
Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Random Tilings with the GPU

David Keating
Joint work with A. Sridhar

University of California, Berkeley

June 8, 2018

1 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Outline

1 Why GPUs?

2 Domino Tilings

3 Algorithm

4 Other Models
Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

5 Results

2 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Why GPUs?

Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

Kernels contain the instructions that all the cores will execute.

Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching

3 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Why GPUs?

Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

Kernels contain the instructions that all the cores will execute.

Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching

3 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Why GPUs?

Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

Kernels contain the instructions that all the cores will execute.

Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching

3 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Why GPUs?

Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

Kernels contain the instructions that all the cores will execute.

Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching

3 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Why GPUs?

Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

Kernels contain the instructions that all the cores will execute.

Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching

3 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

Consider a simply connected domain D of the square lattice.

domino: the union of two square lattice faces that share an
edge.

A tiling T of D is set of non intersecting dominos whose
union is D. Call ΩD the set of all tilings of D.

Equivalently, a tiling can be viewed as a perfect matching or
dimer cover T ∗ of the dual graph or as a lattice routing.

4 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

Consider a simply connected domain D of the square lattice.

domino: the union of two square lattice faces that share an
edge.

A tiling T of D is set of non intersecting dominos whose
union is D. Call ΩD the set of all tilings of D.

Equivalently, a tiling can be viewed as a perfect matching or
dimer cover T ∗ of the dual graph or as a lattice routing.

4 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

Consider a simply connected domain D of the square lattice.

domino: the union of two square lattice faces that share an
edge.

A tiling T of D is set of non intersecting dominos whose
union is D. Call ΩD the set of all tilings of D.

Equivalently, a tiling can be viewed as a perfect matching or
dimer cover T ∗ of the dual graph or as a lattice routing.

4 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

Consider a simply connected domain D of the square lattice.

domino: the union of two square lattice faces that share an
edge.

A tiling T of D is set of non intersecting dominos whose
union is D. Call ΩD the set of all tilings of D.

Equivalently, a tiling can be viewed as a perfect matching or
dimer cover T ∗ of the dual graph or as a lattice routing.

4 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

To each tilings we can associate a height function hT on
vertices v ∈ D.

Partial order on ΩD: T < T ′ if hT (v) < hT ′(v) for all v ∈ D.

In particular, we denote the unique maximal and minimal
tilings by Tmax and Tmin, respectively.

0 −1 0 −1 0 3 4

1 2 1 2 1 2 1

4 3 0 −1 0 −1 0

1 2 1 −2 1 2 1

0 3 0 −1 0 −1 0

+1

−1

Maximal and minimal tilings of a square domain.

5 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

To each tilings we can associate a height function hT on
vertices v ∈ D.

Partial order on ΩD: T < T ′ if hT (v) < hT ′(v) for all v ∈ D.

In particular, we denote the unique maximal and minimal
tilings by Tmax and Tmin, respectively.

0 −1 0 −1 0 3 4

1 2 1 2 1 2 1

4 3 0 −1 0 −1 0

1 2 1 −2 1 2 1

0 3 0 −1 0 −1 0

+1

−1

Maximal and minimal tilings of a square domain.

5 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

To each tilings we can associate a height function hT on
vertices v ∈ D.

Partial order on ΩD: T < T ′ if hT (v) < hT ′(v) for all v ∈ D.

In particular, we denote the unique maximal and minimal
tilings by Tmax and Tmin, respectively.

0 −1 0 −1 0 3 4

1 2 1 2 1 2 1

4 3 0 −1 0 −1 0

1 2 1 −2 1 2 1

0 3 0 −1 0 −1 0

+1

−1

Maximal and minimal tilings of a square domain.

5 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

We can assign positive weights we to the dual edges. A tiling
T has weight W (T) =

∏
e∈T ∗ we .

Normalizing by Z =
∑
T ∈ΩD

W (T), defines a probability
distribution on the space of tilings.

P[T] = 1
ZW (T)

Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

Instead, can assign volume weights qv to each vertex. Tiling

T has weight W (T) =
∏

v∈D q
hT (v)
v .

We are trying to sample from these distributions.

6 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

We can assign positive weights we to the dual edges. A tiling
T has weight W (T) =

∏
e∈T ∗ we .

Normalizing by Z =
∑
T ∈ΩD

W (T), defines a probability
distribution on the space of tilings.

P[T] = 1
ZW (T)

Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

Instead, can assign volume weights qv to each vertex. Tiling

T has weight W (T) =
∏

v∈D q
hT (v)
v .

We are trying to sample from these distributions.

6 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

We can assign positive weights we to the dual edges. A tiling
T has weight W (T) =

∏
e∈T ∗ we .

Normalizing by Z =
∑
T ∈ΩD

W (T), defines a probability
distribution on the space of tilings.

