Combinatorics of the ASEP on a ring and Macdonald polynomials

Olya Mandelshtam

Brown University
olya@math.brown.edu

based on joint work with Sylvie Corteel (Paris Diderot) and Lauren Williams (UC Berkeley)

April 19, 2018

overview: asymmetric simple exclusion process (ASEP) and orthogonal polynomials

ASEP with open boundaries

ASEP on a ring

overview: asymmetric simple exclusion process (ASEP) and orthogonal polynomials

ASEP with open boundaries

ASEP on a ring

Macdonald polynomials (type A) (Prolhac-Evans-Mallick 2009)
overview: asymmetric simple exclusion process (ASEP) and orthogonal polynomials

ASEP with open boundaries

ASEP on a ring

Macdonald polynomials (type A) (Prolhac-Evans-Mallick 2009)

- (Corteel-M.-Williams, 2018)

2-species ASEP on a ring

- fix a ring with n sites and k, r, ℓ such that $n=k+r+\ell$.
- $\operatorname{ASEP}(k, r, \ell)$ is a Markov chain on states $X \in\{2,1,0\}^{n}$ with $k 2^{\prime} s, r 1^{\prime} s$, and ℓ O's
- possible transitions are swaps of adjacent particles:

with rate 1 if particle X has a bigger label than particle Y, and rate t otherwise. $(0 \leq t \leq 1)$
- we wish to compute the steady state probabilities $\operatorname{Pr}(X)$ of states of the ASEP
example for ASEP of size $(1,1,1)$:

$$
\begin{aligned}
& \operatorname{Pr}(2,1,0)=\operatorname{Pr}(1,0,2)=\operatorname{Pr}(0,2,1)=\frac{1}{Z}(1+2 t) \\
& \operatorname{Pr}(2,0,1)=\operatorname{Pr}(0,1,2)=\operatorname{Pr}(1,2,0)=\frac{1}{Z}(2+t)
\end{aligned}
$$

2-species ASEP on a ring

- fix a ring with n sites and k, r, ℓ such that $n=k+r+\ell$.
- $\operatorname{ASEP}(k, r, \ell)$ is a Markov chain on states $X \in\{2,1,0\}^{n}$ with $k 2$'s, $r 1$'s, and $\ell 0$'s
- possible transitions are swaps of adjacent particles:

with rate 1 if particle X has a bigger label than particle Y, and rate t otherwise. $(0 \leq t \leq 1)$
- we wish to compute the steady state probabilities $\operatorname{Pr}(X)$ of states of the ASEP
example for ASEP of size $(1,1,1)$:

$$
\begin{aligned}
& \operatorname{Pr}(2,1,0)=\operatorname{Pr}(1,0,2)=\operatorname{Pr}(0,2,1)=\frac{1}{Z}(1+2 t) \\
& \operatorname{Pr}(2,0,1)=\operatorname{Pr}(0,1,2)=\operatorname{Pr}(1,2,0)=\frac{1}{Z}(2+t)
\end{aligned}
$$

2-species ASEP on a ring

- fix a ring with n sites and k, r, ℓ such that $n=k+r+\ell$.
- $\operatorname{ASEP}(k, r, \ell)$ is a Markov chain on states $X \in\{2,1,0\}^{n}$ with $k 2$'s, $r 1^{\prime}$'s, and $\ell 0$'s
- possible transitions are swaps of adjacent particles:

with rate 1 if particle X has a bigger label than particle Y, and rate t otherwise. $(0 \leq t \leq 1)$
- we wish to compute the steady state probabilities $\operatorname{Pr}(X)$ of states of the ASEP
example for ASEP of size $(1,1,1)$:

$$
\begin{aligned}
& \operatorname{Pr}(2,1,0)=\operatorname{Pr}(1,0,2)=\operatorname{Pr}(0,2,1)=\frac{1}{Z}(1+2 t) \\
& \operatorname{Pr}(2,0,1)=\operatorname{Pr}(0,1,2)=\operatorname{Pr}(1,2,0)=\frac{1}{Z}(2+t)
\end{aligned}
$$

