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The 2D (non-linear) sigma model

A 2D non-linear sigma model describes maps X from a
2-dimensional surface (‘worldsheet’) Σ to an N-dimensional
manifold M (‘target’), equipped with additional structure

For example

S[X ] = 1
2

∫
Σ

Gij(X ) dX i ∧ ?dX j + Bij(X ) dX i ∧ dX j
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Symmetries of sigma model

Given a set of vector fields va(X ) = v i
a(X )∂i forming a Lie

algebra g
[va, vb] = Cc

abvc

Consider the infinitesimal transformations

δεX i = v i
a(X ) εa

we have

δεS =

∫
Σ
εa
(

(LvaG)ij dX i ∧ ?dX j + (LvaB)ij dX i ∧ dX j
)

The sigma model action is invariant under these
transformations if

LvaG = 0 , LvaB = 0

If this is the case, we can gauge the model by promoting the
global symmetry to a local one (i.e. take ε ∈ C∞(Σ, g))
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The gauged action

Introducing gauge fields A ∈ Ω1(Σ, g) the gauged action is
given by

S[X ,A] = 1
2

∫
Σ

Gij(X ) DX i ∧ ?DX j + Bij(X ) DX i ∧ DX j

where
DX i = dX i − v i

a Aa

are the covariant derivatives.
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Gauge invariance

The gauged action S[X ,A] is invariant with respect to the
following (local) gauge transformations:

δεX i = v i
a ε

a

δεA = dε+ [A, ε] = (dεa + Ca
bc Ab εc)Ta

where Ta is a basis of g.

Now suppose we want the gauged sigma model to be
equivalent to the the ungauged model. Then we need to ‘fix the
gauge’
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Gauge fixing

Introduce the curvature F ∈ Ω2(Σ, g)

F = dA + A ∧ A = (dAa + 1
2Ca

bc Ab ∧ Ac)Ta = F aTa

and an ‘auxiliary field’ X̂ ∈ C∞(Σ, g∗), with infinitesimal
transformation rules

δεF a = Ca
bcF bεc

δεX̂a = −Cc
ab X̂cε

b

Peter Bouwknegt Lie algebroid gauge theories and applications to T-duality



Gauge fixing

Consider the action

S[X ,A, X̂ ] =1
2

∫
Σ

(
Gij(X ) DX i ∧ ?DX j + Bij(X ) DX i ∧ DX j

)
+

∫
Σ

X̂a F a

The equation of motion for X̂a gives F a = 0.

To solve this equation we need to lift the action of g to an action
of the group G (g = Lie G)
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Example: Group manifold

Let g : Σ→ G

S[g] = 1
2

∫
Σ

(g−1dg ∧, ∗g−1dg)G

Invariant under left action of h ∈ G

S[hg] = S[g]

while

S[gh] = 1
2

∫
Σ

(Ad(h−1)g−1dg ∧, Ad(h−1) ∗ g−1dg)G

So, invariant under right action of G if G is Ad-invariant (Killing
form)
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Example: Gauged

In that case we can gauge in the standard way, and obtain the
gauged model (with F -term)

S[g,A, X̂ ] = 1
2

∫
Σ

(g−1Dg ∧, ∗g−1Dg)G +

∫
Σ
〈X̂ ,F 〉

where

g−1Dg = g−1dg − A
F = dA + A ∧ A

and gauge symmetry, for h ∈ G

g → gh

A→ h−1Ah + h−1dh

X̂ → Ad∗(h−1)X̂
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Example: Gauged model

Solving F = 0 gives A = −dkk−1 for k ∈ C∞(Σ,G), and
substituting

g−1Dg → g−1dg + dkk−1 = k
(
(gk)−1d(gk)

)
k−1

I.e.
S[g,A = −dkk−1] = S[gk ]

so after ‘fixing the gauge’ we recover the ungauged model.
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(Non-abelian) T-duality

On the other hand, first solving the equation of motion for A,
and then fixing the gauge, gives dual model

Ŝ[X̂ ] = 1
2

∫
Σ

Ĝab(X̂ ) dX̂a ∧ ?dX̂b

with dual metric

Ĝ−1
ab = Gab − Cc

abX̂c
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T-duality

S[X ]

S[X ,A, X̂ ]
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Gauging without isometries?

The existence of global symmetries is a very stringent
requirement. A generic metric will not have any Killing vectors.

