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Introduction

Three subject which play a very distinguished rôle in
Faddeev heritage are :

Scattering theory ;

Quantum and Classical Integrable systems.

Lie groups and Lie algebras

His work brought to light non-trivial and unexpected links
between these subjects
I shall talk about some of the less known aspects of these
links :

Scattering theory and Riemann hypothesis.

Scattering theory and representation theory of
semi-simple Lie groupes.
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Starting point :

Perturbation theory for operators with continuous spectrum.

Model exemple : H0 = −Δ, H = −Δ+ V

Hilbert Identity for the resolvent :
R(λ) = R0(λ)−R0(λ)V R(λ)

Typical difficulty : because of the presence of
continuous spectrum this integral equation is not of
Fredholm type.

This difficulty has been successfully resolved by Faddeev
(in particular, for operators with a complicated structure of
continuous spectrum (three-body problem).

Gelfand’s suggestion : apply similar methods for the
harmonic analysis on SL(2,R)/Γ ; here the continuous
spectrum is present when the discrete subgroup Γ is
not co-compact. – p. 7/42



The trick :

(suggeszted by the Quantum Scattering theory)
The regularization of the integral equation for the resolvent
is suggested by Quantum mechanics :

Put T (λ) = V R(λ)V ; T is closely related to the
scattering amplitude.

Then R(λ) = R0(λ)− R0(λ)T (λ)R0(λ), and

T (λ) = V − V R0(λ)T (λ).

This latter equation is already of Fredholm type (to
prove this assertion one has to make a very clever and
nontrivial choice of the pertinent functional spaces).
Note that the scattering operator is close to the operator
I + T (λ)
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Case of automorphic Laplace operator

Here H = −y2
(

∂2

∂x2 +
∂2

∂y2

)
− 1

4 acting in L2(H/Γ). The

treatment of H by means of the Perturbation theory is not
obvious ! For simplicity we assume that Γ = SL(2,Z) ; its
fundamental domain F decomposes intp the union of a
compact domain F0 and of the infinite band

F1 = {x+ iy ; −1/2 ≤ x ≤ 1/2, y ≥ a} .
Denote by P0, P1 the associated projection operators (which
act as multiplication operators by the characteristic
functions of F0, F1). Put R(k) = (H − k2I)−1,
Rij(s) = PiR(k)Pj , i, j = 0, 1.
Then all Rij are compact, except R11.
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Elimination of continuous spectrum

Let us intrduce the integration operator over the horocycles,

Pf(y) =

∫ −1/2

−1/2

f(x+ iy) dy.

It is easy to check that R11(κ) = PR11(κ)P +R′
11(κ), where

R11(κ)
′ is compact for κ > 3/2 and PR11(κ)P := T (κ)

coincides with the resolvent R0(k) := B − k2I)−1 of a simple
differential operator

B = −y2 d
2

dy2
− 1

4

(Whittaker operator) with the boundary condition
φ(a) = κφ′(a) ; its spectral resolution is known explicitely.
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Elimination of continuous spectrum–2

we conclude that the resolvent R(κ) = T (κ) + V , where V
is compact.
From the Hilbert identity

R(k)−R(κ) = (k2 − κ
2)R(κ)R(k) := ω(k)RR(k)

and the identity (I − ω(k)T (κ))−1 = I + ω(k)R0(k) one can
deduce, with a little of algebra, that

R(k) = R0(k) + (I + ω(k)R0(k)V +ω(k)(I + ω(k)R0(k)V )R(k).

Put R(k) = R0(k) + (I + ω(k)R0(k))B(k)(I + ω(k)R0(k)) ;
then we get for B(s) :

B(k) = V +H(k)B(k), where H(k) := V (I + ω(k)R0(k)).
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Elimination of continuous spectrum–3

The gain reached by these clever transformations : operator
H(k) is already of Fredholm type (in an ppropriate Banach
space) ; it is holomorphic in k in the band
−1/2 < Re k < 3/2. This immediately implies that the kernel
of the resolvent R(k) admits an analytic continuation into
the band 1/2 < Re k ≤ 1/2 with eventually some poles of
finite multiplicity ; moreover, all poles in the band
0 ≤ Re k < 3/2 are purely imaginary.
The analytic continuation of the resolvent implies also that
of the continuous spectrum eigenfunctions of H ; this yields
an operator-theory proof of all basic analytic properties of
the Eisenstein series,

E(z, k) =
∑

γ∈Γ∞\Γ
Im(γz)

1
2
+k.
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Eisenstein series and the zeta function

Notice that the continuous spectrum of H corresponds
to the purely imaginary values of k.

