Vector valued Harish-Chandra series and boundary KZB equations

Jasper Stokman

University of Amsterdam

June 7, 2018

Goal of the talk

Construction of

(1) eigenstates for quantum trigonometric spin Calogero-Moser systems,
(2) eigenfunctions for boundary Knizhnik-Zamolodchikov-Bernard (KZB) operators,
in terms of vector-valued Harish-Chandra series.

Joint work with Kolya Reshetikhin.

Split symmetric pair $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$

(1) Complex simple Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, Killing form $(\cdot, \cdot): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$.

Split symmetric pair $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$

(1) Complex simple Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, Killing form $(\cdot, \cdot): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$.
(2) Chevalley involution $\theta \in \operatorname{Aut}(\mathfrak{g})$,

$$
\left.\theta\right|_{\mathfrak{h}}=-I \mathrm{~d}_{\mathfrak{h}}, \quad \theta\left(e_{\alpha}\right)=-e_{-\alpha}
$$

with $e_{\alpha} \in \mathfrak{g}_{\alpha}$ such that $\left(e_{\alpha}, e_{-\beta}\right)=\delta_{\alpha, \beta}$.

Split symmetric pair $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$

(1) Complex simple Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, Killing form $(\cdot, \cdot): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$.
(2) Chevalley involution $\theta \in \operatorname{Aut}(\mathfrak{g})$,

$$
\left.\theta\right|_{\mathfrak{h}}=-I \mathrm{~d}_{\mathfrak{h}}, \quad \theta\left(e_{\alpha}\right)=-e_{-\alpha}
$$

with $e_{\alpha} \in \mathfrak{g}_{\alpha}$ such that $\left(e_{\alpha}, e_{-\beta}\right)=\delta_{\alpha, \beta}$.
(3) $\mathfrak{g}^{\theta}=\bigoplus_{\alpha \in \Phi^{+}} \mathbb{C} y_{\alpha}$ with $y_{\alpha}:=e_{\alpha}-e_{-\alpha}$ and Φ^{+}a choice of positive roots.

Split symmetric pair $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$

(1) Complex simple Lie algebra $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, Killing form $(\cdot, \cdot): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$.
(2) Chevalley involution $\theta \in \operatorname{Aut}(\mathfrak{g})$,

$$
\left.\theta\right|_{\mathfrak{h}}=-I \mathrm{~d}_{\mathfrak{h}}, \quad \theta\left(e_{\alpha}\right)=-e_{-\alpha}
$$

with $e_{\alpha} \in \mathfrak{g}_{\alpha}$ such that $\left(e_{\alpha}, e_{-\beta}\right)=\delta_{\alpha, \beta}$.
(3) $\mathfrak{g}^{\theta}=\bigoplus_{\alpha \in \Phi^{+}} \mathbb{C} y_{\alpha}$ with $y_{\alpha}:=e_{\alpha}-e_{-\alpha}$ and Φ^{+}a choice of positive roots.

Examples

$\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)=\left(\mathfrak{s l}_{\ell+1}(\mathbb{C}), \mathfrak{s o}_{\ell+1}(\mathbb{C})\right)$ and $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)=\left(\mathfrak{s p}_{\ell}(\mathbb{C}), \mathfrak{g l}_{\ell}(\mathbb{C})\right)$. In both cases Chevalley involution $\theta(X):=-X^{\top}$.

Vector-valued Harish-Chandra series

Notations $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ the base for $\boldsymbol{\Phi}^{+}$,
(1) \mathcal{R} the ring of rational trigonometric functions on \mathfrak{h} generated by $\mathbb{C}\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]$ and $\left(1-e^{2 \alpha}\right)^{-1}$ for $\alpha \in \Phi$.

Vector-valued Harish-Chandra series

Notations $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ the base for Φ^{+},
(1) \mathcal{R} the ring of rational trigonometric functions on \mathfrak{h} generated by $\mathbb{C}\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]$ and $\left(1-e^{2 \alpha}\right)^{-1}$ for $\alpha \in \Phi$.
(2) $\mathcal{R} \hookrightarrow \mathbb{C}\left[\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]\right]$ (power series expansion in the sector $\left.\mathfrak{h}_{+}:=\left\{h \in \mathfrak{h} \mid \Re(\alpha(h))>0 \quad \forall \alpha \in \Phi^{+}\right\}\right)$.

Vector-valued Harish-Chandra series

Notations $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ the base for Φ^{+},
(1) \mathcal{R} the ring of rational trigonometric functions on \mathfrak{h} generated by $\mathbb{C}\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]$ and $\left(1-e^{2 \alpha}\right)^{-1}$ for $\alpha \in \Phi$.
(2) $\mathcal{R} \hookrightarrow \mathbb{C}\left[\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]\right]$ (power series expansion in the sector $\left.\mathfrak{h}_{+}:=\left\{h \in \mathfrak{h} \mid \Re(\alpha(h))>0 \quad \forall \alpha \in \Phi^{+}\right\}\right)$.
(3) $\mathcal{D}_{\mathcal{R}}$: algebra of linear differential operators on \mathfrak{h} with coefficients in \mathcal{R}.

Vector-valued Harish-Chandra series

Notations $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\}$ the base for Φ^{+},
(1) \mathcal{R} the ring of rational trigonometric functions on \mathfrak{h} generated by $\mathbb{C}\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]$ and $\left(1-e^{2 \alpha}\right)^{-1}$ for $\alpha \in \Phi$.
(2) $\mathcal{R} \hookrightarrow \mathbb{C}\left[\left[e^{-\alpha_{1}}, \ldots, e^{-\alpha_{\ell}}\right]\right]$ (power series expansion in the sector $\left.\mathfrak{h}_{+}:=\left\{h \in \mathfrak{h} \mid \Re(\alpha(h))>0 \quad \forall \alpha \in \Phi^{+}\right\}\right)$.
(3) $\mathcal{D}_{\mathcal{R}}$: algebra of linear differential operators on \mathfrak{h} with coefficients in \mathcal{R}.

