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2-species ASEP on a ring

@ fix a ring with n sites and k, r,¢ such that n =k + r + £.
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otherwise. (0 <t <1)
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2-species ASEP on a ring

fix a ring with n sites and k, r, £ such that n =k +r + £.

ASEP(k, r,{) is a Markov chain on states X € {2,1,0}" with k 2's, r 1's,
and £ 0's

possible transitions are swaps of adjacent particles:
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with rate 1 if particle X has a bigger label than particle Y, and rate t
otherwise. (0 <t <1)

we wish to compute the steady state probabilities Pr(X) of states of the
ASEP

example for ASEP of size (1,1,1):
1
Pr(2,1,0) = Pr(1,0,2) = Pr(0,2,1) = Z(1+2t)

Pr(2,0,1) = Pr(0,1,2) = Pr(1,2,0) = %(2 +t)



Matrix Ansatz: 1-species ASEP with open boundaries

Theorem (Derrida-Evans-Hakim-Pasquier 1993)

Let X = Xi... Xy, with X; € {2,0}, be a word representing a state of the 1-species
ASEP. If there exist matrices D and E and vectors (w| and |v), that satisfy:

DE = tED + D + E,

1 1
<W|EZE<W|7 D|V>:E|V>7

then

|~

Pr(X) = = (w| Mat(X)|v)

N

n

where Mat(X) = Mat(X1) ... Mat(X,) is a map defined by Mat(2) = D, Mat(0) = E,
and Z, = (w|(D + E)"|v).




Matrix Ansatz: 1-species ASEP with open boundaries

Theorem (Derrida-Evans-Hakim-Pasquier 1993)

Let X = Xi... Xy, with X; € {2,0}, be a word representing a state of the 1-species
ASEP. If there exist matrices D and E and vectors (w| and |v), that satisfy:

DE = tED+ D + E,
1 1
E: —_ D —_
(W]E = —(wl, v) 5V

then

Pr(X) = <w| Mat(X)|v)

N\»—A

where Mat(X) = Mat(X1) ... Mat(X,) is a map defined by Mat(2) = D, Mat(0) = E,
and Z, = (w|(D + E)"|v).

Pr(X) can be expressed in terms of a product of non-commuting operators D and
E, where 2— D, 1+— A,and 0 — E

Example:

Pr(200020) — — 5. (w|DEEEDE] )



combinatorial interpretation of the quadratic algebra
DE =qED+ D+ E

Given a word in Mat(X) in D's and E’s, we can apply the relation
DE = qED + D + E to get

Mat(X) = i j(t)E'D/

and thus compute Pr(X).
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combinatorial interpretation of the quadratic algebra
DE =qED+ D+ E

Given a word in Mat(X) in D's and E’s, we can apply the relation
DE = qED + D + E to get

Mat(X) = i j(t)E'D/

and thus compute Pr(X).
For example, let X = 2202. Then

Mat(X) = DDED = D(tED + D + E)D
= t(tED + D + E)DD + DDD + (tED + D + E)D
— t?EDDD + (t + 1)DDD + 2tEDD + DD + ED.

Define a Q-tableau from this algebra by assigning D to vertical edge and E

to horizontal edge and applying local edge rewriting rules. (due to X.
Viennot)



alternative tableaux for 1-species ASEP

@ Lattice path L(X) by drawing 1 — south edge and 0 — west edge
X

|
l
0000000800800 —» l
|
|
|
|

D
@ Young diagram Y/(X) associated to L(X) _lt **********

o filling of Y(X) with up-arrows and left-arrows such that any box pointed
at by an arrow must be empty

o the weight of a tableaux is a monomial: wt(T) = a#1(T)g#(T) gfree(T),
Note that alternative tableaux are in bijection with permutation tableaux.
Theorem (Corteel-Williams 2007)

For the 1-species ASEP with «, 3, q

Pr(X)—Zi > wi(T)

TEAT(X)

where Zy = 3 1 ar(n) WE(T) is the partition function.




2-species ASEP generalization: Matrix Ansatz

For ASEP with particles of type 2, 1, 0, add third operator A to get the
quadratic algebra (Uchiyama '09):

DE=tED+D+E, DA=tAD+A, AE=tEA+A

WE= 1w, D)=
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For ASEP with particles of type 2, 1, 0, add third operator A to get the
quadratic algebra (Uchiyama '09):

DE=tED+D+E, DA=tAD+A, AE=tEA+A

WE= 1w, D)=

Generalization of the alternative tableaux:
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(M.-Viennot '15) (Corteel-M.-Williams '16)

Get formula for Koornwinder-Macdonald polynomials (for partitions
consisting of a single row/column) at g = t.



2-ASEP on a ring

Matrix ansatz (DEHP):

DE =tED+ (1 —t)D + E,
DA = tAD + (1 — t)A
AE = tEA+ (1 - t)A

)

then
tr(Mat(X))

Pr(X) = Zor)

where Mat : {2,1,0} — {D,A,E} and X has k 2's, r 1's, and ¢ O's.
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2-ASEP on a ring

Matrix ansatz (DEHP):

DE =tED+ (1 —t)D + E,
DA = tAD + (1 — t)A
AE = tEA+ (1 - t)A

)

then
Pr(X) =

tr(Mat(X
Zor) (Mat(X))

where Mat : {2,1,0} — {D,A,E} and X has k 2's, r 1's, and ¢ O's.
since there are no boundary conditions, we get “infinite” tableaux!
we will split the infinite tableaux into classes and define finite cylindric

tableaux, with each tableau representing a class and having a weight
which is a generating function (instead of a polynomial)
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An X-strip is a strip of squares and rhombi corresponding to the 0,1-sub-word of
X. For example, X = 12200120200:
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cylindric rhombic tableaux

o Identify the left and right boundaries of H(X), making it a cylinder.