It is well known from Quantum mechanics that the
asymptotic behavior of the continuous spectrum
eigenfunctions is closely related to the scattering. For the
Eisenstein series we have for y = Im z → ∞ :

E(z, k) = y
1
2
+k + SR(k)y

1
2
−k + o(1), Re k = 0,

where SR(k) is the “reflection coefficient”

SR(k) =
B(1/2,k)ζ(2k)

ζ(2k+1)
.

Besides the continuous spectrum, operator H has got
an eigenvalue −1/4 which corresponds to the constants
and an infinite number of positive eigenvalues
k2n > 0, kn → ∞. – p. 13/42



Non-stationary point of view

In “elementary” scattering theory one defines first the
wave operators,

W± = lim
t→±∞ eitHe−itH0,

The scattering operator is then defined by S = W+W
−1
− .

Disadvantage : in our case the is no natural choice of
an unperturbed operator H0 !

Lax–Phillips Theory : it provides an alternative
definition of the scattering operator and allows to
examine some of its fine properties.

Disadvantage : this theory applies only to a very
restricted class of hyperbolic equations.

– p. 14/42



Non-stationary point of view–2

A suggestion of Faddeev and Pavlov : Use the
automorphic wave equation

utt = (Δ +
1

4
)u, Δ = y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Assertion :

Wave equation is equivalent to a first order system in
the space of Cauchy data φ = (u, u1)

t,

∂tφ = Aφ, A =

(
0 I

−H 0

)
(∗)

– p. 15/42



Non-stationary point of view–3

The energy form in the space of Cauchy data is
positively definite in the orthogonal complement of
constants.

Let H+ be this orthogonal complement ; system (*)
induces in this subspace a 1-parameter group
U(t), t ∈ R of unitary operators.

Le spectre continu de l’opérateur A coïncide avec R.

Let Hd ⊂ H+ be the subspace spanned by the
eigenvectors of A, and Hc = H+ 	Hd. Then Hc is
invariant with respect to U(t) and there exists a
unitary equivalence which transforms the operators
U(t) into translation operators acting in L2(R).
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Non-stationary point of view–3

This unitary equivalence is in fact not unique ; they
admit a more precise description. Recall the
decomposition F = F0 ∪ F1 of the fundamental domain
of Γ = SL(2,Z),

F1 = {x+ iy ; −1/2 ≤ x ≤ 1/2, y ≥ a} .
Let Φ be a smooth function of one variable such that
Φ(y) = 0 for y < a ; then

u±(z, t) = e±t/2Φ(ye∓t), où y = Im z,

is a automorphic wave equation.

Let D± ⊂ H+ be the subspace generated by the
Cauchy data of solutions of this form.
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Non-stationary point of view–4

(One has yet to impose the orthogonality condition to
the constants !) Then

D± ⊂ Hc.

U(t)D+ ⊂ D+ for all t ≥ 0,

U(t)D− ⊂ D− for all t ≤ 0.⋂
t<0 U(t)D− =

⋂
t>0 U(t)D+ = {0}.⋃

t>0 U(t)D− =
⋃

t<0 U(t)D+ = Hc.

D− ⊥ D+.

There exist two distinguished unitary equivalences
W± : Hc → L2(R) such that

W±(D±) = L2(R±).
– p. 18/42



Non-stationary point of view–5

The composition with the Fourier transform
F : L2(R) → L2(R) yields two spectral
representations W± = F ◦W± such that

W±(D±) = H2
±(R) (espaces de Hardy)

These spectral representations can be compared with
that associated with the continuous spectrum
eigenfunctions of operator A which can easily be
constructed using the Eisenstein series. Explicitly, we
have :

Φ(z, k) =

(
1
ikE(z, k)

E(z, k)

)
.
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Spectral Representations

Notice that the normalization of the Eisenstein series
introduces a slight asymmetry between the incoming
and the outgoing waves !