Definition

$L:=\sum_{k=1}^{\ell} \frac{\partial^{2}}{\partial x_{k}^{2}}+\sum_{\alpha \in \Phi^{+}}\left(\frac{1+e^{-2 \alpha}}{1-e^{-2 \alpha}}\right) \frac{\partial}{\partial h_{\alpha}}+2 \sum_{\alpha \in \Phi^{+}} \frac{y_{\alpha}^{2}}{\left(e^{\alpha}-e^{-\alpha}\right)^{2}} \in U\left(\mathfrak{g}^{\theta}\right) \otimes \mathcal{D}_{\mathcal{R}}$
with
(1) $\left\{x_{1}, \ldots, x_{\ell}\right\}$ a linear basis of \mathfrak{h} such that $\left(x_{i}, x_{j}\right)=\delta_{i, j}$,
(2) $h_{\alpha} \in \mathfrak{h}$ such that $\left(h, h_{\alpha}\right)=\alpha(h)$ for all $h \in \mathfrak{h}$.

Vector-valued Harish-Chandra series

Generic spectral parameters:

$$
\mathfrak{h}_{H C}^{*}:=\left\{\lambda \in \mathfrak{h}^{*} \mid(2 \lambda+2 \rho+\gamma, \gamma) \neq 0 \quad \forall 0 \neq \gamma \in \mathbb{Z}_{\leq 0} \Phi^{+}\right\}
$$

with $\rho:=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$ and $(\cdot, \cdot): \mathfrak{h}^{*} \times \mathfrak{h}^{*} \rightarrow \mathbb{C}$ the dual of the non-degenerate bilinear form $\left.(\cdot, \cdot)\right|_{\mathfrak{h} \times \mathfrak{h}}$ on \mathfrak{h}.

Vector-valued Harish-Chandra series

Generic spectral parameters:

$$
\mathfrak{h}_{H C}^{*}:=\left\{\lambda \in \mathfrak{h}^{*} \mid(2 \lambda+2 \rho+\gamma, \gamma) \neq 0 \quad \forall 0 \neq \gamma \in \mathbb{Z}_{\leq 0} \Phi^{+}\right\}
$$

with $\rho:=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$ and $(\cdot, \cdot): \mathfrak{h}^{*} \times \mathfrak{h}^{*} \rightarrow \mathbb{C}$ the dual of the non-degenerate bilinear form $\left.(\cdot, \cdot)\right|_{\mathfrak{h} \times \mathfrak{h}}$ on \mathfrak{h}.

Theorem

Let N be a finite dimensional \mathfrak{g}^{θ}-module and give it the norm topology. Let $n \in N$ and $\lambda \in \mathfrak{h}_{H C}^{*}$. There exists a unique N-valued holomorphic function F_{λ}^{n} on \mathfrak{h}_{+}of the form

$$
F_{\lambda}^{n}(h)=\sum_{\gamma \in \mathbb{Z}_{\leq 0} \Phi^{+}} \Gamma_{\gamma}^{n}(\lambda) e^{(\lambda+\gamma)(h)}, \quad \Gamma_{\gamma}^{n}(\lambda) \in N
$$

satisfying $L\left(F_{\lambda}^{n}\right)=(\lambda+2 \rho, \lambda) F_{\lambda}^{n}$ and the initial condition $\Gamma_{0}^{n}(\lambda)=n$.

Vector-valued Harish-Chandra series

Terminology: F_{λ}^{n} is the N-valued Harish-Chandra series for $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$ with leading term $n \in N$ (for N the trivial \mathfrak{g}^{θ}-representation, it is the usual Harish-Chandra series).

Vector-valued Harish-Chandra series

Terminology: F_{λ}^{n} is the N-valued Harish-Chandra series for $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$ with leading term $n \in N$ (for N the trivial \mathfrak{g}^{θ}-representation, it is the usual Harish-Chandra series).

Remarks

(1) $L=L_{\Omega}$ is the $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$-radial component of the action of the Casimir element

$$
\Omega:=\sum_{k=1}^{\ell} x_{k}^{2}+\sum_{\alpha \in \Phi} e_{\alpha} e_{-\alpha} \in Z(U(\mathfrak{g}))
$$

acting by right-invariant differential operators on vector-valued spherical functions.

Vector-valued Harish-Chandra series

Terminology: F_{λ}^{n} is the N-valued Harish-Chandra series for $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$ with leading term $n \in N$ (for N the trivial \mathfrak{g}^{θ}-representation, it is the usual Harish-Chandra series).

Remarks

(1) $L=L_{\Omega}$ is the $\left(\mathfrak{g}, \mathfrak{g}^{\theta}\right)$-radial component of the action of the Casimir element

$$
\Omega:=\sum_{k=1}^{\ell} x_{k}^{2}+\sum_{\alpha \in \Phi} e_{\alpha} e_{-\alpha} \in Z(U(\mathfrak{g}))
$$

acting by right-invariant differential operators on vector-valued spherical functions.
(2) Radial component map gives an algebra embedding $Z(U(\mathfrak{g})) \hookrightarrow U\left(\mathfrak{g}^{\theta}\right) \otimes \mathcal{D}_{\mathcal{R}}, C \mapsto L_{C}$ and

$$
L_{C}\left(F_{\lambda}^{n}\right)=\xi_{\lambda}(C) F_{\lambda}^{n}, \quad C \in Z(U(\mathfrak{g}))
$$

with $\xi_{\lambda}: Z(U(\mathfrak{g})) \rightarrow \mathbb{C}$ the central character at λ.

