + [A, \epsilon] = (d\epsilon^{a} + C^{a}{}_{bc} A^{b} \epsilon^{c}) T_{a}$$

where T_a is a basis of \mathfrak{g} .

Now suppose we want the gauged sigma model to be equivalent to the the ungauged model. Then we need to 'fix the gauge' Introduce the curvature $F \in \Omega^2(\Sigma, \mathfrak{g})$

$$F = dA + A \wedge A = (dA^a + \frac{1}{2}C^a{}_{bc}A^b \wedge A^c)T_a = F^aT_a$$

and an 'auxiliary field' $\widehat{X} \in C^{\infty}(\Sigma, \mathfrak{g}^*)$, with infinitesimal transformation rules

$$\delta_{\epsilon} F^{a} = C^{a}{}_{bc} F^{b} \epsilon^{c}$$

 $\delta_{\epsilon} \widehat{X}_{a} = -C^{c}{}_{ab} \widehat{X}_{c} \epsilon^{b}$

Consider the action

$$\begin{split} \mathcal{S}[X, \mathcal{A}, \widehat{X}] = & \frac{1}{2} \int_{\Sigma} \left(\mathcal{G}_{ij}(X) \, DX^i \wedge \star DX^j + \mathcal{B}_{ij}(X) \, DX^i \wedge DX^j \right) \\ & + \int_{\Sigma} \widehat{X}_a \, \mathcal{F}^a \end{split}$$

The equation of motion for \hat{X}_a gives $F^a = 0$.

To solve this equation we need to lift the action of ${\mathfrak g}$ to an action of the group G $({\mathfrak g}=Lie\,G)$

Example: Group manifold

Let
$$g:\Sigma
ightarrow {\sf G}$$
 $S[g]=rac{1}{2}\int_{\Sigma}(g^{-1}dg\stackrel{\wedge}{,}*g^{-1}dg)_{G}$

Invariant under left action of $h \in G$

$$S[hg] = S[g]$$

while

$$S[gh] = rac{1}{2} \int_{\Sigma} (\operatorname{Ad}(h^{-1})g^{-1}dg \stackrel{\wedge}{,} \operatorname{Ad}(h^{-1}) * g^{-1}dg)_G$$

So, invariant under right action of G if *G* is Ad-invariant (Killing form)

Example: Gauged

In that case we can gauge in the standard way, and obtain the gauged model (with *F*-term)

$$S[g, A, \widehat{X}] = rac{1}{2} \int_{\Sigma} (g^{-1} Dg \stackrel{\wedge}{,} *g^{-1} Dg)_G + \int_{\Sigma} \langle \widehat{X}, F \rangle$$

where

$$g^{-1}Dg = g^{-1}dg - A$$

 $F = dA + A \wedge A$

and gauge symmetry, for $h \in G$

$$egin{aligned} g o gh \ A o h^{-1}Ah + h^{-1}dh \ \widehat{X} o \operatorname{Ad}^*(h^{-1})\widehat{X} \end{aligned}$$

Solving F = 0 gives $A = -dkk^{-1}$ for $k \in C^{\infty}(\Sigma, G)$, and substituting

$$g^{-1}Dg \rightarrow g^{-1}dg + dkk^{-1} = k\big((gk)^{-1}d(gk)\big)k^{-1}$$

I.e.

$$S[g, A = -dkk^{-1}] = S[gk]$$

so after 'fixing the gauge' we recover the ungauged model.

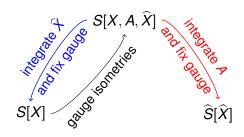
On the other hand, first solving the equation of motion for *A*, and then fixing the gauge, gives dual model

$$\widehat{S}[\widehat{X}] = rac{1}{2} \int_{\Sigma} \widehat{G}^{ab}(\widehat{X}) \, d\widehat{X}_a \wedge \star d\widehat{X}_b$$

with dual metric

$$\widehat{G}^{-1}{}_{ab} = G_{ab} - C^c{}_{ab}\widehat{X}_c$$

T-duality



The existence of global symmetries is a very stringent requirement. A generic metric will not have any Killing vectors.

Question: Is it possible to follow the same procedure when the vector fields are not Killing vectors?

Kotov and Strobl¹ introduced a method of gauging a sigma model without requiring the model to possess isometries.

Their method uses Lie algebroids, and generalises the standard gauging in two notable ways:

• The structure constants of the Lie algebra are promoted to structure functions:

$$[v_a, v_b] = C^c{}_{ab}(X) v_c$$

• The gauge invariance of the gauged action doesn't require the original vector fields to be isometries:

$$\mathcal{L}_{\textit{v}_a} G \neq 0 \qquad \mathcal{L}_{\textit{v}_a} B \neq 0$$

Gauging without isometry

The set-up involves a Lie algebroid Q, a map $X : \Sigma \to M$,

$$X^*Q \longrightarrow Q \xrightarrow{\rho} TM$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Sigma \xrightarrow{X} M \xrightarrow{\simeq} M$$

together with a gauge field

$$A \in \Omega^1(\Sigma, X^*Q)$$

a connection ∇ on Q

$$abla : \Gamma(Q)
ightarrow \Gamma(T^*M \otimes Q) = \Omega^1(M) \otimes \Gamma(Q)$$

and infinitesimal gauge parameter $\epsilon \in C^{\infty}(\Sigma, X^*Q)$.