We can associate with these eigenfunctions a
generalized Fourier transformation E (defined formally
by means of the energy inner product).

Théorème. For the Eisenstein representation E we
have :

E(D−) = B−1
d ·H2−,

E(D−) = S−1
R Bd ·H2

+, where SR is the reflect ion
coefficient,

SR(k) =
B(1/2, k)ζ(2k)

ζ(2k + 1) – p. 20/42



Scattering operator

and

B0(k) =
k − i/2

k + i/2
dik

(This Blaschke factor accounts for the
orthogonality condition of the initial data to the
eigenfunction of A associated with the constants.)

Scattering operator S compares two different
spectral representations W±. Explicitly, S is the
multiplication operator by the function
S(k) = S−1

R (k)B2
0(k). One has :

S(k) =

(
k − i/2

k + i/2

)2
Γ(ik + 1/2)

Γ(ik)Γ(1/2)

ζ(2ik + 1)

ζ(2ik)
dik.
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The contraction semigroup

Put K = Hc 	 (D+ ⊕D−), and let P be the projection
operator from Hc sur K and Z(t) := PU(t)P, t > 0, the
semigroup generated by the group U(t).

Heuristically, the wave equation describes the escape
of energy to infinity ; the semigroup Z(t) takes into
account the fraction of energy which is trapped inside
by multiple scattering and is thus obstructed to escape.

S(k) is the characteristic function of Z(t).

Théorème. The Riemann hypothesis is equivalent to
the following assertion :

There exists a dense subset of elements f ∈ K such
that

lim sup
t→+∞

t−1 log ||Z(t)f || ≤ −1/4.
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Symmetric Spaces of rank r > 1

Let G = ANK be the Iwasawa decomposition, A ⊂ G
the split Cartan subgroup, a its Lie algebra,
r = rangX = dim a, W = W (G,K) the restricted Weyl
group, DG(X) the algebra of G-invariant differential
operators on X = G/K.

How to define an analogue of the wave equation for
X = G/K (and eventuelly for Γ\X) ?

A simple option (often used in the theory of
integrable systems ) : Choose a set of operators
H1, . . . , Hr ∈ DG(X) and associate evolution
parameters t1, . . . , tr to each of them.

A more natural choice is based on the use of
Harish-Chandra isomorphism.
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Symmetric Spaces of rank r > 1

Theorem (Harish-Chandra). There exists a canonical
isomorphism of the ring of W -invariant polynomials on
a∗ onto the algebra DG(X) G-invariant differential
operators on X = G/K,

Δ : PW (a∗) → DG(X) : σ �→ Δσ.

Key definition :

The generalized wave equation is written for
functions on the space-time a×X.

We denote by σ(−i ∂∂t) the differential operator on a

with constant coefficients with symbol σ.
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Generalized wave equation

Put :

σ′(−i ∂
∂t

)u(t, x) = Δσu(t, x), σ ∈ PW (a∗). (∗∗)

This is an over-determined system of equations
(which is compatible, since DG(X) is commutative !).

One of its equations is ultra-hyperbolic (for
l = rankX > 1) :(

∂2

∂t21
+ · · · + ∂2

∂t2l

)
u = (Δ + 〈ρ, ρ〉) u.

Nevertheless this system has got excellent
properties :
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Generalized wave equation

In particular,

The initial problem is well-posed.

There exists a natural conserved energy form which is
positive and defines an inner product in the space of
initial data.

The propagation speed is finite.

There is a natural definition of scattering operators for
this system which generalizes the Lax–Phillips theory.

The key definition of the space of initial data is based
on the properties of the algebraic extension
PW (a∗) ⊂ P (a∗).

Let Q,QW be the corresponding fields of fractions.
Then :
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Generalized wave equation

QW ⊂ Q is a Galois extension with Galois group
W .

P is a free PW -module of dimension N = cardW .