Quantum trigonometric spin Calogero-Moser systems

Quantum trigonometric spin Calogero-Moser systems

Gauge away the first order part of
$L:=\sum_{k=1}^{\ell} \frac{\partial^{2}}{\partial x_{k}^{2}}+\sum_{\alpha \in \Phi^{+}}\left(\frac{1+e^{-2 \alpha}}{1-e^{-2 \alpha}}\right) \frac{\partial}{\partial h_{\alpha}}+2 \sum_{\alpha \in \Phi^{+}} \frac{y_{\alpha}^{2}}{\left(e^{\alpha}-e^{-\alpha}\right)^{2}} \in U\left(\mathfrak{g}^{\theta}\right) \otimes \mathcal{D}_{\mathcal{R}}$
using the deformed Weyl denominator

$$
\delta:=e^{\rho} \prod_{\alpha \in \Phi^{+}}\left(1-e^{-2 \alpha}\right)^{\frac{1}{2}} .
$$

Quantum trigonometric spin Calogero-Moser systems

Gauge away the first order part of
$L:=\sum_{k=1}^{\ell} \frac{\partial^{2}}{\partial x_{k}^{2}}+\sum_{\alpha \in \Phi^{+}}\left(\frac{1+e^{-2 \alpha}}{1-e^{-2 \alpha}}\right) \frac{\partial}{\partial h_{\alpha}}+2 \sum_{\alpha \in \Phi^{+}} \frac{y_{\alpha}^{2}}{\left(e^{\alpha}-e^{-\alpha}\right)^{2}} \in U\left(\mathfrak{g}^{\theta}\right) \otimes \mathcal{D}_{\mathcal{R}}$
using the deformed Weyl denominator

$$
\delta:=e^{\rho} \prod_{\alpha \in \Phi^{+}}\left(1-e^{-2 \alpha}\right)^{\frac{1}{2}}
$$

Gives the quantum trigonometric spin Calogero-Moser Hamiltonian:

$$
H:=\delta L \delta^{-1}=\sum_{k=1}^{\ell} \frac{\partial^{2}}{\partial x_{k}^{2}}+\sum_{\alpha \in \Phi} \frac{1}{\left(e^{\alpha}-e^{-\alpha}\right)^{2}}\left(\frac{(\alpha, \alpha)}{2}+y_{\alpha}^{2}\right)-(\rho, \rho)
$$

with eigenfunction the gauged N-valued Harish-Chandra series

$$
\mathbf{F}_{\lambda}^{n}:=\delta F_{\lambda}^{n}
$$

Representation theoretic interpretation of F_{λ}^{n}

Representation theoretic interpretation of F_{λ}^{n}

(1) Verma module $M_{\lambda}:=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda}$ with respect to Borel subalgebra $\mathfrak{b}:=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}\left(\right.$ note: M_{λ} is irreducible for $\lambda \in \mathfrak{h}_{H C}^{*}$).

Representation theoretic interpretation of F_{λ}^{n}

(1) Verma module $M_{\lambda}:=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda}$ with respect to Borel subalgebra $\mathfrak{b}:=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}$ (note: M_{λ} is irreducible for $\lambda \in \mathfrak{h}_{H C}^{*}$).
(2) Weight decomposition $M_{\lambda}=\bigoplus_{\mu \leq \lambda} M_{\lambda}[\mu]$, highest weight vector $m_{\lambda} \in M_{\lambda}[\lambda]$.

Representation theoretic interpretation of F_{λ}^{n}

(1) Verma module $M_{\lambda}:=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda}$ with respect to Borel subalgebra $\mathfrak{b}:=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}$ (note: M_{λ} is irreducible for $\lambda \in \mathfrak{h}_{H C}^{*}$).
(2) Weight decomposition $M_{\lambda}=\bigoplus_{\mu \leq \lambda} M_{\lambda}[\mu]$, highest weight vector $m_{\lambda} \in M_{\lambda}[\lambda]$.
(3) Weight completion $\bar{M}_{\lambda}:=\prod_{\mu \leq \lambda} M_{\lambda}[\mu]$.

Representation theoretic interpretation of F_{λ}^{n}
(1) Verma module $M_{\lambda}:=U(\mathfrak{g}) \otimes U(\mathfrak{b}) \mathbb{C}_{\lambda}$ with respect to Borel subalgebra $\mathfrak{b}:=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}$ (note: M_{λ} is irreducible for $\lambda \in \mathfrak{h}_{H C}^{*}$).
(2) Weight decomposition $M_{\lambda}=\bigoplus_{\mu \leq \lambda} M_{\lambda}[\mu]$, highest weight vector $m_{\lambda} \in M_{\lambda}[\lambda]$.
(3) Weight completion $\bar{M}_{\lambda}:=\prod_{\mu \leq \lambda} M_{\lambda}[\mu]$.

Lemma (Gelfand pair property)

Let $\lambda \in \mathfrak{h}_{H C}^{*}$.
(1) $\operatorname{Dim}\left(\bar{M}_{\lambda}^{\mathfrak{g}^{\theta}}\right)=1$.
(2) There exists a unique $v_{\lambda}=\left(v_{\lambda}[\mu]\right)_{\mu \leq \lambda} \in \bar{M}_{\lambda}^{\mathfrak{g}^{\theta}}$ with $v_{\lambda}[\lambda]=m_{\lambda}$.

