Random Tilings with the GPU

David Keating
Joint work with A. Sridhar

University of California, Berkeley

June 8, 2018

Outline

© Why GPUs?
© Domino Tilings

© Algorithm

@ Other Models
@ Lozenge Tilings
o Six Vertex
@ Bibone Tilings
@ Rectangle-triangle Tilings

© Results

N

33

Why GPUs?

Why GPUs?

e Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

Why GPUs?

Why GPUs?

e Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

@ Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

Why GPUs?

Why GPUs?

e Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

@ Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

@ Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

Why GPUs?

Why GPUs?

e Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

@ Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

@ Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

@ Kernels contain the instructions that all the cores will execute.

Why GPUs?

Why GPUs?

e Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

@ Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

@ Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

@ Kernels contain the instructions that all the cores will execute.

@ Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching

Domino Tilings

Domino Tilings

@ Consider a simply connected domain D of the square lattice.

Domino Tilings

Domino Tilings

@ Consider a simply connected domain D of the square lattice.

@ domino: the union of two square lattice faces that share an
edge.

Domino Tilings

Domino Tilings

@ Consider a simply connected domain D of the square lattice.
@ domino: the union of two square lattice faces that share an
edge.

o A tiling T of D is set of non intersecting dominos whose
union is D. Call Qp the set of all tilings of D.

Domino Tilings

Domino Tilings

Consider a simply connected domain D of the square lattice.

domino: the union of two square lattice faces that share an
edge.

A tiling T of D is set of non intersecting dominos whose
union is D. Call Qp the set of all tilings of D.

Equivalently, a tiling can be viewed as a perfect matching or
dimer cover T* of the dual graph or as a lattice routing.

—_—

o—s
- N
o—

NZ

B
[

=

i1
T

A

I
Tl
[

}i

Domino Tilings

Domino Tilings

@ To each tilings we can associate a height function hy on
vertices v € D.

Domino Tilings

Domino Tilings

@ To each tilings we can associate a height function hy on
vertices v € D.
e Partial order on Qp: T < T if hr(v) < hy(v) for all v € D.

Domino Tilings

Domino Tilings

@ To each tilings we can associate a height function hy on
vertices v € D.

e Partial order on Qp: T < T if hr(v) < hy(v) for all v € D.

@ In particular, we denote the unique maximal and minimal
tilings by Tmax and Tmin, respectively.

HIH] HELH
I

Maximal and minimal tilings of a square domain.

Domino Tilings

Domino Tilings

@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

6/33

Domino Tilings

Domino Tilings

@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

o Normalizing by Z = > .o W(T), defines a probability
distribution on the space of tilings.

6/33

Domino Tilings

Domino Tilings

@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

o Normalizing by Z = > .o W(T), defines a probability
distribution on the space of tilings.

o P[T]=ZW(T)

6/33

Domino Tilings

Domino Tilings

@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

o Normalizing by Z = > .o W(T), defines a probability
distribution on the space of tilings.

o P[T] = ZW(T)

@ Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

6/33

Domino Tilings

Domino Tilings

@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

o Normalizing by Z = > .o W(T), defines a probability
distribution on the space of tilings.

o P[T] = ZW(T)

@ Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

@ Instead, can assign volume weights g, to each vertex. Tiling
T has weight W(T) =1],cp g,

6/33

Domino Tilings

Domino Tilings

@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

o Normalizing by Z = > .o W(T), defines a probability
distribution on the space of tilings.

° PIT]=3W(T)
@ Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

@ Instead, can assign volume weights g, to each vertex. Tiling
T has weight W(T) =1],cp g,

We are trying to sample from these distributions.

6/33

Algorithm

Domino Tilings on the GPU

o A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

Algorithm

Domino Tilings on the GPU

o A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

Al o~ Iml

Algorithm

Domino Tilings on the GPU

o A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

Al o~ Iml

o Let R, : Qp — Qp be the function that enacts an elementary
rotation at v.

33

Algorithm

Domino Tilings on the GPU

o A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

Al o~ Iml

o Let R, : Qp — Qp be the function that enacts an elementary
rotation at v.

Theorem (Thurston)

Two tilings T and T’ of a domain D are connected by a sequence
of elementary rotations.

Algorithm

Domino Tilings on the GPU

e If v and v/ are not adjacent, then R, o R, = R, o R, .

Algorithm

Domino Tilings on the GPU

e If v and v/ are not adjacent, then R, o R, = R, o R, .

o Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Algorithm

Domino Tilings on the GPU

e If v and v/ are not adjacent, then R, o R, = R, o R, .

o Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

o Define a cluster rotation: Rs =[] cs Rv.