The space of initial data may be identified with
H := C∞

0 (x)⊗PW HomPW (P, PW )

Let S be the space of solutions of system (**) ; the
natural mapping S → H is defined by

〈i0(u), p〉 = p

(
−i ∂
∂t

)
u(t, ·)

∣∣∣∣
t=0

, where u ∈ S, p ∈ P.
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Generalized wave equation

We can identify the dual space Q∗ with Q with the help
of the relative trace trQ/QW .

Put
D =

{
s ∈ Q; tr s · σ ∈ PW∀σ ∈ P

}
.

It is well known that D = π−1 · P , where π is the
“product of all roots of (g, a)”.

We can identify the space H with C∞
0 (x)⊗C D and

define the energy form in the space of initial data by

e(φ⊗ x, ψ ⊗ y) =
(
Δπ2trxyφ

) · ψ.
Theorem. The energy form is symmetric and
positive definite.
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Generalized wave equation

Let H be the completion of H with respect to the energy
norm.

Theorem. System (**) is globally solvable on a×X ;
it gives rise to an Abelian group of unitary operators
U(t), t ∈ a acting in H.

Recall that the geodesics in X/K which pass through
x0 = eK have the form xt(α) = keαt · x0, where the
elements k ∈ K and t ∈ a are fixed and α ∈ R. The set

BR =
{
x = ket · x0; k ∈ K, t ∈ a, |t| ≤ R

}
is a geodesic ball in X of radius R.
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Generalized wave equation

Theorem. Let u ∈ S be a solution such that
supp i0(u) ⊂ BR. Then supp u(t, ·) ⊂ BR+|t| for ∀t ∈ a.

To decribe scattering for our system we introduce wave
operators which describe the asymptotic behavior of
solutions along the “light-like” geodesics in space-time.

Put

W+u(τ, k) = lim
t→∞π(−i∂/∂t)eρ(t)u(t+ τ, ket · x0).

Theorem. This limit exists when t→ ∞ along any
ray which lies inside the positive Weyl chamber (and
does not depend on its choice).
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Generalized wave equation

In addition,

||u||E = ||W+u||L2(a×K/M).

In a similar way, one can define wave operators
Ws, s ∈ W , associated with other Weyl chambers ;
scattering operators are defined by

Sw = W+W
−1
w , Sw = F ◦ Sw ◦ F−1,

where F is the classical Fourier transform.

The explicit computation of scattering operators is
based on the properties of the principal series
representations of G.
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Wave packets

The principal series representations are realized in the
space Hλ � L2(K/M) (where M ⊂ K is the centralizer
of a in K) :

Tλ(g)a(k) = e〈iλ−ρ,H(g−1k)〉a(κ(g−1k)),

where for g = keHn we write H = H(g), k = κ(g).

The general solution of system (**) is represented as a “
superposition of plane waves” :

u(t, x) =

∫
a∗
e−iλ(t)〈Tλ(g)aλ, φ0〉Hλ dλ,

where φ0 is the spherical vector (in our realization,
φ0 = 1 ∈ L2(K/M)).
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Scattering of wave packets

The asymptotics of the wave packet can be computed
explicitly :

W+u(τ, k) =

∫
a∗
e−iλ(τ)b(−λ)aλ(k) dλ,

where b(λ) = π(λ)c(λ),

c(λ) =

∫
N̄

e−〈iλ+ρ,H(n̄)〉 dn̄

is the Harish-Chandra function which is explicitly given
by the famous Gindikin–Karpelevich formula,

c(λ) =
∏

α∈Δ+

cα(λ), cα(λ) = B

(
1

2
mα,

1

4
mα/2 +

〈iλ, α〉
〈α, α〉

)
.
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Intertwining operators

The principal series representations Tλ, Tw·λ are
unitarily equivalent for all w ∈ W .

Tλ(g)S
w
λ = Sw

λ Twλ(g) for all g ∈ G.

Explicitly in our realization :

(Sw
λ a)(k) =

1

cw(λ)

∫
N̄w

e−〈iλ+ρ,H(n̄w)〉a(kmwκ(n̄w)) dn̄w.

where mw is an element of the normalizer of a in K
which represents the element w of the Weyl group and

cw(λ) =

∫
N̄w

e−〈iλ+ρ,H(n̄)〉 dn̄w

is the partial c-function. – p. 34/42



Intertwining operators

Here N̄ is the unipotent subgroup which is opposite to
N̄w = N̄ ∩m−1

w Nmw.