Representation theoretic interpretation of F_{λ}^{n}

Theorem
Let N be a f.d. \mathfrak{g}^{θ}-module, $\lambda \in \mathfrak{h}_{H C}^{*}$ and $\phi_{\lambda} \in \operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, N\right)$. Then

$$
F_{\lambda}^{\phi_{\lambda}\left(m_{\lambda}\right)}(h)=\sum_{\mu \leq \lambda} \phi_{\lambda}\left(v_{\lambda}[\mu]\right) e^{\mu(h)}, \quad h \in \mathfrak{h}_{+} .
$$

Representation theoretic interpretation of F_{λ}^{n}

Theorem
Let N be a f.d. \mathfrak{g}^{θ}-module, $\lambda \in \mathfrak{h}_{H C}^{*}$ and $\phi_{\lambda} \in \operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, N\right)$. Then

$$
F_{\lambda}^{\phi_{\lambda}\left(m_{\lambda}\right)}(h)=\sum_{\mu \leq \lambda} \phi_{\lambda}\left(v_{\lambda}[\mu]\right) e^{\mu(h)}, \quad h \in \mathfrak{h}_{+} .
$$

Remarks

(1) Formally the right hand side is $\phi_{\lambda}\left(e^{h} v_{\lambda}\right)$.

Representation theoretic interpretation of F_{λ}^{n}

Theorem

Let N be a f.d. \mathfrak{g}^{θ}-module, $\lambda \in \mathfrak{h}_{H C}^{*}$ and $\phi_{\lambda} \in \operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, N\right)$.
Then

$$
F_{\lambda}^{\phi_{\lambda}\left(m_{\lambda}\right)}(h)=\sum_{\mu \leq \lambda} \phi_{\lambda}\left(v_{\lambda}[\mu]\right) e^{\mu(h)}, \quad h \in \mathfrak{h}_{+} .
$$

Remarks

(1) Formally the right hand side is $\phi_{\lambda}\left(e^{h} v_{\lambda}\right)$.
(2) The evaluation map $\operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, N\right) \rightarrow N, \phi_{\lambda} \mapsto \phi_{\lambda}\left(m_{\lambda}\right)$ is injective.

Representation theoretic interpretation of F_{λ}^{n}

Theorem

Let N be a f.d. \mathfrak{g}^{θ}-module, $\lambda \in \mathfrak{h}_{H C}^{*}$ and $\phi_{\lambda} \in \operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, N\right)$.
Then

$$
F_{\lambda}^{\phi_{\lambda}\left(m_{\lambda}\right)}(h)=\sum_{\mu \leq \lambda} \phi_{\lambda}\left(v_{\lambda}[\mu]\right) e^{\mu(h)}, \quad h \in \mathfrak{h}_{+} .
$$

Remarks

(1) Formally the right hand side is $\phi_{\lambda}\left(e^{h} v_{\lambda}\right)$.
(2) The evaluation map $\operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, N\right) \rightarrow N, \phi_{\lambda} \mapsto \phi_{\lambda}\left(m_{\lambda}\right)$ is injective.

Next step: the evaluation map is an isomorphism if N is a finite dimensional \mathfrak{g}-module and λ is sufficiently generic - in this case the vector-valued Harish-Chandra series are also eigenfunctions of boundary KZB operators.

KZB operators

KZB operators

Setup

(1) \mathfrak{h}-invariant element $r \in \mathcal{R} \otimes \mathfrak{g}^{\otimes 2}$.
(2) $U(\mathfrak{g})^{\otimes s}$-valued differential operators on \mathfrak{h} :

$$
D_{i}^{(s)}:=\sum_{k=1}^{\ell}\left(x_{k}\right)_{i} \frac{\partial}{\partial x_{k}}-\sum_{j=1}^{i-1} r_{j i}+\sum_{j=i+1}^{s} r_{i j} \in U(\mathfrak{g})^{\otimes s} \otimes \mathcal{D}_{\mathcal{R}}
$$

for $i=1, \ldots, s$.

KZB operators

Setup

(1) \mathfrak{h}-invariant element $r \in \mathcal{R} \otimes \mathfrak{g}^{\otimes 2}$.
(2) $U(\mathfrak{g})^{\otimes s}$-valued differential operators on \mathfrak{h} :

$$
D_{i}^{(s)}:=\sum_{k=1}^{\ell}\left(x_{k}\right)_{i} \frac{\partial}{\partial x_{k}}-\sum_{j=1}^{i-1} r_{j i}+\sum_{j=i+1}^{s} r_{i j} \in U(\mathfrak{g})^{\otimes s} \otimes \mathcal{D}_{\mathcal{R}}
$$

for $i=1, \ldots, s$.

Proposition

The following two statements are equivalent:
(1) For all $s \geq 2$ and $1 \leq i \neq j \leq s$,

$$
\left[D_{i}^{(s)}, D_{j}^{(s)}\right]=-\sum_{k=1}^{\ell} \frac{\partial r_{i j}}{\partial x_{k}} \Delta^{s-1}\left(x_{k}\right)
$$

with $\Delta^{s-1}: U(\mathfrak{g}) \rightarrow U(\mathfrak{g})^{\otimes s}$ the $(s-1)^{\text {th }}$ iterated comultiplication.
(2) r is a solution of the classical dynamical Yang-Baxter equation ($c d Y B E$).

KZB operators

Classical dynamical Yang-Baxter equation (Felder):

$$
\begin{aligned}
& \sum_{k=1}^{\ell}\left(\left(x_{k}\right)_{3} \frac{\partial r_{12}}{\partial x_{k}}-\left(x_{k}\right)_{2} \frac{\partial r_{13}}{\partial x_{k}}+\left(x_{k}\right)_{1} \frac{\partial r_{23}}{\partial x_{k}}\right) \\
&+\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
\end{aligned}
$$

as identity in $\mathcal{R} \otimes \mathfrak{g}^{\otimes 3}$.