2-species ASEP on a ring

- fix a ring with n sites and k, r, ℓ such that $n=k+r+\ell$.
- $\operatorname{ASEP}(k, r, \ell)$ is a Markov chain on states $X \in\{2,1,0\}^{n}$ with $k 2$'s, $r 1^{\prime \prime}$, and $\ell 0$'s
- possible transitions are swaps of adjacent particles:

with rate 1 if particle X has a bigger label than particle Y, and rate t otherwise. $(0 \leq t \leq 1)$
- we wish to compute the steady state probabilities $\operatorname{Pr}(X)$ of states of the ASEP
example for ASEP of size $(1,1,1)$:

$$
\begin{aligned}
& \operatorname{Pr}(2,1,0)=\operatorname{Pr}(1,0,2)=\operatorname{Pr}(0,2,1)=\frac{1}{Z}(1+2 t) \\
& \operatorname{Pr}(2,0,1)=\operatorname{Pr}(0,1,2)=\operatorname{Pr}(1,2,0)=\frac{1}{Z}(2+t)
\end{aligned}
$$

2-species ASEP on a ring

- fix a ring with n sites and k, r, ℓ such that $n=k+r+\ell$.
- $\operatorname{ASEP}(k, r, \ell)$ is a Markov chain on states $X \in\{2,1,0\}^{n}$ with $k 2$'s, $r 1^{\prime \prime}$, and $\ell 0$'s
- possible transitions are swaps of adjacent particles:

with rate 1 if particle X has a bigger label than particle Y, and rate t otherwise. $(0 \leq t \leq 1)$
- we wish to compute the steady state probabilities $\operatorname{Pr}(X)$ of states of the ASEP
example for ASEP of size $(1,1,1)$:

$$
\begin{aligned}
& \operatorname{Pr}(2,1,0)=\operatorname{Pr}(1,0,2)=\operatorname{Pr}(0,2,1)=\frac{1}{Z}(1+2 t) \\
& \operatorname{Pr}(2,0,1)=\operatorname{Pr}(0,1,2)=\operatorname{Pr}(1,2,0)=\frac{1}{Z}(2+t)
\end{aligned}
$$

2-species ASEP on a ring

- fix a ring with n sites and k, r, ℓ such that $n=k+r+\ell$.
- $\operatorname{ASEP}(k, r, \ell)$ is a Markov chain on states $X \in\{2,1,0\}^{n}$ with $k 2$'s, $r 1$'s, and $\ell 0$'s
- possible transitions are swaps of adjacent particles:

with rate 1 if particle X has a bigger label than particle Y, and rate t otherwise. $(0 \leq t \leq 1)$
- we wish to compute the steady state probabilities $\operatorname{Pr}(X)$ of states of the ASEP
example for ASEP of size $(1,1,1)$:

$$
\begin{aligned}
& \operatorname{Pr}(2,1,0)=\operatorname{Pr}(1,0,2)=\operatorname{Pr}(0,2,1)=\frac{1}{Z}(1+2 t) \\
& \operatorname{Pr}(2,0,1)=\operatorname{Pr}(0,1,2)=\operatorname{Pr}(1,2,0)=\frac{1}{Z}(2+t)
\end{aligned}
$$

Matrix Ansatz: 1-species ASEP with open boundaries

Theorem (Derrida-Evans-Hakim-Pasquier 1993)

Let $X=X_{1} \ldots X_{n}$, with $X_{i} \in\{2,0\}$, be a word representing a state of the 1 -species ASEP. If there exist matrices D and E and vectors $\langle w|$ and $|v\rangle$, that satisfy:

$$
\begin{gathered}
D E=t E D+D+E, \\
\langle w| E=\frac{1}{\alpha}\langle w|, \quad D|v\rangle=\frac{1}{\beta}|v\rangle,
\end{gathered}
$$

then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{n}}\langle w| \operatorname{Mat}(X)|v\rangle
$$

where $\operatorname{Mat}(X)=\operatorname{Mat}\left(X_{1}\right) \ldots \operatorname{Mat}\left(X_{n}\right)$ is a map defined by $\operatorname{Mat}(2)=D, \operatorname{Mat}(0)=E$, and $Z_{n}=\langle w|(D+E)^{n}|v\rangle$.