In our realization, the restriction of the principal series
representations to K is the standard action in L2(K/M)
by left translations ; hence Sw preserves the spherical
vector (up to a scalar factor). We normalize Sw in such
a way that Sw · 1 = 1.

Cocycle relation :

Swv = Sw ·R−1
w SvRw.

Scattering operators as defined above are proportional
to intertwining operators :

Sw
λ =

[
b(−wλ)
b(−λ)

]
Sw
λ . – p. 35/42



Light cone

Set
C+ = {(t, x) ∈ a+ ×X ; |t(x)| < |t|} .

We define the Hardy space H−
2 of functions sur a∗

C
with

values in L2(K/M) which are regular in the tubular
domain Imλ ∈ a∗−.

The outgoing solutions are characterized by the
condition :

[b(−λ)]a ∈ H−
2 ⇒ u|C+

= 0.

Casuality : SwH−
2 ⊂ H−

2 for all w ∈ W ; moreover, if
w ≥ v (with respect to the Bruhat partial order), we
have SwH−

2 ⊂ SvH−
2 .
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Huygens Principle

In contrast with the normalized intertwining
operators, scattering operators Sw in general do not
satisfy casuality condition because of the scalar
factor b(−wλ)

b(−λ) .

Huygens Principle. All solutions with compact support
are eventually outgoing, i.e., they disappear identically
after a while in any given compact domain.

Why this property does not hold ?

Because of the “mass gap” in the space of non-zero
curvature.

Because of “wave diffusion”.

The first possibility is avoided by the good choice of the
wave equation (based on the Harish-Chandra
isomorphism !)
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Huygens Principle

The second one deserves a thorough study.

Theorem. The following assertions are equivalent :

Operators Sw are causal.

All roots of (G,K) have even multiplicities.

Huygens Principle for the generalized wave equation
is valid.

The difficulties with the Huygens Principle are due to
the poles of b(−wλ)

b(−λ)
which lie in the wrong domain

(unless b(λ)−1 is polynomial, which happens exactly
when all roots of (G,K) have even multiplicities. A
similar phenomenon is well known for the ordinary wave
equation in R2k.
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Huygens Principle

Wave equation Rn is a special case of generalized wave
equation in symmetric spaces of zero curvature. This
time it is an overdetermined system of differential
equations with constant coefficients ; its construction is
parallel to the one described above. The analogue of
the Harish-Chandra isomorphism is the isomorphism
DG0(X0) � PK(p∗) � PW (a∗)

Theorem. Huygens Principle is valid for X = G/K if
and only if it is valid for the associated symmetric
space of zero curvature.

The analytic properties scattering operators in these
cases are quite different :
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Huygens Principle

For X = G/K scattering operators are meromorphic
(with poles in the ‘wrong’ half-planes). When the
curvature tends to zero, these poles condense to
give cuts ; hence in this case scattering operators
are close to Hilbert transform.

Why the violation of Huygens Principle is unfavorable ?

In this case :

The subspaces D+,D− are not orthogonal.

Scattering operators are not holomorphic in the
upper half-plan (or in the tubular domain Im k ∈ a+).
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Huygens Principle

there is no immedate way to define the contraction
semigroup associated with the group of evolution
operators.

A failed (but very seducing) project :

To treat reducible representations of the principal
series in the framework of Scattering theory.

A curious fact :

Huygens Principle does not hold for the wave
equation in the Poincaré half-plane.

But it holds for the automorphic wave equation !
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Factorized Scattering

Until now I did not mention the key property of
Scattering operators in the case of symmetric spaces of
rank r > 1 : they are actually reduced to the rank 1
case, due to the factorization formulae which generalize
the formula of Gindikin–Karpelevich. This property
matches perfectly the non-stationnary approach
described above :

Namely, on has to study the asymptotic behavior of
solutions along singular geodesics associated with
the walls of Weyl chambers.

This study gives rise to a whole tower of
Plancherel type theorems and allows to
decompose Scattering operators into product of
operators of the same type type associated to
symmetric spaces of lower rank.

– p. 42/42
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