P[T] = 1
ZW (T)

Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

Instead, can assign volume weights qv to each vertex. Tiling

T has weight W (T) =
∏

v∈D q
hT (v)
v .

We are trying to sample from these distributions.

6 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

We can assign positive weights we to the dual edges. A tiling
T has weight W (T) =

∏
e∈T ∗ we .

Normalizing by Z =
∑
T ∈ΩD

W (T), defines a probability
distribution on the space of tilings.

P[T] = 1
ZW (T)

Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

Instead, can assign volume weights qv to each vertex. Tiling

T has weight W (T) =
∏

v∈D q
hT (v)
v .

We are trying to sample from these distributions.

6 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

We can assign positive weights we to the dual edges. A tiling
T has weight W (T) =

∏
e∈T ∗ we .

Normalizing by Z =
∑
T ∈ΩD

W (T), defines a probability
distribution on the space of tilings.

P[T] = 1
ZW (T)

Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

Instead, can assign volume weights qv to each vertex. Tiling

T has weight W (T) =
∏

v∈D q
hT (v)
v .

We are trying to sample from these distributions.

6 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings

We can assign positive weights we to the dual edges. A tiling
T has weight W (T) =

∏
e∈T ∗ we .

Normalizing by Z =
∑
T ∈ΩD

W (T), defines a probability
distribution on the space of tilings.

P[T] = 1
ZW (T)

Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

Instead, can assign volume weights qv to each vertex. Tiling

T has weight W (T) =
∏

v∈D q
hT (v)
v .

We are trying to sample from these distributions.

6 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

←→

Let Rv : ΩD → ΩD be the function that enacts an elementary
rotation at v .

Theorem (Thurston)

Two tilings T and T ′ of a domain D are connected by a sequence
of elementary rotations.

7 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

←→

Let Rv : ΩD → ΩD be the function that enacts an elementary
rotation at v .

Theorem (Thurston)

Two tilings T and T ′ of a domain D are connected by a sequence
of elementary rotations.

7 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

←→

Let Rv : ΩD → ΩD be the function that enacts an elementary
rotation at v .

Theorem (Thurston)

Two tilings T and T ′ of a domain D are connected by a sequence
of elementary rotations.

7 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

←→

Let Rv : ΩD → ΩD be the function that enacts an elementary
rotation at v .

Theorem (Thurston)

Two tilings T and T ′ of a domain D are connected by a sequence
of elementary rotations.

7 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

If v and v ′ are not adjacent, then Rv ◦ Rv ′ = Rv ′ ◦ Rv .

Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Define a cluster rotation: RS =
∏

v∈S Rv .

Markov Chain: A random walk on ΩD with initial tiling T (0)

and random clusters {Si} has nth step

T (n) = R(n)(T), where R(n) = RSn ◦ ... ◦ RS1

Theorem

In the limit n→∞ the random tiling T (n) is uniformly distributed.

8 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

If v and v ′ are not adjacent, then Rv ◦ Rv ′ = Rv ′ ◦ Rv .

Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Define a cluster rotation: RS =
∏

v∈S Rv .

Markov Chain: A random walk on ΩD with initial tiling T (0)

and random clusters {Si} has nth step

T (n) = R(n)(T), where R(n) = RSn ◦ ... ◦ RS1

Theorem

In the limit n→∞ the random tiling T (n) is uniformly distributed.

8 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

If v and v ′ are not adjacent, then Rv ◦ Rv ′ = Rv ′ ◦ Rv .

Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Define a cluster rotation: RS =
∏

v∈S Rv .

Markov Chain: A random walk on ΩD with initial tiling T (0)

and random clusters {Si} has nth step

T (n) = R(n)(T), where R(n) = RSn ◦ ... ◦ RS1

Theorem

In the limit n→∞ the random tiling T (n) is uniformly distributed.

8 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

If v and v ′ are not adjacent, then Rv ◦ Rv ′ = Rv ′ ◦ Rv .

Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Define a cluster rotation: RS =
∏

v∈S Rv .

Markov Chain: A random walk on ΩD with initial tiling T (0)

and random clusters {Si} has nth step

T (n) = R(n)(T), where R(n) = RSn ◦ ... ◦ RS1

Theorem

In the limit n→∞ the random tiling T (n) is uniformly distributed.

8 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

Coupling from the Past:

An algorithm due to Propp and Wilson; ensures exact
sampling.

Define backward walk with initial tiling T (0) and random
clusters {Si} has nth step

T (−n) = R(−n)(T (0)), where R(−n) = RS1 ◦ ... ◦ RSn

Almost surely there exists n such that |R(−n)(ΩD)| = 1. We
say the Markov chain has collapsed.
The unique element in the range of R(−n) is distributed
uniformly.
We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(−n)(Tmax) = R(−n)(Tmin).