KZB operators

Classical dynamical Yang-Baxter equation (Felder):

$$
\begin{aligned}
& \sum_{k=1}^{\ell}\left(\left(x_{k}\right)_{3} \frac{\partial r_{12}}{\partial x_{k}}-\left(x_{k}\right)_{2} \frac{\partial r_{13}}{\partial x_{k}}+\left(x_{k}\right)_{1} \frac{\partial r_{23}}{\partial x_{k}}\right) \\
&+\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
\end{aligned}
$$

as identity in $\mathcal{R} \otimes \mathfrak{g}^{\otimes 3}$.

Corollary

Write

$$
\mathbf{V}:=V_{1} \otimes \cdots \otimes V_{s}
$$

for finite dimensional \mathfrak{g}-modules V_{1}, \ldots, V_{s}. Let r be an \mathfrak{h}-invariant solution of the $c d Y B E$. The associated differential operators $D_{1}^{(s)}, \ldots, D_{s}^{(s)}$ pairwise commute when acting on $\mathbf{V}[0]$-valued functions on \mathfrak{h}.

KZB operators

Definition

The KZB operators are the differential operators $D_{1}^{(s)}, \ldots, D_{s}^{(s)}$ associated to Felder's trigonometric solution

$$
r:=-\sum_{k=1}^{\ell} x_{k} \otimes x_{k}-2 \sum_{\alpha \in \Phi} \frac{e_{-\alpha} \otimes e_{\alpha}}{1-e^{-2 \alpha}}
$$

of the $c d Y B E$.

KZB operators

Definition

The KZB operators are the differential operators $D_{1}^{(s)}, \ldots, D_{s}^{(s)}$ associated to Felder's trigonometric solution

$$
r:=-\sum_{k=1}^{\ell} x_{k} \otimes x_{k}-2 \sum_{\alpha \in \Phi} \frac{e_{-\alpha} \otimes e_{\alpha}}{1-e^{-2 \alpha}}
$$

of the $c d Y B E$.

KZB operators

Definition

The $K Z B$ operators are the differential operators $D_{1}^{(s)}, \ldots, D_{s}^{(s)}$ associated to Felder's trigonometric solution

$$
r:=-\sum_{k=1}^{\ell} x_{k} \otimes x_{k}-2 \sum_{\alpha \in \Phi} \frac{e_{-\alpha} \otimes e_{\alpha}}{1-e^{-2 \alpha}}
$$

of the $c d Y B E$.

Etingof, Schiffmann, Varchenko: common eigenfunctions of the KZB operators in terms of weight traces of products of vertex operators.

Vertex operators

Additional regularity assumptions:

$$
\mathfrak{h}_{r e g}^{*}:=\left\{\lambda \in \mathfrak{h}_{H C}^{*} \mid\left(\lambda, \alpha^{\vee}\right) \notin \mathbb{Z} \quad \forall \alpha \in \Phi\right\} .
$$

Proposition (Etingof, Varchenko)

Let V be a finite-dimensional \mathfrak{g}-module, μ a weight of V, and $\lambda \in \mathfrak{h}_{\text {reg }}^{*}$. We have a linear isomorphism

$$
\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, M_{\lambda-\mu} \otimes V\right) \xrightarrow{\sim} V[\mu]
$$

mapping Ψ to $\left(m_{\lambda-\mu}^{*} \otimes I d v\right)\left(\Psi m_{\lambda}\right)$.

Vertex operators

Additional regularity assumptions:

$$
\mathfrak{h}_{r e g}^{*}:=\left\{\lambda \in \mathfrak{h}_{H C}^{*} \mid\left(\lambda, \alpha^{\vee}\right) \notin \mathbb{Z} \quad \forall \alpha \in \Phi\right\} .
$$

Proposition (Etingof, Varchenko)

Let V be a finite-dimensional \mathfrak{g}-module, μ a weight of V, and $\lambda \in \mathfrak{h}_{\text {reg }}^{*}$. We have a linear isomorphism

$$
\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, M_{\lambda-\mu} \otimes V\right) \xrightarrow{\sim} V[\mu]
$$

mapping Ψ to $\left(m_{\lambda-\mu}^{*} \otimes \mathrm{Id} v\right)\left(\Psi m_{\lambda}\right)$.
For $v \in V[\mu]$ we write

$$
\Psi_{\lambda}^{V} \in \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, M_{\lambda-\mu} \otimes V\right)
$$

for its preimage, the vertex operator with leading term v.

Fusion

(1) $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{s}$ with V_{i} finite dimensional \mathfrak{g}-modules.
(2) $v_{i} \in V_{i}\left[\mu_{i}\right]$ for $i=1, \ldots, s$, and $v:=v_{1} \otimes \cdots \otimes v_{s}$.
(-) $\lambda_{i}:=\lambda-\mu_{s} \cdots-\mu_{i+1}$ for $i=1, \ldots, s$, with $\lambda_{s}:=\lambda \in \mathfrak{h}_{\text {reg }}^{*}$.

Fusion

(1) $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{s}$ with V_{i} finite dimensional \mathfrak{g}-modules.
(2) $v_{i} \in V_{i}\left[\mu_{i}\right]$ for $i=1, \ldots, s$, and $\mathbf{v}:=v_{1} \otimes \cdots \otimes v_{s}$.
(3) $\lambda_{i}:=\lambda-\mu_{s} \cdots-\mu_{i+1}$ for $i=1, \ldots, s$, with $\lambda_{s}:=\lambda \in \mathfrak{h}_{\text {reg }}^{*}$. Note: $\Psi_{\lambda_{i}}^{v_{i}} \in \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda_{i}}, M_{\lambda_{i-1}} \otimes V_{i}\right)$.

Fusion

(1) $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{s}$ with V_{i} finite dimensional \mathfrak{g}-modules.
(2) $v_{i} \in V_{i}\left[\mu_{i}\right]$ for $i=1, \ldots, s$, and $\mathbf{v}:=v_{1} \otimes \cdots \otimes v_{s}$.
(3) $\lambda_{i}:=\lambda-\mu_{s} \cdots-\mu_{i+1}$ for $i=1, \ldots, s$, with $\lambda_{s}:=\lambda \in \mathfrak{h}_{r e g}^{*}$.