@ Horizontal strips start from P(X) and wrap around to the left.

@ An up-arrow can be in a square tile, killing the cells above it. (So,
there can be at most one per column.)

@ at t = 0, these tableaux are in bijection with multiline queues,
which are an object due to Ferrari-Martin from 2005 that has been
used to study the m-TASEP (M. 2018)

@ choose any placement of up-arrows and some order ¢ assigned to the
arrows in each row.
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o t keeps track of how many available locations are “skipped” with a
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cylindric rhombic tableaux

@ choose any placement of up-arrows and some order ¢ assigned to the
arrows in each row.

o t keeps track of how many available locations are “skipped” with a
disorder statistic

@ Example:
th
T = L1 Bl
where [j]: = (1 — #)/(1 — t).
4 |54
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probabilities of the 2-ASEP on a ring

Theorem (Corteel-M.-Williams 2018)

Let X € States(k, r,{) be a state of the 2-ASEP on a ring. Then

Pr(X) = — S w(T0).

Z(k,r,0) (T,0)ECRT(X)




probabilities of the 2-ASEP on a ring

Theorem (Corteel-M.-Williams 2018)

Let X € States(k, r,{) be a state of the 2-ASEP on a ring. Then

Pr(X) = — S w(T0).

Z(k,r,0) (T,0)ECRT(X)

Example: 7(001122) = W(G +t+6t2 + 3+ t%)
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Nonsymmetric Macdonald polynomials

symmetric Macdonald polynomials Py(x; g, t) are g, t generalizations of
Schur polynomials. Can be defined via symmetrization of nonsymmetric
Macdonald polynomials E,,.

E,, introduced in 1995 (Opdam, Cherednik), can be computed from
Yang-Baxter graphs, with combinatorial formula due to
Haiman-Haglund-Loehr '05

recent work of Cantini-de Gier-Wheeler computes matrix product for
polynomials f,(x; g, t) which are solutions to a certain affine Hecke algebra.

f.(1,...,1;1,t) is the steady state probability of state 1 of the ASEP on a
ring.
f,, are related to the Ey’s:

E)\ - Z 3)\,#((7» t)f;LC

B>

and the Py’'s, summed over permutations p of the parts in A:

Pa(xi@it) =Y fulxi g, t).

14

(in particular, when X is a partition, we have fyc = E).)



enhanced weights on CRT to compute the f,

To a CRT with arrow placement and order (T, o), we can assign a weight
wtgex (T, 0)(x; g, t) as follows:
e t's count the disorder statistic of (T,c), and [j]q: = (1 — qt/)/(1 — t)
@ associate x;'s to the edges of P(X) and have them keep track of
which strips contain the last arrow in a given row according to o

@ have g count the number of times we ‘“cross the boundary” of the
CRT to traverse the arrows in order o

| Al

12 .3
) 0 1* Wtth(T, O') = tw
4 /| [7]ge!

2 2.2

10 9




FEE P
moE R



example for X = 001122

ARG GG

q'rl'rzrs'm'rs qfa" T2T3T4T6 qT1T21‘314T5 qf'r ToX3TATS
I l L3,
) ﬁ : ﬁ T ﬁ . ﬁ o
(qz1+@?tB3za)monszams  (qu1+qt3a2)z120T37475 GPr1TaT3TIT TG PteizarzTaTste
[4]qt[3qt [4]qt[3lqe [4]qt[3]qt [4]qt[3qt

2
)(X5+x6)x1 X2 X3 X2 + q(x1+qt>x2) (x5 +Xp) X1 X2 X3 %8 + g~ (1+t)x1 X0 X3Xa X5 X6

2.2 (x1+
fi001122) = X1 X5 X3Xa + AL [4]‘7t [4]qt[3]qt [4](7{[3](7t



example for X = 001122

ARG GG

22a2ra1y 9T173T324T6 gtzizoszazs qrizdwsans gtz3zazazazs
ﬁ h ﬁ N ﬁ " ﬁ o
(qu1+q?w2) ““13““‘ ‘1‘1+q1t512)”1121314% Prizawsrarse Pte1zar3T4T5TE
[4]qe[3]qt [4]qt[3]qt [4],,, 3] aqt [4]'1f [5]qf

2.2 q(tx1+x2)(X5+X6) X1 X0X3 X4 q(x1+qt>x2) (x5 +Xp) X1 X2 X3 %8 G (14t)x1 X0 X3 X4 X5 X5
foorzz) = xxe X3 + [Tt T (@leBlat T Wl

In particular, when X\ is a partition with parts of size at most 2, we obtain:

Theorem (Corteel-M.-Williams '18)

Ex= Y wte(T,0)

(T,0)ECRT(AC)

e.g. nonsymmetric Macdonald poly. E 2 11,0,0) equals fo0,1,1,22) above.



summary

For 2-ASEP, we defined cylindric rhombic tableaux (CRT) with g, ¢, x
weights that give formula f,(xi, ..., Xn; g, t) such that:

o Pr(u) =f,(1,...,1;1,t) is the probability of the 2-ASEP on a ring

® Py=3_,f(x1,...,xn; q,t) is the partition function over the CRT
when X has parts of size 0, 1, 2

® when p is a partition, f,c(x1,...,xn; q,t) = E, the non-symmetric
Macdonald polynomial (e.g. if = 211100, then x¢ = 011122).

@ there is a bijection to multiline queues and a solution-in-progress for
higher species.



Happy birthday Kolya!!l
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