9 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

Coupling from the Past:

An algorithm due to Propp and Wilson; ensures exact
sampling.
Define backward walk with initial tiling T (0) and random
clusters {Si} has nth step

T (−n) = R(−n)(T (0)), where R(−n) = RS1 ◦ ... ◦ RSn

Almost surely there exists n such that |R(−n)(ΩD)| = 1. We
say the Markov chain has collapsed.
The unique element in the range of R(−n) is distributed
uniformly.
We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(−n)(Tmax) = R(−n)(Tmin).

9 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

Coupling from the Past:

An algorithm due to Propp and Wilson; ensures exact
sampling.
Define backward walk with initial tiling T (0) and random
clusters {Si} has nth step

T (−n) = R(−n)(T (0)), where R(−n) = RS1 ◦ ... ◦ RSn

Almost surely there exists n such that |R(−n)(ΩD)| = 1. We
say the Markov chain has collapsed.

The unique element in the range of R(−n) is distributed
uniformly.
We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(−n)(Tmax) = R(−n)(Tmin).

9 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

Coupling from the Past:

An algorithm due to Propp and Wilson; ensures exact
sampling.
Define backward walk with initial tiling T (0) and random
clusters {Si} has nth step

T (−n) = R(−n)(T (0)), where R(−n) = RS1 ◦ ... ◦ RSn

Almost surely there exists n such that |R(−n)(ΩD)| = 1. We
say the Markov chain has collapsed.
The unique element in the range of R(−n) is distributed
uniformly.

We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(−n)(Tmax) = R(−n)(Tmin).

9 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Domino Tilings on the GPU

Coupling from the Past:

An algorithm due to Propp and Wilson; ensures exact
sampling.
Define backward walk with initial tiling T (0) and random
clusters {Si} has nth step

T (−n) = R(−n)(T (0)), where R(−n) = RS1 ◦ ... ◦ RSn

Almost surely there exists n such that |R(−n)(ΩD)| = 1. We
say the Markov chain has collapsed.
The unique element in the range of R(−n) is distributed
uniformly.
We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(−n)(Tmax) = R(−n)(Tmin).

9 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

At each vertex assign assign a state sv = e0 + 2e1 + 4e2 + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ei is 1 if a domino crosses edge i , 0 otherwise.

v is rotatable if sv = 12 or sv = 3.

Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

An algorithm of Thurston efficiently constructs Tmax and Tmin

for a given domain.

10 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

At each vertex assign assign a state sv = e0 + 2e1 + 4e2 + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ei is 1 if a domino crosses edge i , 0 otherwise.

v is rotatable if sv = 12 or sv = 3.

Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

An algorithm of Thurston efficiently constructs Tmax and Tmin

for a given domain.

10 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

At each vertex assign assign a state sv = e0 + 2e1 + 4e2 + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ei is 1 if a domino crosses edge i , 0 otherwise.

v is rotatable if sv = 12 or sv = 3.

Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

An algorithm of Thurston efficiently constructs Tmax and Tmin

for a given domain.

10 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

At each vertex assign assign a state sv = e0 + 2e1 + 4e2 + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ei is 1 if a domino crosses edge i , 0 otherwise.

v is rotatable if sv = 12 or sv = 3.

Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

An algorithm of Thurston efficiently constructs Tmax and Tmin

for a given domain.

10 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

Data parallelism:

Kernels Rotate and Update implement RS .

First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

A random walk is constructed by repeatedly applying Rotate
and Update a set number of times.

11 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

Data parallelism:

Kernels Rotate and Update implement RS .

First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

A random walk is constructed by repeatedly applying Rotate
and Update a set number of times.

11 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

Data parallelism:

Kernels Rotate and Update implement RS .

First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

A random walk is constructed by repeatedly applying Rotate
and Update a set number of times.

11 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

Data parallelism:

Kernels Rotate and Update implement RS .

First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

A random walk is constructed by repeatedly applying Rotate
and Update a set number of times.

11 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Implementation

DominoTilerCFTP:

Compute the extremal tilings Tmax and Tmin.

Initialize a list seeds with a random real number.

Repeat:

Initialize Ttop = Tmax

Initialize Tbottom = Tmin

For i = 1 to length of seeds:
Set Ttop = RandomWalk(Ttop, seedsi , 2i)
Set Tbottom = RandomWalk(Tbottom, seedsi , 2i)

If Ttop = Tbottom, return Tbottom.
Else, push a new random number to the beginning of seeds.

12 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

Lozenge Tilings

Triangular lattice equivalent of domino tilings.
Can be viewed as perfect matchings of the hexagonal lattice.
Can also be associated to a height function hT on vertices.
Can be viewed as stacks of cubes.
Elementary rotations:

↔

Admissible clusters chosen by tri-coloring vertices.