Note: $\Psi_{\lambda_{i}}^{v_{i}} \in \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda_{i}}, M_{\lambda_{i-1}} \otimes V_{i}\right)$.

Definition (Etingof, Varchenko)

The fusion operator $J_{\mathbf{V}}(\lambda): \mathbf{V} \xrightarrow{\sim} \mathbf{V}$ is defined by

$$
J_{\mathbf{v}}(\lambda) \mathbf{v}:=\left(m_{\lambda_{0}}^{*} \otimes \operatorname{Id} \mathbf{v}\right)\left(\Psi_{\lambda_{1}}^{v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \operatorname{Id}_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}}\left(m_{\lambda_{s}}\right)
$$

As identity in $\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda_{s}}, M_{\lambda_{0}} \otimes \mathbf{V}\right)$,

$$
\Psi_{\lambda}^{J_{\mathbf{V}}(\lambda) \mathbf{v}}=\left(\Psi_{\lambda_{1}}^{v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \operatorname{Id}_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}} .
$$

Fusion

(1) $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{s}$ with V_{i} finite dimensional \mathfrak{g}-modules.
(2) $v_{i} \in V_{i}\left[\mu_{i}\right]$ for $i=1, \ldots, s$, and $\mathbf{v}:=v_{1} \otimes \cdots \otimes v_{s}$.
(3) $\lambda_{i}:=\lambda-\mu_{s} \cdots-\mu_{i+1}$ for $i=1, \ldots, s$, with $\lambda_{s}:=\lambda \in \mathfrak{h}_{r e g}^{*}$.

Note: $\Psi_{\lambda_{i}}^{v_{i}} \in \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda_{i}}, M_{\lambda_{i-1}} \otimes V_{i}\right)$.

Definition (Etingof, Varchenko)

The fusion operator $J_{\mathbf{V}}(\lambda): \mathbf{V} \xrightarrow{\sim} \mathbf{V}$ is defined by

$$
J_{\mathbf{v}}(\lambda) \mathbf{v}:=\left(m_{\lambda_{0}}^{*} \otimes \operatorname{Id} \mathbf{v}\right)\left(\Psi_{\lambda_{1}}^{v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \operatorname{Id}_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}}\left(m_{\lambda_{s}}\right)
$$

As identity in $\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda_{s}}, M_{\lambda_{0}} \otimes \mathbf{V}\right)$,

$$
\Psi_{\lambda}^{J_{\mathbf{v}}(\lambda) \mathbf{v}}=\left(\Psi_{\lambda_{1}}^{v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \operatorname{Id}_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}} .
$$

Remark (Etingof, Schiffmann). Common eigenfunctions of the KZB operators given by gauged versions of the trace functions $h \mapsto \operatorname{Tr}_{M_{\lambda}}\left(\Psi_{\lambda}^{J_{\mathbf{v}}(\lambda) \mathbf{v}} e^{h}\right)$ for $\mathbf{v} \in \mathbf{V}[0]$.

Boundary vertex operator

Proposition

$\lambda \in \mathfrak{h}^{*}$, then
(1) $\operatorname{Dim}\left(M_{\lambda}^{*, \mathfrak{g}^{\theta}}\right)=1$.
(2) There exists a unique $f_{\lambda} \in M_{\lambda}^{*, g^{\theta}}$ satisfying $f_{\lambda}\left(m_{\lambda}\right)=1$.

Boundary vertex operator

Proposition

$\lambda \in \mathfrak{h}^{*}$, then
(1) $\operatorname{Dim}\left(M_{\lambda}^{*, \mathfrak{g}^{\theta}}\right)=1$.
(2) There exists a unique $f_{\lambda} \in M_{\lambda}^{*, g^{\theta}}$ satisfying $f_{\lambda}\left(m_{\lambda}\right)=1$.

Consequence: If $\lambda \in \mathfrak{h}_{\text {reg }}^{*}$ and V is a finite dimensional \mathfrak{g}-module, then we have a linear isomorphism

$$
V \xrightarrow{\sim} \operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda}, V\right), \quad v \mapsto \Psi_{\lambda}^{b, v}
$$

with for $v \in V[\mu]$,

$$
\Psi_{\lambda}^{b, v}:=\left(f_{\lambda-\mu} \otimes \operatorname{ld}_{V}\right) \Psi_{\lambda}^{v}
$$

the boundary vertex operator associated to v.

Boundary fusion operator

We have in $\operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda_{s}}, \mathbf{V}\right)$:

$$
\Psi_{\lambda}^{b, J_{\mathbf{v}}(\lambda) \mathbf{v}}=\left(\Psi_{\lambda_{1}}^{b, v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right)\left(\Psi_{\lambda_{2}}^{V_{2}} \otimes \operatorname{Id}_{V_{3} \otimes \cdots \otimes V_{s}}\right) \cdots \Psi_{\lambda_{s}}^{v_{s}}
$$

Boundary fusion operator

We have in $\operatorname{Hom}_{\mathfrak{g}^{\theta}}\left(M_{\lambda_{s}}, \mathbf{V}\right)$:

$$
\Psi_{\lambda}^{b, J_{v}(\lambda) \mathbf{v}}=\left(\Psi_{\lambda_{1}}^{b, v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right)\left(\Psi_{\lambda_{2}}^{v_{2}} \otimes \operatorname{Id}_{V_{3} \otimes \cdots \otimes V_{s}}\right) \cdots \Psi_{\lambda_{s}}^{v_{s}}
$$