Matrix Ansatz: 1-species ASEP with open boundaries

Theorem (Derrida-Evans-Hakim-Pasquier 1993)

Let $X=X_{1} \ldots X_{n}$, with $X_{i} \in\{2,0\}$, be a word representing a state of the 1-species ASEP. If there exist matrices D and E and vectors $\langle w|$ and $|v\rangle$, that satisfy:

$$
\begin{gathered}
D E=t E D+D+E \\
\langle w| E=\frac{1}{\alpha}\langle w|, \quad D|v\rangle=\frac{1}{\beta}|v\rangle,
\end{gathered}
$$

then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{n}}\langle w| \operatorname{Mat}(X)|v\rangle
$$

where $\operatorname{Mat}(X)=\operatorname{Mat}\left(X_{1}\right) \ldots \operatorname{Mat}\left(X_{n}\right)$ is a map defined by $\operatorname{Mat}(2)=D, \operatorname{Mat}(0)=E$, and $Z_{n}=\langle w|(D+E)^{n}|v\rangle$.
$\operatorname{Pr}(X)$ can be expressed in terms of a product of non-commuting operators D and E, where $2 \mapsto D, 1 \mapsto A$, and $0 \mapsto E$ Example:

$$
\operatorname{Pr}(200020)=\frac{1}{Z_{6}}\langle w| D E E E D E|v\rangle
$$

combinatorial interpretation of the quadratic algebra

 $D E=q E D+D+E$Given a word in $\operatorname{Mat}(X)$ in D 's and E 's, we can apply the relation $D E=q E D+D+E$ to get

$$
\operatorname{Mat}(X)=\sum_{i, j} c_{i, j}(t) E^{i} D^{j}
$$

and thus compute $\operatorname{Pr}(X)$.
combinatorial interpretation of the quadratic algebra $D E=q E D+D+E$

Given a word in $\operatorname{Mat}(X)$ in D 's and E 's, we can apply the relation $D E=q E D+D+E$ to get

$$
\operatorname{Mat}(X)=\sum_{i, j} c_{i, j}(t) E^{i} D^{j}
$$

and thus compute $\operatorname{Pr}(X)$.
For example, let $X=2202$. Then

$$
\begin{aligned}
\operatorname{Mat}(X) & =D D E D=D(t E D+D+E) D \\
& =t(t E D+D+E) D D+D D D+(t E D+D+E) D \\
& =t^{2} E D D D+(t+1) D D D+2 t E D D+D D+E D .
\end{aligned}
$$

combinatorial interpretation of the quadratic algebra

$D E=q E D+D+E$

Given a word in $\operatorname{Mat}(X)$ in D 's and E 's, we can apply the relation $D E=q E D+D+E$ to get

$$
\operatorname{Mat}(X)=\sum_{i, j} c_{i, j}(t) E^{i} D^{j}
$$

and thus compute $\operatorname{Pr}(X)$.
For example, let $X=2202$. Then

$$
\begin{aligned}
\operatorname{Mat}(X) & =D D E D=D(t E D+D+E) D \\
& =t(t E D+D+E) D D+D D D+(t E D+D+E) D \\
& =t^{2} E D D D+(t+1) D D D+2 t E D D+D D+E D .
\end{aligned}
$$

Define a Q-tableau from this algebra by assigning D to vertical edge and E to horizontal edge and applying local edge rewriting rules. (due to X . Viennot)

alternative tableaux for 1 -species ASEP

- Lattice path $L(X)$ by drawing $1 \mapsto$ south edge and $0 \mapsto$ west edge

- filling of $Y(X)$ with up-arrows and left-arrows such that any box pointed at by an arrow must be empty
- the weight of a tableaux is a monomial: $\mathrm{wt}(T)=\alpha^{\# \uparrow(T)} \beta^{\# \leftarrow(T)} q^{\text {free }(T)}$. Note that alternative tableaux are in bijection with permutation tableaux.