13 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

Six Vertex Model

Assign “occupied” or “unoccupied” to the edges of a domain
D of the square lattice, such that the possible local
configurations are:

a1 b1 c1

a2 b2 c2

Each type of local configuration is assigned a weight.

Configurations are in bijection with height functions.

+1

+1

−1

−1 0 1 0 -1 0 1 0

1 2 1 0 1 0 -1

0 1 2 1 0 -1 0

1 2 1 0 -1 0 1

0 1 0 1 0 -1 0

14 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

Six Vertex Model

Gibbs measure given by:

Prob(S) =
1

Z
W (S), Z =

∑
S

W (S)

Elementary moves are flips across faces:

↔

For fixed boundary conditions, the space of configurations is
connected under elementary flips.

Admissible cluster can be chosen by tricoloring faces.

15 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

Bibone Tilings

Hexagonal lattice equivalent of Domino tilings.
Can be viewed as perfect matchings of the triangle lattice
(non-bipartite).
Do not admit height functions.
Set of tilings connected under three types of elementary
rotations:

↔

↔

↔

For each type of local move one can find admissible clusters.
16 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

Rectangle-triangle Tilings

Tilings of domains of the triangle lattice by isosceles triangles
and rectangles with side lengths 1 and

√
3.

Can be visualized as stacks of half-cubes (gives a partial
ordering).

Connected by single elementary move (adding/removing a half
cube).

↔

17 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Lozenge Tilings
Six Vertex
Bibone Tilings
Rectangle-triangle Tilings

Rectangle-triangle Tilings

Can assign local weights t, c , and r , to faces of the triangular
lattice in the following way:

t c r

The weight of a tiling is given by the product of the weights
of all the faces.

Admissible clusters chosen as in the Lozenge case.

18 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Results

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ●
● ● ●

●

■■● ● ● ● ● ● ● ● ●
●

● ● ●

●

●

●

●
●

●
● GPU

■ CPU

100 200 300 400 500
N

1000

2000

3000

4000

5000
T

● ● ● ● ●
●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

● GPU

■ CPU

50 100 150 200

200

400

600

800

1000

Figure: (A) The time T in seconds to generate, with
coupling-from-the-past, a random configuration of the six-vertex model
on an N × N sized domain with domain wall boundary conditions and
weights (a, b, c) = (1, 1, 1). (B) The time to generate a random domino
tiling of an N × N square.

19 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

20 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

21 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

-5 -4 -3 -2 -1 0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure: Johannson showed that the fluctuations of the top-most path
converges to the Airy process. In particular, the y -intercept of the path
as shown above, after appropriate rescaling, converges to the
Tracy-Widom distribution F2. Right shows a normalized histogram of the
y -intercept computed from 100 random tilings of an Aztec diamond of
size 300, with the distribution F2 superimposed.

22 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: A tiling of a rectangular Aztec diamond, with the Arctic curve
superimposed in red.

23 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: A random tiling of the Aztec diamond with volume weights
q = 20 for all black vertices and q = 1/20 for all white vertices.

24 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: A random tiling of a weird region by lozenges.

25 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: A tiling of a partial hexagon (A) by rectangles and triangles, and
(B) by lozenges.

26 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: Choosing weights t = .5, r = 1, c = 1 produces tilings that look
like snowflakes.

27 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: A tiling of a trapezoid by bibones.

28 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: The six-vertex model with weights a = 1, b = 1, c =
√

8,
(∆ = −3), and domain wall boundary conditions. (A) shows a random
configuration and (B) shows only the gaseous region.

29 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: (A) shows the average density of c-vertices and (B) shows the
average density of horizontal edges computed, with 1000 random
configurations. The arctic curve is superimposed in red.

30 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

Figure: The average density of
horizontal edges in with weight
∆ = 0 in an L-shaped region
with domain wall type boundary
conditions, computed with 1000
samples.

Figure: The average density of
horizontal edges with weights
a = 2b, ∆ = −3, computed
with 1000 samples.

31 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

(A) (B)

Figure: The six-vertex model with weights
(a1, a2, b1, b2, c1, c2) = (1, 1, .3, .7, .3, .7) on a cylinder. (A) shows a
random configuration on the cylinder. (B) shows the average density of
paths, taken over 100 sample.

32 / 33

Why GPUs?
Domino Tilings

Algorithm
Other Models

Results

End!

https://github.com/GPUTilings

33 / 33

	Why GPUs?
	Domino Tilings
	Algorithm
	Other Models
	Lozenge Tilings
	Six Vertex
	Bibone Tilings
	Rectangle-triangle Tilings

	Results