Upon choosing a basis e_a of sections of Q, and defining matrix-valued one-forms $\omega^b{}_a$ by

$$\nabla \boldsymbol{e}_{\boldsymbol{a}} = \omega^{\boldsymbol{b}}{}_{\boldsymbol{a}} \boldsymbol{e}_{\boldsymbol{b}}$$

the conditions on G and B become

$$\mathcal{L}_{v_a}G = \omega^b{}_a \lor \iota_{v_b}G$$

 $\mathcal{L}_{v_a}B = \omega^b{}_a \land \iota_{v_b}B$

where $v_a = \rho(e_a)$.

The gauged action

The gauged action

$$S^{\omega}[X,A] = rac{1}{2} \int_{\Sigma} G_{ij} DX^i \wedge \star DX^j + B_{ij} DX^i \wedge DX^j$$

is invariant under the modified (infinitesimal) gauge transformations

$$\delta_{\epsilon} X^{i} = v_{a}^{i} \epsilon^{a}$$

$$\delta_{\epsilon} A^{a} = d\epsilon^{a} + C^{a}{}_{bc} A^{b} \epsilon^{c} + \omega^{a}{}_{bi} \epsilon^{b} D X^{i}$$

Problems:

- Infinitesimal gauge transformations do not necessarily close
- How to lift this to a global (groupoid) action?

Chatzistavrakidis, Deser, and Jonke² apply this non-isometric gauging procedure to T-duality

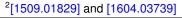
The curvature is now given by

$$\mathcal{F}^{a}_{\omega}= \mathit{dA}^{a}+rac{1}{2}\mathcal{C}^{a}_{bc}(X)\mathcal{A}^{b}\wedge\mathcal{A}^{c}-\omega^{a}_{bi}\,\mathcal{A}^{b}\wedge\mathcal{DX}^{i}$$

and

$$\delta_{\epsilon} \widehat{X}_{a} = -C^{c}{}_{ab} \epsilon^{b} \widehat{X}_{c} + v^{i}_{a} \omega^{c}{}_{bi} \epsilon^{b} \widehat{X}_{c}$$

Problem: In all their examples their 'non-isometric T-duality' is equivalent to non-abelian T-duality.



A necessary condition for gauge invariance of the non-isometrically gauged action with F_{ω} -term, is that $\omega^{b}{}_{a}$ is flat

$$\boldsymbol{R^{b}}_{a} = \boldsymbol{d}\omega^{b}_{a} + \omega^{b}_{c} \wedge \omega^{c}_{a} = \boldsymbol{0}$$

This tells us that $\omega^{b}{}_{a}$ is of the form $K^{-1}dK$ for some $K^{b}{}_{a}(X)$.

Using this K, we can perform the following field redefinitions:

$$\widetilde{A}^{a} = K^{a}{}_{b}A^{b}$$
$$\widetilde{\widehat{X}}_{a} = \widehat{X}_{b}(K^{-1})^{b}{}_{a}$$
$$\widetilde{v}_{a} = v^{i}_{b}(K^{-1})^{b}{}_{a}$$

Note that

$$\widetilde{D}X^{i} = dX^{i} - \widetilde{v}_{a}^{i}\widetilde{A}^{a} = dX^{i} - v_{a}^{i}A^{a} = DX^{i}$$

The gauged action can now be rewritten in terms of the new fields $(X^i, \widetilde{A}^a, \widehat{\widetilde{X}}_a)$.

$$egin{aligned} S^{\omega}[X,\widetilde{A},\widetilde{\widehat{X}}] &= rac{1}{2}\int_{\Sigma}G_{ij}\,DX^i\wedge\star DX^j + B_{ij}\,DX^i\wedge DX^j + \int_{\Sigma}\widetilde{\widehat{X}}_a\widetilde{F}^a \ &= S[X,\widetilde{A},\widetilde{\widehat{X}}] \end{aligned}$$

where

$$\widetilde{F}^{a} = d\widetilde{A}^{a} + \frac{1}{2}\widetilde{C}^{a}{}_{bc}\widetilde{A}^{b}\wedge\widetilde{A}^{c}$$

The gauge transformations become the usual non-abelian gauge transformations, and a short computation reveals

$$\mathcal{L}_{\widetilde{v}_a}G=0$$
 $\mathcal{L}_{\widetilde{v}_a}B=0$

Finally, gauge invariance of the action also requires that the structure functions $\widetilde{C}^{c}{}_{ab}(X)$ be constants.

Conclusion: Infinitesimal gauge invariance of the non-isometrically gauged Lie algebroid sigma model implies that the connection ∇^{ω} is flat, and that there exists a Lie algebra $\mathfrak{g}(Q, \omega)$, with constant structure functions $\widetilde{C}^{a}{}_{bc}$ which is equivalent to this model upon field redefinition ('change of basis of the Lie algebroid').

Corollary: Non-isometric T-duality is equivalent to non-abelian T-duality.

If, in our example,

$$S[g] = rac{1}{2} \int_{\Sigma} (g^{-1} dg \stackrel{\wedge}{,} *g^{-1} dg)_G$$

the metric *G* is not Ad-invariant, then we can still non-isometrically gauge with respect to the right action.

It turns out that by performing the field redefinitions this model is equivalent to isometrically gauging the left action.

THANKS

Peter Bouwknegt Lie algebroid gauge theories and applications to T-duality