Algorithm

Domino Tilings on the GPU

If v and v/ are not adjacent, then R, o R, = R, o R,.

Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Define a cluster rotation: Rs = [],cs Ry.

@ Markov Chain: A random walk on Qp with initial tiling 7
and random clusters {S;} has n'" step

7 = RD(T), where R = Rs, o...0 R,

In the limit n — oo the random tiling T" is uniformly distributed.

Algorithm

Domino Tilings on the GPU

Coupling from the Past:
@ An algorithm due to Propp and Wilson; ensures exact
sampling.

Algorithm

Domino Tilings on the GPU

Coupling from the Past:
@ An algorithm due to Propp and Wilson; ensures exact
sampling.
o Define backward walk with initial tiling 7(®) and random
clusters {S;} has nt’ step

T(=n) — R(_")(T(O)), where R(-") — Rs, o...oRs,

Algorithm

Domino Tilings on the GPU

Coupling from the Past:
@ An algorithm due to Propp and Wilson; ensures exact
sampling.
o Define backward walk with initial tiling 7(®) and random
clusters {S;} has nt’ step

T(=n) — R(_")(T(O)), where R(-") — Rs, o...oRs,

o Almost surely there exists n such that |R(=")(Qp)| = 1. We
say the Markov chain has collapsed.

Algorithm

Domino Tilings on the GPU

Coupling from the Past:
@ An algorithm due to Propp and Wilson; ensures exact
sampling.
o Define backward walk with initial tiling 7(®) and random
clusters {S;} has nt’ step

T(=n) — R(_")(T(O)), where R(-") — Rs, o...oRs,

o Almost surely there exists n such that |R(=")(Qp)| = 1. We
say the Markov chain has collapsed.

o The unique element in the range of R(=" is distributed
uniformly.

Algorithm

Domino Tilings on the GPU

Coupling from the Past:
@ An algorithm due to Propp and Wilson; ensures exact
sampling.
o Define backward walk with initial tiling 7(®) and random
clusters {S;} has nt’ step

T(=n) — R(_")(T(O)), where R(-") — Rs, o...oRs,

o Almost surely there exists n such that |R(=")(Qp)| = 1. We
say the Markov chain has collapsed.

o The unique element in the range of R(=" is distributed
uniformly.

@ We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(_n)(Tmax) — R(_n)(Tmin)-

Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

@ v is rotatable if s, =12 or 5, = 3.

Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

@ v is rotatable if s, =12 or 5, = 3.

@ Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

@ v is rotatable if s, =12 or 5, = 3.

@ Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

@ An algorithm of Thurston efficiently constructs Tmax and Tmin
for a given domain.

Algorithm

Implementation

Data parallelism:

@ Kernels Rotate and Update implement Rs.

11/33

Algorithm

Implementation

Data parallelism:

@ Kernels Rotate and Update implement Rs.

o First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black

vertices (Update).

11/33

Algorithm

Implementation

Data parallelism:

@ Kernels Rotate and Update implement Rs.

o First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

@ Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

11/33

Algorithm

Implementation

Data parallelism:

@ Kernels Rotate and Update implement Rs.

o First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

@ Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

@ A random walk is constructed by repeatedly applying Rotate
and Update a set number of times.

11/33

Algorithm

Implementation

DominoTilerCFTP:

Compute the extremal tilings Tmax and Tmin.
Initialize a list seeds with a random real number.
Repeat:

Initialize Tiop = Tmax
Initialize Tpottom = Tmin
For i = 1 to length of seeds:
Set Tiop = RandomWalk(Top, seeds;, 2%)
Set Thottom = RandomWalk(Tpottom, Seeds;, 2')
If 77.‘op = Tbottom, return Tpottom.
Else, push a new random number to the beginning of seeds.

12/33

Lozenge Tilings
Six Ve

Other Models gle Tilings

Lozenge Tilings

Triangular lattice equivalent of domino tilings.

Can be viewed as perfect matchings of the hexagonal lattice.
Can also be associated to a height function hy on vertices.
Can be viewed as stacks of cubes.

Elementary rotations:
NI

Admissible clusters chosen by tri-coloring vertices.

13/33

Lozenge Tilings
Six Vertex

Bi Tilir

Re

Other Models

Six Vertex Model

@ Assign “occupied” or “unoccupied”’ to the edges of a domain
D of the square lattice, such that the possible local
configurations are:

=g

di by (5]

T 1L
@ Each type of local configuration is assigned a weight.
e Configurations are in bijection with height functions.