Theorem (Corteel-Williams 2007)

For the 1 -species ASEP with α, β, q

$$
\operatorname{Pr}(X)=\frac{1}{Z_{n}} \sum_{T \in A T(X)} w t(T)
$$

where $Z_{n}=\sum_{T \in A T(n)} w t(T)$ is the partition function.

2-species ASEP generalization: Matrix Ansatz

For ASEP with particles of type 2, 1, 0 , add third operator A to get the quadratic algebra (Uchiyama '09):

$$
\begin{gathered}
D E=t E D+D+E, \quad D A=t A D+A, \quad A E=t E A+A \\
\langle w| E=\frac{1}{\alpha}\langle w|, \quad D|v\rangle=\frac{1}{\beta}|v\rangle
\end{gathered}
$$

2-species ASEP generalization: Matrix Ansatz

For ASEP with particles of type 2, 1, 0 , add third operator A to get the quadratic algebra (Uchiyama '09):

$$
\begin{gathered}
D E=t E D+D+E, \quad D A=t A D+A, \quad A E=t E A+A \\
\langle w| E=\frac{1}{\alpha}\langle w|, \quad D|v\rangle=\frac{1}{\beta}|v\rangle
\end{gathered}
$$

Generalization of the alternative tableaux:

(Corteel-M.-Williams '16)
Get formula for Koornwinder-Macdonald polynomials (for partitions consisting of a single row/column) at $q=t$.

2-ASEP on a ring

Matrix ansatz (DEHP):

$$
\begin{aligned}
& D E=t E D+(1-t) D+E, \\
& D A=t A D+(1-t) A, \\
& A E=t E A+(1-t) A
\end{aligned}
$$

then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{(k, r, \ell)}} \operatorname{tr}(\operatorname{Mat}(X))
$$

where Mat : $\{2,1,0\} \mapsto\{D, A, E\}$ and X has k 2's, $r 1$'s, and $\ell 0$'s.

2-ASEP on a ring

Matrix ansatz (DEHP):

$$
\begin{aligned}
& D E=t E D+(1-t) D+E, \\
& D A=t A D+(1-t) A \\
& A E=t E A+(1-t) A
\end{aligned}
$$

then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{(k, r, \ell)}} \operatorname{tr}(\operatorname{Mat}(X))
$$

where Mat : $\{2,1,0\} \mapsto\{D, A, E\}$ and X has $k 2$'s, $r 1$'s, and $\ell 0$'s.
since there are no boundary conditions, we get "infinite" tableaux!

2-ASEP on a ring

Matrix ansatz (DEHP):

$$
\begin{aligned}
& D E=t E D+(1-t) D+E \\
& D A=t A D+(1-t) A \\
& A E=t E A+(1-t) A
\end{aligned}
$$

then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{(k, r, \ell)}} \operatorname{tr}(\operatorname{Mat}(X))
$$

where Mat : $\{2,1,0\} \mapsto\{D, A, E\}$ and X has k 2's, $r 1$'s, and $\ell 0$'s.
since there are no boundary conditions, we get "infinite" tableaux!
we will split the infinite tableaux into classes and define finite cylindric tableaux, with each tableau representing a class and having a weight which is a generating function (instead of a polynomial)

cylindric rhombic tableaux (CRT)

