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I will talk about some joint work (arXiv: 1806.00747) with
Alexander Shapiro on an application of cluster algebras to
quantum integrable systems.
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Setup for higher Teichmüller theory

S = a marked surface

G = PGLn(C)

XG ,S := moduli of framed G–local systems on S
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Modular functor conjecture

As Sasha explained, Fock and Goncharov constructed an
assignment

S  {algebra X q
G ,S , Hilbert space representation V of X q

G ,S ,

unitary rep of MCG(S) on V}.

Conjecture: (Fock–Goncharov ‘09) This assignment is local with
respect to gluing of surfaces.
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Modular functor conjecture

i.e. if S = S1 ∪γ S2, there should be a mapping–class–group
equivariant isomorphism

V [S ] '
∫ ⊕
ν

Vν [S1]⊗ Vν [S2]

ν = eigenvalues of monodromy around loop γ
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Relation with quantum Toda system

So we need to understand the spectral theory of the operators
Ĥ1, . . . , Ĥn quantizing the functions on XG ,S sending a local
system to its eigenvalues around γ.

If we can find a complete set of eigenfunctions for Ĥ1, . . . , Ĥn

that are simultaneous eigenfunctions for the Dehn twist around γ,
we can construct the isomorphism and prove the conjecture.
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Rank 1 case

For G = PGL2, this amounts to simultaneously diagonalizing the
geodesic length operator

H = e2πbp̂ + e−2πbp̂ + e2πbx̂ (b ∈ R)

and the Dehn twist operator D.

Kashaev ‘00: the operators H, D have common eigenfunctions

Ψλ, λ ∈ R>0,

with eigenvalues
H ·Ψλ = 2 cosh(λ)Ψλ,

D ·Ψλ = e2πiλ
2
Ψλ.
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Rank 1 case

The eigenfuctions Ψλ are orthogonal and complete:∫
R

Ψλ(x)Ψµ(x)dx =
δ(λ− µ)

m(λ)∫
R>0

Ψλ(x)Ψλ(y)m(λ)dλ = δ(x − y),

where the spectral measure is

m(λ) = sinh(bλ) sinh(b−1λ),

and q = eπib
2
.
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Higher rank: quantum Coxeter–Toda system

How to generalize Kashaev’s result to higher rank gauge groups?

First, we need to identify the operators Ĥ1, . . . , Ĥn.

Theorem (S.–Shapiro ’17)

When G = PGLn, there exists a cluster for X q
G ,S in which the

operators Ĥ1, . . . , Ĥn are identified with the Hamiltonians of the
quantum Coxeter–Toda integrable system.
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Classical Coxeter–Toda system

Fix G = PGLn(C), equipped with a pair of opposite Borel
subgroups B±, torus H, and Weyl group W ' Sn.

We have Bruhat cell decompositions

G =
⊔
u∈W

B+uB+

=
⊔
v∈W

B−vB−.

The double Bruhat cell corresponding to a pair (u, v) ∈W ×W
is

Gu,v := (B+uB+) ∩ (B−vB−) .

Gus Schrader Cluster structure of quantum Coxeter–Toda system



Poisson structure on G

There is a natural Poisson structure on G with the following key
properties:

Gu,v ⊂ G are all Poisson subvarieties, whose Poisson
structure descends to quotient Gu,v/AdH .

The algebra of conjugation invariant functions C[G ]AdG

(generated by traces of finite dimensional representations of
G ) is Poisson commutative:

f1, f2 ∈ C[G ]AdG =⇒ {f1, f2} = 0
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Classical Coxter–Toda systems

Hoffmann–Kellendonk-Kutz-Reshetikhin ‘00:

Suppose u, v are both Coxeter elements in W (each simple
reflection appears exactly once in their reduced decompositions)

e.g. G = PGL4, u = s1s2s3, v = s1s2s3.

In particular, Coxeter elements have length

l(u) = dim(H) = l(v)

Gus Schrader Cluster structure of quantum Coxeter–Toda system



Classical Coxeter–Toda systems

In this Coxeter case,

dim(Gu,v/AdH) = l(u) + l(v)

= 2dim(H).

And we have dim(H)–many independent generators of our Poisson
commutative subalgebra C[G ]G (one for each fundamental weight)

=⇒ we get an integrable system on Gu,v/AdH , called the
Coxter–Toda system.
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Double Bruhat cells

Berenstein–Fomin–Zelevinsky: the double Bruhat cells Gu,v ,
and their quotients Gu,v/AdH are cluster Poisson varieties.

e.g. G = PGL4, u = s1s2s3, v = s1s2s3. The quiver for Gu,v/AdH
is
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Cluster Poisson structure on G

The Poisson bracket on C[Gu,v ] is compatible with the cluster
structure: if Y1, . . . ,Yd are cluster coordinates in chart labelled by
quiver Q,

{Yj ,Yk} = εjkYjYk ,

where
εjk = #(j → k)−#(k → j)

is the signed adjacency matrix of the quiver.
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Quantization of Coxeter–Toda system

Consider the Heisenberg algebra Hn generated by

x1, . . . , xn; p1, . . . , pn,

[pj , xk ] =
δjk
2πi

acting on L2(Rn), via

pj 7→
1

2πi

∂

∂xj
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Quantization of Coxeter–Toda system

A representation of the quantum torus algebra for the
Coxeter–Toda quiver:

e.g. Ŷ2 acts by multiplication by positive operator e2πb(x2−x1).
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Cluster construction of quantum Hamiltonians

Let’s add an extra node to our quiver, along with a “spectral
parameter” u:
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Construction of quantum Hamiltonians

Theorem (S.–Shapiro)

Consider the operator Qn(u) obtained by mutating consecutively at
0, 1, 2, . . . , 2n. Then