Definition

For $\lambda \in \mathfrak{h}_{\text {reg }}^{*}$ the boundary fusion operator $J_{\mathbf{V}}^{b}(\lambda): \mathbf{V} \xrightarrow{\sim} \mathbf{V}$ is defined by

$$
J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}:=\Psi_{\lambda}^{b, J_{\mathbf{v}}(\lambda) \mathbf{v}}\left(m_{\lambda}\right)
$$

Upshot: Fusion operator is the highest to highest weight component of products of vertex operators, while boundary fusion operator is the highest weight to spherical component of products of vertex operators:

$$
\begin{aligned}
& J_{\mathbf{v}}(\lambda) \mathbf{v}:=\left(m_{\lambda_{0}}^{*} \otimes \mathbf{I d} \mathbf{v}\right)\left(\Psi_{\lambda_{1}}^{V_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \operatorname{Id}_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}}\left(m_{\lambda}\right), \\
& J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}:=\left(f_{\lambda_{0}} \otimes \operatorname{Id} \mathbf{v}\right)\left(\Psi_{\lambda_{1}}^{v_{1}} \otimes \operatorname{Id}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \operatorname{Id}_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}}\left(m_{\lambda}\right)
\end{aligned}
$$

Boundary KZB operators

Boundary KZB operators

Integrable data

(1) Folded r-matrices $r^{ \pm} \in \mathcal{R} \otimes \mathfrak{g}^{\otimes 2}$:

$$
r^{ \pm}:= \pm r+(\theta \otimes \mathrm{Id})(r)
$$

with r Felder's trigonometric classical dynamical r-matrix.

Boundary KZB operators

Integrable data

(1) Folded r-matrices $r^{ \pm} \in \mathcal{R} \otimes \mathfrak{g}^{\otimes 2}$:

$$
r^{ \pm}:= \pm r+(\theta \otimes \mathrm{Id})(r)
$$

with r Felder's trigonometric classical dynamical r-matrix.
(2) Folded k-matrix $\kappa \in \mathcal{R} \otimes U(\mathfrak{g})$ (with m multiplication map):

$$
\kappa:=m(\theta \otimes \mathrm{Id})(r)=\sum_{k=1}^{\ell} x_{k}^{2}+2 \sum_{\alpha \in \Phi} \frac{e_{\alpha}^{2}}{1-e^{-2 \alpha}}
$$

Boundary KZB operators

Integrable data

(1) Folded r-matrices $r^{ \pm} \in \mathcal{R} \otimes \mathfrak{g}^{\otimes 2}$:

$$
r^{ \pm}:= \pm r+(\theta \otimes \mathrm{Id})(r)
$$

with r Felder's trigonometric classical dynamical r-matrix.
(2) Folded k-matrix $\kappa \in \mathcal{R} \otimes U(\mathfrak{g})$ (with m multiplication map):

$$
\kappa:=m(\theta \otimes \mathrm{Id})(r)=\sum_{k=1}^{\ell} x_{k}^{2}+2 \sum_{\alpha \in \Phi} \frac{e_{\alpha}^{2}}{1-e^{-2 \alpha}}
$$

Definition

The boundary $K Z B$ operators $D_{i}^{b,(s)} \in U(\mathfrak{g})^{\otimes s} \otimes \mathcal{D}_{\mathcal{R}}$ are

$$
D_{i}^{b,(s)}:=2 \sum_{k=1}^{\ell}\left(x_{k}\right)_{i} \frac{\partial}{\partial x_{k}}-\sum_{j=1}^{i-1} r_{s i}^{+}-\sum_{j=i+1}^{s} r_{i j}^{-}-\kappa_{i}
$$

for $i=1, \ldots, s$.

Boundary KZB operators

Notations

(1) $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{s}$ with V_{i} finite dimensional \mathfrak{g}-modules.
(2) $v_{i} \in V_{i}\left[\mu_{i}\right]$ for $i=1, \ldots, s$, and $\mathbf{v}:=v_{1} \otimes \cdots \otimes v_{s}$.
(3) $\lambda_{i}:=\lambda-\mu_{s} \cdots-\mu_{i+1}$ for $i=1, \ldots, s$, with $\lambda_{s}:=\lambda \in \mathfrak{h}_{\text {reg }}^{*}$.

Theorem

The gauged Harish-Chandra series $\mathbf{F}_{\lambda}^{J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}}=\delta F_{\lambda}^{J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}}: \mathfrak{h}_{+} \rightarrow \mathbf{V}$ satisfies

$$
D_{i}^{b,(s)}\left(\mathbf{F}_{\lambda}^{J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}}\right)=\left(\left(\lambda_{i}, \lambda_{i}+2 \rho\right)-\left(\lambda_{i-1}, \lambda_{i-1}+2 \rho\right)\right) \mathbf{F}_{\lambda}^{J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}}
$$

for $i=1, \ldots, s$.

Boundary KZB operators

Notations

(1) $\mathbf{V}=V_{1} \otimes \cdots \otimes V_{s}$ with V_{i} finite dimensional \mathfrak{g}-modules.
(2) $v_{i} \in V_{i}\left[\mu_{i}\right]$ for $i=1, \ldots, s$, and $\mathbf{v}:=v_{1} \otimes \cdots \otimes v_{s}$.
(3) $\lambda_{i}:=\lambda-\mu_{s} \cdots-\mu_{i+1}$ for $i=1, \ldots, s$, with $\lambda_{s}:=\lambda \in \mathfrak{h}_{r e g}^{*}$.