Let $X \in \operatorname{ASEP}(k, r, \ell)$.
An X-strip is a strip of squares and rhombi corresponding to the 0,1 -sub-word of X. For example, $X=12200120200$:

cylindric rhombic tableaux (CRT)

Let $X \in \operatorname{ASEP}(k, r, \ell)$.
An X-strip is a strip of squares and rhombi corresponding to the 0,1 -sub-word of X. For example, $X=12200120200$:

Join $k X$-strips to obtain the shape $\mathcal{H}(X)$ and superimpose a path $P(X)$:

cylindric rhombic tableaux (CRT)

Let $X \in \operatorname{ASEP}(k, r, \ell)$.
An X-strip is a strip of squares and rhombi corresponding to the 0,1 -sub-word of X. For example, $X=12200120200$:

Join $k X$-strips to obtain the shape $\mathcal{H}(X)$ and superimpose a path $P(X)$:

cylindric rhombic tableaux

- Identify the left and right boundaries of $\mathcal{H}(X)$, making it a cylinder.
- Horizontal strips start from $P(X)$ and wrap around to the left.
- An up-arrow can be in a square tile, killing the cells above it. (So, there can be at most one per column.)
- at $t=0$, these tableaux are in bijection with multiline queues, which are an object due to Ferrari-Martin from 2005 that has been used to study the m-TASEP (M. 2018)
- choose any placement of up-arrows and some order σ assigned to the arrows in each row.

cylindric rhombic tableaux

- Identify the left and right boundaries of $\mathcal{H}(X)$, making it a cylinder.
- Horizontal strips start from $P(X)$ and wrap around to the left.
- An up-arrow can be in a square tile, killing the cells above it. (So, there can be at most one per column.)
- at $t=0$, these tableaux are in bijection with multiline queues, which are an object due to Ferrari-Martin from 2005 that has been used to study the m-TASEP (M. 2018)
- choose any placement of up-arrows and some order σ assigned to the arrows in each row.

cylindric rhombic tableaux

- Identify the left and right boundaries of $\mathcal{H}(X)$, making it a cylinder.
- Horizontal strips start from $P(X)$ and wrap around to the left.
- An up-arrow can be in a square tile, killing the cells above it. (So, there can be at most one per column.)
- at $t=0$, these tableaux are in bijection with multiline queues, which are an object due to Ferrari-Martin from 2005 that has been used to study the m-TASEP (M. 2018)
- choose any placement of up-arrows and some order σ assigned to the arrows in each row.

cylindric rhombic tableaux

- Identify the left and right boundaries of $\mathcal{H}(X)$, making it a cylinder.
- Horizontal strips start from $P(X)$ and wrap around to the left.
- An up-arrow can be in a square tile, killing the cells above it. (So, there can be at most one per column.)
- at $t=0$, these tableaux are in bijection with multiline queues, which are an object due to Ferrari-Martin from 2005 that has been used to study the m-TASEP (M. 2018)
- choose any placement of up-arrows and some order σ assigned to the arrows in each row.

cylindric rhombic tableaux

- Identify the left and right boundaries of $\mathcal{H}(X)$, making it a cylinder.
- Horizontal strips start from $P(X)$ and wrap around to the left.
- An up-arrow can be in a square tile, killing the cells above it. (So, there can be at most one per column.)
- at $t=0$, these tableaux are in bijection with multiline queues, which are an object due to Ferrari-Martin from 2005 that has been used to study the m-TASEP (M. 2018)
- choose any placement of up-arrows and some order σ assigned to the arrows in each row.

cylindric rhombic tableaux

- choose any placement of up-arrows and some order σ assigned to the arrows in each row.
- t keeps track of how many available locations are "skipped" with a disorder statistic
- Example:

$$
w t(T)=\frac{t^{10}}{[7]_{t}[6]_{t}[5]_{t}[4]_{t}},
$$

where $[j]_{t}=\left(1-t^{j}\right) /(1-t)$.