1 The quiver obtained after these mutations is isomorphic to the
original;

2 The unitary operators Qn(u) satisfy

[Qn(u),Qn(v)] = 0,

3 If A(u) = Qn(u − ib/2)Qn(u + ib/2)−1, then one can expand

A(u) =
n∑

k=0

HkU
k , U := e2πbu

and the commuting operators H1, . . . ,Hn quantize the
Coxeter–Toda Hamiltonians.
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Example: G = PGL4
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Example: G = PGL4
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Example: G = PGL4
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Example: G = PGL4
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The Dehn twist

The Dehn twist operator Dn from quantum Teichmüller theory
corresponds to mutation at all even vertices 2, 4, . . . , 2n:

We have
[Dn,Qn(u)] = 0
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Quantum Coxeter–Toda eigenfunctions

Kharchev–Lebedev–Semenov-Tian-Shansky ‘02: recursive
construction of common eigenfunctions for gln Hamiltonians
H1, . . . ,Hn via Mellin–Barnes integrals:

Ψ
gln+1

λ1,...,λn+1
(x1, . . . , xn+1) =

∫
Rn

K(λ, γ|xn+1)Ψgln
γ1,...,γn(x1, . . . , xn)dγ.

The b–Whittaker functions Ψ
gln
λ1,...,λn

satisfy

Hk ·Ψ
gln
λ1,...,λn

= ek(λ)Ψ
gln
λ1,...,λn

,

where ek(λ) is the k–th elementary symmetric function in

e2πbλ1 , . . . , e2πbλn .
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Cluster construction of quantum Toda eigenfunctions

Using the cluster realization of the Toda Hamiltonians, we give a
dual recursive construction of the b–Whittaker functions: we
expand

Ψ
gln+1

λ1,...,λn+1
(x1, . . . , xn+1) =

∫
Rn

L(x, y|λn+1)Ψ
gln
λ1,...,λn

(y1, . . . , yn)dy.

Using this construction, we can

compute the eigenvalues of the Dehn twist Dn; and

establish orthogonality and completeness of the b–Whittaker
functions.
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Construction of the eigenfunctions

Problem: Construct complete set of joint eigenfunctions for
operators Qn(u),Dn.

e.g. n = 1.
Q1(u) = ϕ(p1 + u)

If λ ∈ R,
Ψλ(x1) = e2πiλx1

satisfies
Q1(u)Ψλ(x1) = ϕ(λ+ u)Ψλ(x1).

(equivalent to formula for Fourier transform of ϕ(z))
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Recursive construction of the eigenfunctions

Recursive construction: we want to find an operator Rn+1
n (λ)

such that
Rn+1

n (λn+1) ·Ψgln
λ1,...,λn

= Ψ
gln+1

λ1,...,λn+1

Set

Rn+1
n (λ) = Qn (λ∗)

e2πiλxn+1

ϕ(xn+1 − xn)
,

where λ∗ = i(b+b−1)
2 − λ.

Pengaton identity =⇒

Qn+1(u) Rn+1
n (λ) = ϕ(u + λ) Rn+1

n (λ) Qn(u).
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Recursive construction of the eigenfunctions

So given a gln eigenvector Ψ
gln
λ1,...,λn

(x1, . . . , xn) satisfying

Qn(u)Ψ
gln
λ1,...,λn

=
n∏

k=1

ϕ(u + λk) Ψ
gln
λ1,...,λn

,

we can build a gln+1 eigenvector

Ψ
gln+1

λ1,...,λn+1
(x1, . . . , xn+1) := Rn+1

n (λn+1) ·Ψgln
λ1,...,λn

satisfying

Qn+1(u)Ψ
gln+1

λ1,...,λn+1
=

n+1∏
k=1

ϕ(u + λk) Ψ
gln+1

λ1,...,λn+1
.
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Dehn twist eigenvalue

Similarly, the pentagon identity implies

Dn+1R
n+1
n (λ) = eπiλ

2
Rn+1
n (λ)Dn,

so by the recursion we derive the Dehn twist spectrum

Dn ·Ψλ1,...,λn = eπi(λ
2
1+···+λ2n)Ψλ1,...,λn .
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A modular b–analog of Givental’s integral formula

Writing all the Rn+1
n (λ) as integral operators, we get an explicit

Givental–type integral formula for the eigenfunctions:

Ψ
(n)
λ (x) = e2πiλnx

∫ n−1∏
j=1

(
e2πi t j (λj−λj+1)

j∏
k=2

ϕ(tj ,k − tj ,k−1)

j∏
k=1

dtj ,k
ϕ(tj ,k − tj+1,k − cb)ϕ(tj+1,k+1 − tj ,k)

)
,

where tn,1 = x1, . . . , tn,n = xn.
e.g. n = 4 we integrate over all but the last row of the array

t11
t21 t22
t31 t32 t33
x1 x2 x3 x4
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Orthogonality and completeness

Using the cluster recursive construction of Ψgln , we can prove the
orthogonality and completeness relations∫

Rn

Ψ
gln
λ (x)Ψ

gln
µ (x)dx =

δ(λ− µ)

m(λ)
,

∫
Rn

Ψ
gln
λ (x)Ψ

gln
µ (y)m(λ)dλ = δ(x − y),

with spectral measure

m(λ) =
∏
j<k

sinh(πb(λj − λk)) sinh(πb−1(λj − λk)).
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Unitarity of the b–Whittaker transform

Theorem (S.–Shapiro)

The b–Whittaker transform

(W[f ])(λ) =

∫
Rn

Ψ
gln
λ (x)f (x)dx

is a unitary equivalence.

This completes the proof of the Fock–Goncharov conjecture for
G = PGLn.
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