Theorem

The gauged Harish-Chandra series $\mathbf{F}_{\lambda}^{J_{\mathbf{V}}^{b}(\lambda) \mathbf{v}}=\delta F_{\lambda}^{J_{\mathbf{V}}^{b}(\lambda) \mathbf{v}}: \mathfrak{h}_{+} \rightarrow \mathbf{V}$ satisfies

$$
D_{i}^{b,(s)}\left(\mathbf{F}_{\lambda}^{J_{\mathbf{v}}^{\mathrm{b}}(\lambda) \mathbf{v}}\right)=\left(\left(\lambda_{i}, \lambda_{i}+2 \rho\right)-\left(\lambda_{i-1}, \lambda_{i-1}+2 \rho\right)\right) \mathbf{F}_{\lambda}^{J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}}
$$

for $i=1, \ldots, s$.
Key tool: representation theoretic form of the particular vector-valued Harish-Chandra series as weighted spherical to spherical component of products of intertwiners:
$F_{\lambda}^{J_{\mathbf{v}}^{b}(\lambda) \mathbf{v}}=\sum_{\mu \leq \lambda}\left(\left(f_{\lambda_{0}} \otimes \mathbf{I} \mathbf{d} \mathbf{v}\right)\left(\Psi_{\lambda_{1}}^{v_{1}} \otimes \mathbf{I} \mathbf{d}_{V_{2} \otimes \cdots \otimes V_{s}}\right) \cdots\left(\Psi_{\lambda_{s-1}}^{v_{s-1}} \otimes \boldsymbol{I} V_{V_{s}}\right) \Psi_{\lambda_{s}}^{v_{s}}\left(v_{\lambda}[\mu]\right)\right) e^{\mu}$.

Integrability

Recall the quantum Hamiltonian $H \in U\left(\mathfrak{g}^{\theta}\right) \otimes \mathcal{D}_{\mathcal{R}}$ given by

$$
H:=\sum_{k=1}^{\ell} \frac{\partial^{2}}{\partial x_{k}^{2}}+\sum_{\alpha \in \Phi} \frac{1}{\left(e^{\alpha}-e^{-\alpha}\right)^{2}}\left(\frac{(\alpha, \alpha)}{2}+y_{\alpha}^{2}\right)-(\rho, \rho)
$$

and the boundary KZB operators $D_{i}^{b,(s)} \in U(\mathfrak{g})^{\otimes s} \otimes \mathcal{D}_{\mathcal{R}}$ given by

$$
D_{i}^{b,(s)}:=2 \sum_{k=1}^{\ell}\left(x_{k}\right)_{i} \frac{\partial}{\partial x_{k}}-\sum_{j=1}^{i-1} r_{s i}^{+}-\sum_{j=i+1}^{s} r_{i j}^{-}-\kappa_{i}
$$

for $i=1, \ldots, s$ with folded r-matrices σ and τ and a folded k-matrix κ.
Theorem
The differential operators $\Delta^{s-1}(H), D_{1}^{(s)}, \ldots, D_{s}^{(s)}$ pairwise commute in $U(\mathfrak{g})^{\otimes s} \otimes \mathcal{D}_{\mathcal{R}}$.

Integrability

Corollary

Folded r-matrices $r^{ \pm}:= \pm r+(\theta \otimes \mathrm{Id})(r)$ satisfy mixed $c d Y B E$

$$
\begin{aligned}
& 2 \sum_{k=1}^{\ell}\left(\left(x_{k}\right)_{1} \frac{\partial r_{23}^{-}}{\partial x_{k}}-\left(x_{k}\right)_{2} \frac{\partial r_{13}^{-}}{\partial x_{k}}\right)=\left[r_{13}^{-}, r_{12}^{+}\right]+\left[r_{12}^{-}, r_{23}^{-}\right]+\left[r_{13}^{-}, r_{23}^{-}\right], \\
& 2 \sum_{k=1}^{\ell}\left(\left(x_{k}\right)_{1} \frac{\partial r_{23}^{+}}{\partial x_{k}}-\left(x_{k}\right)_{3} \frac{\partial r_{12}^{-}}{\partial x_{k}}\right)=\left[r_{12}^{-}, r_{13}^{+}\right]+\left[r_{12}^{-}, r_{23}^{+}\right]+\left[r_{13}^{-}, r_{23}^{+}\right], \\
& 2 \sum_{k=1}^{\ell}\left(\left(x_{k}\right)_{2} \frac{\partial r_{13}^{+}}{\partial x_{k}}-\left(x_{k}\right)_{3} \frac{\partial r_{12}^{+}}{\partial x_{k}}\right)=\left[r_{12}^{+}, r_{13}^{+}\right]+\left[r_{12}^{+}, r_{23}^{+}\right]+\left[r_{23}^{-}, r_{13}^{+}\right]
\end{aligned}
$$

and $\kappa:=m(\theta \otimes \mathrm{Id})(\theta)$ the mixed classical dynamical reflection equation

$$
2 \sum_{k=1}^{\ell}\left(\left(x_{k}\right)_{2} \frac{\partial\left(\kappa_{1}+r^{-}\right)}{\partial x_{k}}-\left(x_{k}\right)_{1} \frac{\partial\left(\kappa_{2}+r^{+}\right)}{\partial x_{k}}\right)=\left[\kappa_{1}+r^{-}, \kappa_{2}+r^{+}\right] .
$$

Outlook

(1) Affine split symmetric pairs related to
(1) quantum elliptic spin Calogero-Moser systems, including quantum Inozemtsev system.
(2) Boundary KZB equations involving Felder's elliptic solution of the classical dynamical Yang-Baxter equation with spectral parameter and an associated (folded) classical dynamical elliptic k -matrix with spectral parameter.
(2) Quantum group versions: in progress!

Outlook

(1) Affine split symmetric pairs related to
(1) quantum elliptic spin Calogero-Moser systems, including quantum Inozemtsev system.
(2) Boundary KZB equations involving Felder's elliptic solution of the classical dynamical Yang-Baxter equation with spectral parameter and an associated (folded) classical dynamical elliptic k -matrix with spectral parameter.
(2) Quantum group versions: in progress!

Happy birthday Kolya!