cylindric rhombic tableaux

- choose any placement of up-arrows and some order σ assigned to the arrows in each row.
- t keeps track of how many available locations are "skipped" with a disorder statistic
- Example:

where $[j]_{t}=\left(1-t^{j}\right) /(1-t)$.

cylindric rhombic tableaux

- choose any placement of up-arrows and some order σ assigned to the arrows in each row.
- t keeps track of how many available locations are "skipped" with a disorder statistic
- Example:

$$
w t(T)=\frac{t^{10}}{[7]_{t}[6]_{t}[5]_{t}[4]_{t}},
$$

where $[j]_{t}=\left(1-t^{j}\right) /(1-t)$.

probabilities of the 2-ASEP on a ring

Theorem (Corteel-M.-Williams 2018)
Let $X \in \operatorname{States}(k, r, \ell)$ be a state of the 2-ASEP on a ring. Then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{(k, r, \ell)}} \sum_{(T, \sigma) \in \operatorname{CRT}(X)} w t(T, \sigma) .
$$

probabilities of the 2-ASEP on a ring

Theorem (Corteel-M.-Williams 2018)

Let $X \in \operatorname{States}(k, r, \ell)$ be a state of the 2-ASEP on a ring. Then

$$
\operatorname{Pr}(X)=\frac{1}{Z_{(k, r, \ell)}} \sum_{(T, \sigma) \in \operatorname{CRT}(X)} w t(T, \sigma) .
$$

1

$\frac{\left(1+t^{3}\right)}{[4][3]}$

$\frac{1}{[4]}$

$\frac{\left(1+t^{3}\right)}{[4][3]}$

$\frac{1}{[4][3]}$

$\frac{t}{[4][3]}$

Example: $\pi(001122)=\frac{1}{z_{(2,2,2)}[4]_{t}[3]_{t}}\left(6+t+6 t^{2}+t^{3}+t^{4}\right)$

Nonsymmetric Macdonald polynomials

- symmetric Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are q, t generalizations of Schur polynomials. Can be defined via symmetrization of nonsymmetric Macdonald polynomials E_{μ}.
- E_{μ} introduced in 1995 (Opdam, Cherednik), can be computed from Yang-Baxter graphs, with combinatorial formula due to Haiman-Haglund-Loehr '05
- recent work of Cantini-de Gier-Wheeler computes matrix product for polynomials $f_{\mu}(x ; q, t)$ which are solutions to a certain affine Hecke algebra.
- $f_{\mu}(1, \ldots, 1 ; 1, t)$ is the steady state probability of state μ of the ASEP on a ring.
- f_{μ} are related to the E_{λ} 's:

$$
E_{\lambda}=\sum_{\mu \geq \lambda} a_{\lambda, \mu}(q, t) f_{\mu} c
$$

and the P_{λ} 's, summed over permutations μ of the parts in λ :

$$
P_{\lambda}(x ; q ; t)=\sum_{\mu} f_{\mu}(x ; q, t) .
$$

(in particular, when λ is a partition, we have $f_{\lambda} c=E_{\lambda}$.)

Nonsymmetric Macdonald polynomials

- symmetric Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are q, t generalizations of Schur polynomials. Can be defined via symmetrization of nonsymmetric Macdonald polynomials E_{μ}.
- E_{μ} introduced in 1995 (Opdam, Cherednik), can be computed from Yang-Baxter graphs, with combinatorial formula due to Haiman-Haglund-Loehr '05
- recent work of Cantini-de Gier-Wheeler computes matrix product for polynomials $f_{\mu}(\mathbf{x} ; q, t)$ which are solutions to a certain affine Hecke algebra.
- $f_{\mu}(1, \ldots, 1 ; 1, t)$ is the steady state probability of state μ of the ASEP on a ring.
- f_{μ} are related to the E_{λ} 's:

and the P_{λ} 's, summed over permutations μ of the parts in λ :