Question: Is it possible to follow the same procedure when
the vector fields are not Killing vectors?

Kotov and Strobl1 introduced a method of gauging a sigma
model without requiring the model to possess isometries.

1[1403.8119]
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Gauging without isometry

Their method uses Lie algebroids, and generalises the
standard gauging in two notable ways:

The structure constants of the Lie algebra are promoted to
structure functions:

[va, vb] = Cc
ab(X ) vc

The gauge invariance of the gauged action doesn’t require
the original vector fields to be isometries:

LvaG 6= 0 LvaB 6= 0
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Gauging without isometry

The set-up involves a Lie algebroid Q, a map X : Σ→ M,

X ∗Q //

��

Q
ρ //

��

TM

��
Σ

X // M
∼= // M

together with a gauge field

A ∈ Ω1(Σ,X ∗Q)

a connection ∇ on Q

∇ : Γ(Q)→ Γ(T ∗M ⊗Q) = Ω1(M)⊗ Γ(Q)

and infinitesimal gauge parameter ε ∈ C∞(Σ,X ∗Q).
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Non-isometric T-duality

Upon choosing a basis ea of sections of Q, and defining
matrix-valued one-forms ωb

a by

∇ea = ωb
aeb

the conditions on G and B become

LvaG = ωb
a ∨ ιvbG

LvaB = ωb
a ∧ ιvbB

where va = ρ(ea).
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The gauged action

The gauged action

Sω[X ,A] = 1
2

∫
Σ

Gij DX i ∧ ?DX j + Bij DX i ∧ DX j

is invariant under the modified (infinitesimal) gauge
transformations

δεX i = v i
a ε

a

δεAa = dεa + Ca
bcAbεc + ωa

biε
bDX i

Problems:
Infinitesimal gauge transformations do not necessarily
close
How to lift this to a global (groupoid) action?
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Non-isometric T-duality

Chatzistavrakidis, Deser, and Jonke2 apply this non-isometric
gauging procedure to T-duality

The curvature is now given by

F a
ω = dAa + 1

2Ca
bc(X )Ab ∧ Ac − ωa

bi Ab ∧ DX i

and
δεX̂a = −Cc

abε
bX̂c + v i

a ω
c

bi ε
b X̂c

Problem: In all their examples their ‘non-isometric T-duality’ is
equivalent to non-abelian T-duality.

2[1509.01829] and [1604.03739]
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A necessary condition for gauge invariance

A necessary condition for gauge invariance of the
non-isometrically gauged action with Fω-term, is that ωb

a is flat

Rb
a = dωb

a + ωb
c ∧ ωc

a = 0

This tells us that ωb
a is of the form K−1dK for some K b

a(X ).
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A field redefinition

Using this K , we can perform the following field redefinitions:

Ãa = K a
bAb

˜̂X a = X̂b(K−1)b
a

ṽa = v i
b(K−1)b

a

Note that

D̃X i = dX i − ṽ i
aÃa = dX i − v i

aAa = DX i
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Equivalence!

The gauged action can now be rewritten in terms of the new

fields (X i , Ãa,
˜̂X a).

Sω[X , Ã, ˜̂X ] = 1
2

∫
Σ

Gij DX i ∧ ?DX j + Bij DX i ∧ DX j +

∫
Σ

˜̂X aF̃ a

= S[X , Ã, ˜̂X ]

where
F̃ a = dÃa + 1

2 C̃a
bcÃb ∧ Ãc
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The gauge transformations become the usual non-abelian
gauge transformations, and a short computation reveals

Lṽa
G = 0 Lṽa

B = 0

Finally, gauge invariance of the action also requires that the
structure functions C̃c

ab(X ) be constants.
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Result

Conclusion: Infinitesimal gauge invariance of the
non-isometrically gauged Lie algebroid sigma model implies
that the connection ∇ω is flat, and that there exists a Lie
algebra g(Q, ω), with constant structure functions C̃a

bc which is
equivalent to this model upon field redefinition (‘change of basis
of the Lie algebroid’).

Corollary: Non-isometric T-duality is equivalent to non-abelian
T-duality.
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Example: revisited

If, in our example,

S[g] = 1
2

∫
Σ

(g−1dg ∧, ∗g−1dg)G

the metric G is not Ad-invariant, then we can still
non-isometrically gauge with respect to the right action.

It turns out that by performing the field redefinitions this model
is equivalent to isometrically gauging the left action.
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