— Of1|Of1/0|-1§0
aH -1

1§2/1|0|-1jO0f41

o O

1§2/1/0f81/0]|-1

+1 -1 Ofj1/0|-1j01 |0

14 /33

Lozenge Tilings
Six Vertex
Other Models E: I

Six Vertex Model

@ Gibbs measure given by:

Prob(S) = %W(S), Z=Y w(s)
S

@ Elementary moves are flips across faces:

<~

@ For fixed boundary conditions, the space of configurations is
connected under elementary flips.

@ Admissible cluster can be chosen by tricoloring faces.

15/33

Other Models

Bibone Tilings

Hexagonal lattice equivalent of Domino tilings.

@ Can be viewed as perfect matchings of the triangle lattice
(non-bipartite).

Do not admit height functions.

Set of tilings connected under three types of elementary
rotations:

@ For each type of local move one can find admissible clusters. s
0 / 33

Bibone Tilings

Other Models Rectangle-triangle Tilings

Rectangle-triangle Tilings

@ Tilings of domains of the triangle lattice by isosceles triangles
and rectangles with side lengths 1 and /3.

@ Can be visualized as stacks of half-cubes (gives a partial
ordering).

e Connected by single elementary move (adding/removing a half

0 @ e

17/33

Tilings

B
Other Models Rectangle-triangle Tilings

Rectangle-triangle Tilings

@ Can assign local weights t, ¢, and r, to faces of the triangular
lattice in the following way:

s € Mk

r

@ The weight of a tiling is given by the product of the weights
of all the faces.

@ Admissible clusters chosen as in the Lozenge case.

18/33

Results

.
5000 1000f === GPU
—— GPU -
—— CPU
—— CPU
4000 800
3000 600
2000 400
1000 200
N
100 200 300 400 500 50 100 150 200

Figure: (A) The time T in seconds to generate, with
coupling-from-the-past, a random configuration of the six-vertex model
on an N x N sized domain with domain wall boundary conditions and
weights (a, b, c) = (1,1,1). (B) The time to generate a random domino
tiling of an N x N square.

19/33

=
=

T

1T

20/33

I
I
I

I=I==11=1]

=
=1
=

HITHHE

i
HTHH
T

)
=
o
4]
o

TS

=

It
it
it

{l
L

i

Results

21/33

Results

¢

e
Nl

Figure: Johannson showed that the fluctuations of the top-most path
converges to the Airy process. In particular, the y-intercept of the path
as shown above, after appropriate rescaling, converges to the
Tracy-Widom distribution F,. Right shows a normalized histogram of the
y-intercept computed from 100 random tilings of an Aztec diamond of
size 300, with the distribution F, superimposed.

Results

Figure: A tiling of a rectangular Aztec diamond, with the Arctic curve
superimposed in red.

23/33

Results

Figure: A random tiling of the Aztec diamond with volume weights
g = 20 for all black vertices and g = 1/20 for all white vertices.

24 /33

Results

v
L

NN

2

NN

Figure: A random tiling of a weird region by lozenges.

25

33

Results

Figure: A tiling of a partial hexagon (A) by rectangles and triangles, and
(B) by lozenges.

26 /33

)
=
o
4]
o

Figure: Choosing weights t = .5,r = 1, c = 1 produces tilings that look

like snowflakes.

27 /33

Results

%
{r.':‘}"‘:' N

(SN0 LTI 8 7 £

b {gpr iy wgy g

25854

b T sedirdt
250,
0008)

Figure: A tiling of a trapezoid by bibones.

28 /33

Results

Figure: The six-vertex model with weights a=1,b=1,c = /8,
(A = —3), and domain wall boundary conditions. (A) shows a random
configuration and (B) shows only the gaseous region.

29/33

Results

Figure: (A) shows the average density of c-vertices and (B) shows the
average density of horizontal edges computed, with 1000 random
configurations. The arctic curve is superimposed in red.

30/33

Results

Figure: The average density of
horizontal edges in with weight
A =0 in an L-shaped region
with domain wall type boundary
conditions, computed with 1000
samples.

Figure: The average density of
horizontal edges with weights
a=2b, A =-3, computed
with 1000 samples.

31/33

Results

(A) (®)

Figure: The six-vertex model with weights

(a1, a2, b1, b2, a1,) = (1,1,.3,.7,.3,.7) on a cylinder. (A) shows a
random configuration on the cylinder. (B) shows the average density of
paths, taken over 100 sample.

32/33

Results

https://github.com/GPUTilings

33/33

	Why GPUs?
	Domino Tilings
	Algorithm
	Other Models
	Lozenge Tilings
	Six Vertex
	Bibone Tilings
	Rectangle-triangle Tilings

	Results

