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What (for this talk) are canonical bases?

What (for this talk) are canonical bases?

g is a semi-simple Lie algebra over C, Ei,Fi are the Chevalley
generators, Uq(g) is the quantized universal enveloping algebra, U−

q (g)
is the subalgebra generated by the Fi.
Uq(g) has essentially the same representation theory as g (or as G).
Every finite dimensional irrep Vλ is highest weight, so Vλ = U−

q (g)/Iλ.
The canonical basis B (= global crystal basis) is a basis of U−

q (g) with
amazing properties:

1 For every λ, {b + Iλ : b ∈ B, b 6∈ Iλ} is a basis for Vλ.

2 B is a crystal basis as studied by Kashiwara.
3 Structure constants are positive (in type ADE, and more generally in

symmetric type).

We discuss a construction of B from Lusztig’s PBW bases. This only
works in finite type, but it is ‘elementary’!
Properties 1, 2 are visible. 3 is not, but maybe this is not surprising.
All is basically due to Lusztig.
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‘Elementary’ construction of canonical/crystal bases from PBW bases

PBW bases

For each reduced expression w0 = si1si2 · · · siN , Lusztig defines an order

αi1 = β1 < β2 < . . . < βN

on positive roots of g, and elements Fβj in U−
q (g)βj :

Fβj = Ti1 . . . Tij−1Fij .

The Ti are Lusztig’s braid group automorphisms.

Fact: {F(a1)
β1
· · ·F(aN)

βN
} is a basis of U−

q (g).
This can be thought of as a first attempt at defining a canonical basis, but
it isn’t canonical, since you get a different basis Bi for each expression i
of w0.
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‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.

Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.

Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.

Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.
Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.
Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.
Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.
Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating different PBW bases/finding B

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.
Can go between any two reduced expressions by a series of braid moves.

Two terms braid moves don’t change the basis at all.

For 3 term braid moves, annoying but elementary linear algebra to shows
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}, and a similar
thing for type B2,G2 moves.

So we have a canonical Z[q] lattice L and basis for L/qL! These
coincide with Kashiwara’s crystal lattice/basis (see Grojnowski-Lusztig,
Saito). So for combinatorial goals we are already good!

For this audience I will also explain how to get the actual canonical basis.

Peter Tingley (Loyola Chicago) Crystals from PBW bases June 4-8, 2018 5 / 15



‘Elementary’ construction of canonical/crystal bases from PBW bases

The canonical basis

Recall bar involution: the algebra involution of Uq(g) over C which
preserves Chevalley generators and satisfies q→ q−1,Ki → K−1

i .

Can show using basis properties of PBW bases that the action of this
involution on any PBW basis Bi is unit-triangular for lex-order.

By a fairly well known linear algebra argument, this implies

Theorem

There is a unique basis B of U−
q (g) such that

1 B is contained in L, B + qL is a basis for L/qL, and this agrees with Bi + qL.

Furthermore, the change of basis from any Bi to B is unit-triangular.

You get the same basis starting with any PBW basis! So now we have a
single chosen basis B! This is Lusztig’s canonical basis.
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You get the same basis starting with any PBW basis! So now we have a
single chosen basis B! This is Lusztig’s canonical basis.
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‘Elementary’ construction of canonical/crystal bases from PBW bases

Descent to modules

We can now see the first amazing property of B fairly easily: that it
descends to a basis of each Vλ = Uq(g)/Iλ.
Equivalent: it’s intersection with each Iλ spans Iλ.
By BGG theorem, it is enough to show that

B ∩ U−
q (g)Fk

i spans U−
q (g)Fk

i for all i, k.

For a PBW basis Bi of the form {. . .FaN
i } this is obvious.

But then the triangularity of the change of basis from B to Bi implies it is
true for B as well!!!
Wow, that was easy!
In some sense that is the biggest punch line of this talk...but I’m kind of a
combinatorist, so let’s think about how to do combinatorics from this
perspective.
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‘Elementary’ construction of canonical/crystal bases from PBW bases

Crystal operators for sl3

There are only two reduced expressions for w0:
i1 := s1s2s1 and i2 := s2s1s2.

An element in B(∞) can be expressed in either bases. Using Bi1 , take

b = F(3)
1 (Fi1

α1+α2
)(2)F(1)

2 + qL.

The crystal operator fi is supposed to be a “leading term" for left
multiplication by Fi. It seems clear that we should define

f1(b) = F(4)
1 (Fi1

α1+α2
)(2)F(1)

2 + qL.

What about f2b? Using the other PBW basis, can calculate
b = F(2)

2 (Fi2
α1+α2

)(1)F(4)
1 + qL.

f2b = F(3)
2 (Fi2

α1+α2
)(1)F(4)

1 + qL = F(2)
1 (Fi1

α1+α2
)(3)F(1)

2 + qL.

The interesting calculations are in relating the two PBW bases.
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‘Elementary’ construction of canonical/crystal bases from PBW bases

Relating the two PBW bases for sl3

−α1 −α2

Recall F(1)
2 (Fi1

α1+α2
)(2)F(3)

1 = F(4)
1 (Fi2

α1+α2
)(1)F(2)

2 mod q.

The polygons that show up this way are exactly those where the
horizontal width is the max of the two diagonal widths.

Given one side can easily figure out the other.

So we can explicitly relate the two PBW bases, and hence we can apply
crytsal operators as in the previous slide.
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Extracting explicit combinatorics!

Crystal operators for sl4

We apply f3 to a b ∈ B(∞), using PBW basis for w0 = s1s2s3s1s2s1

s1 s2 s3 s1 s2 s1

α1 (α1+α2) (α1+α2+α3) α2 (α2+α3) α3

Take b = F(2)
1 F(3)

12 F(1)
123 F(3)

2 F(3)
23 F(2)

3

F(2)
1 F12

(3) F(1)
123 F(3)

3 F(2)
32 F(4)

2
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(1) F(3)
312 F(1)
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Extracting explicit combinatorics!

Crystal operators 3: using segments/Kostant partitions

F(2)
1 F12

(3) F(1)
123 F(3)

2 F(3)
23 F(2)

3

1 1
2
1

2
1

2
1

3
2
1 2 2 2

3
2

3
2

3
2 3 3

f3 ) ( ( ( ) ) ) ( ( ( ) )

3
2
1

2
1

2
1

2
1

3
2

3
2

3
2 1 1 2 2 2 3 3

F(2)
1 F12

(3) F(1)
123 F(2)

2 F(4)
23 F(2)

3
Get a bracketing rule as long as each αi can be moved to left with all
3-term moves involving αi. A reduced expression with this property
exists in all types except E8 and F4 (see Littelmann “Cones, crystals and
patterns"). There are non-trivially different such expressions.
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Relation to more standard combinatorics

Some citation information

1 Lusztig.
2 My notes “An elementary construction of Lusztig’s canonical bases,"

published in a Contemporary Mathematics conference proceedings.
3 "Combinatorial descriptions of the crystal structure on certain PBW

bases" with Ben Salisbury and Adam Schultze. For general results on
combinatorics/bracketing rules from PBW bases.

4 Explicit descriptions of combinatorics and relations to tableaux are in a
series of three papers: “Young Tableaux, Multisegments, and PBW
Bases" with Claxton for type A, “PBW bases and marginally large
tableaux in type D" with Salisbury an Schultze, and “PBW bases and
marginally large tableaux in types B and C" with Criswell and Salisbury.
Sorry, there are some good reasons it got split up...
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Thanks!!!

And happy birthday Kolya!!!!!
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