$$
P_{\lambda}(x ; q ; t)=\sum_{\mu} f_{\mu}(x ; q, t)
$$

Nonsymmetric Macdonald polynomials

- symmetric Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are q, t generalizations of Schur polynomials. Can be defined via symmetrization of nonsymmetric Macdonald polynomials E_{μ}.
- E_{μ} introduced in 1995 (Opdam, Cherednik), can be computed from Yang-Baxter graphs, with combinatorial formula due to Haiman-Haglund-Loehr '05
- recent work of Cantini-de Gier-Wheeler computes matrix product for polynomials $f_{\mu}(\mathbf{x} ; q, t)$ which are solutions to a certain affine Hecke algebra.
- f_{μ} are related to the E_{λ} 's:

and the P_{λ} 's, summed over permutations μ of the parts in λ :

$$
P_{\lambda}(x ; q ; t)=\sum_{\mu} f_{\mu}(x ; q, t)
$$

Nonsymmetric Macdonald polynomials

- symmetric Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are q, t generalizations of Schur polynomials. Can be defined via symmetrization of nonsymmetric Macdonald polynomials E_{μ}.
- E_{μ} introduced in 1995 (Opdam, Cherednik), can be computed from Yang-Baxter graphs, with combinatorial formula due to Haiman-Haglund-Loehr '05
- recent work of Cantini-de Gier-Wheeler computes matrix product for polynomials $f_{\mu}(\mathbf{x} ; q, t)$ which are solutions to a certain affine Hecke algebra.
- $f_{\mu}(1, \ldots, 1 ; 1, t)$ is the steady state probability of state μ of the ASEP on a ring.
- f_{μ} are related to the E_{λ} 's:

and the P_{λ} 's, summed over permutations μ of the parts in λ :

$$
P_{\lambda}(x ; q ; t)=\sum_{\mu} f_{\mu}(x ; q, t)
$$

Nonsymmetric Macdonald polynomials

- symmetric Macdonald polynomials $P_{\lambda}(\mathbf{x} ; q, t)$ are q, t generalizations of Schur polynomials. Can be defined via symmetrization of nonsymmetric Macdonald polynomials E_{μ}.
- E_{μ} introduced in 1995 (Opdam, Cherednik), can be computed from Yang-Baxter graphs, with combinatorial formula due to Haiman-Haglund-Loehr '05
- recent work of Cantini-de Gier-Wheeler computes matrix product for polynomials $f_{\mu}(\mathbf{x} ; q, t)$ which are solutions to a certain affine Hecke algebra.
- $f_{\mu}(1, \ldots, 1 ; 1, t)$ is the steady state probability of state μ of the ASEP on a ring.
- f_{μ} are related to the E_{λ} 's:

$$
E_{\lambda}=\sum_{\mu \geq \lambda} a_{\lambda, \mu}(q, t) f_{\mu} c
$$

and the P_{λ} 's, summed over permutations μ of the parts in λ :

$$
P_{\lambda}(\mathbf{x} ; q ; t)=\sum_{\mu} f_{\mu}(\mathbf{x} ; q, t)
$$

(in particular, when λ is a partition, we have $f_{\lambda} c=E_{\lambda}$.)

enhanced weights on CRT to compute the f_{μ}

To a CRT with arrow placement and order (T, σ), we can assign a weight $\mathrm{wt}_{q t x}(T, \sigma)(\mathbf{x} ; q, t)$ as follows:

- t 's count the disorder statistic of (T, σ), and $[j]_{q t}=\left(1-q t^{j}\right) /(1-t)$
- associate x_{i} 's to the edges of $P(X)$ and have them keep track of which strips contain the last arrow in a given row according to σ
- have q count the number of times we "cross the boundary" of the CRT to traverse the arrows in order σ

$$
\mathrm{wt}_{q t x}(T, \sigma)=\frac{t^{12} q^{3}}{[7]_{q t}^{(4)}!} x_{2} x_{3} x_{4}^{2} x_{5} x_{6} x_{7} x_{8} x_{9}^{2} x_{10}^{2}
$$

example for $X=001122$

example for $X=001122$

$\frac{\left(q x_{1}+q^{2} t^{3} x_{2}\right) x_{1} x_{2} x_{3} x_{4} x_{6}}{[4]_{q t}[3]_{q t}} \quad \frac{\left(q x_{1}+q^{2} t^{3} x_{2}\right) x_{1} x_{2} x_{3} x_{4} x_{5}}{[4]_{q t}[3]_{q t}}$

$\frac{q^{2} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}{[4]_{q t}[3]_{q t}}$

$$
f_{(001122)}=x_{1}^{2} x_{2}^{2} x_{3} x_{4}+\frac{q\left(t x_{1}+x_{2}\right)\left(x_{5}+x_{6}\right) x_{1} x_{2} x_{3} x_{4}}{[4] q t}+\frac{q\left(x_{1}+q t^{3} x_{2}\right)\left(x_{5}+x_{6}\right) x_{1} x_{2} x_{3} x_{4}}{[4] q t]]_{q t}}+\frac{q^{2}(1+t) x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}{[4] q[3] q t}
$$

example for $X=001122$

$\frac{\left(q x_{1}+q^{2} t^{3} x_{2}\right) x_{1} x_{2} x_{3} x_{4} x_{6}}{[4]_{q t}[3]_{q t}} \quad \frac{\left(q x_{1}+q^{2} t^{3} x_{2}\right) x_{1} x_{2} x_{3} x_{4} x_{5}}{[4]_{q t}[3]_{q t}}$

$\frac{q^{2} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}{[4]_{q t}[3]_{q t}}$

$\frac{q^{2} t x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}{[4]_{q t}[3]_{q t}}$

$\frac{q t x_{1}^{2} x_{2} x_{3} x_{4} x_{5}}{[4]_{q t}}$
$f_{(001122)}=x_{1}^{2} x_{2}^{2} x_{3} x_{4}+\frac{q\left(t x_{1}+x_{2}\right)\left(x_{5}+x_{6}\right) x_{1} x_{2} x_{3} x_{4}}{[4] q t}+\frac{q\left(x_{1}+q t^{3} x_{2}\right)\left(x_{5}+x_{6}\right) x_{1} x_{2} x_{3} x_{4}}{[4] q t] q]}+\frac{q^{2}(1+t) x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}{[4] q[3] q t}$
In particular, when λ is a partition with parts of size at most 2, we obtain:
Theorem (Corteel-M.-Williams '18)

$$
E_{\lambda}=\sum_{(T, \sigma) \in \operatorname{CRT}\left(\lambda^{C}\right)} \mathrm{wt}_{q t x}(T, \sigma) .
$$

e.g. nonsymmetric Macdonald poly. $E_{(2,2,1,1,0,0)}$ equals $f_{(0,0,1,1,2,2)}$ above.

summary

For 2-ASEP, we defined cylindric rhombic tableaux (CRT) with q, t, x weights that give formula $f_{\mu}\left(x_{1}, \ldots, x_{n} ; q, t\right)$ such that:

- $\operatorname{Pr}(\mu)=f_{\mu}(1, \ldots, 1 ; 1, t)$ is the probability of the 2-ASEP on a ring
- $P_{\lambda}=\sum_{\mu} f\left(x_{1}, \ldots, x_{n} ; q, t\right)$ is the partition function over the CRT when λ has parts of size $0,1,2$
- when μ is a partition, $f_{\mu} c\left(x_{1}, \ldots, x_{n} ; q, t\right)=E_{\mu}$, the non-symmetric Macdonald polynomial (e.g. if $\mu=211100$, then $\mu^{C}=011122$).
- there is a bijection to multiline queues and a solution-in-progress for higher species.

Happy birthday Kolya!!!

