Random Tilings with the GPU

David Keating
Joint work with A. Sridhar
University of California, Berkeley

June 8, 2018

Outline

(1) Why GPUs?
(2) Domino Tilings
(3) Algorithm
(4) Other Models

- Lozenge Tilings
- Six Vertex
- Bibone Tilings
- Rectangle-triangle Tilings
(5) Results

Why GPUs?

- Common-place in most modern personal computers (as well as XBoxes, Playstations, etc.).

Why GPUs?

- Common-place in most modern personal computers (as well as XBoxes, Playstations, etc.).
- Vector/Data parallelism: to each element of an array of data execute the same instructions in parallel (computer graphics e.g lighting or rendering a surface)

Why GPUs?

- Common-place in most modern personal computers (as well as XBoxes, Playstations, etc.).
- Vector/Data parallelism: to each element of an array of data execute the same instructions in parallel (computer graphics e.g lighting or rendering a surface)
- Design: Several multi-core processors with their own shared memory, each with several cores. A shared global memory. (ex: 10 processors, each with 64 cores, for a total of 640 cores)

Why GPUs?

- Common-place in most modern personal computers (as well as XBoxes, Playstations, etc.).
- Vector/Data parallelism: to each element of an array of data execute the same instructions in parallel (computer graphics e.g lighting or rendering a surface)
- Design: Several multi-core processors with their own shared memory, each with several cores. A shared global memory. (ex: 10 processors, each with 64 cores, for a total of 640 cores)
- Kernels contain the instructions that all the cores will execute.

Why GPUs?

- Common-place in most modern personal computers (as well as XBoxes, Playstations, etc.).
- Vector/Data parallelism: to each element of an array of data execute the same instructions in parallel (computer graphics e.g lighting or rendering a surface)
- Design: Several multi-core processors with their own shared memory, each with several cores. A shared global memory. (ex: 10 processors, each with 64 cores, for a total of 640 cores)
- Kernels contain the instructions that all the cores will execute.
- Drawbacks: limited memory, limited ability to communicate between cores, SIMD architecture bad at handling branching

Domino Tilings

- Consider a simply connected domain \mathcal{D} of the square lattice.

Domino Tilings

- Consider a simply connected domain \mathcal{D} of the square lattice.
- domino: the union of two square lattice faces that share an edge.

Domino Tilings

- Consider a simply connected domain \mathcal{D} of the square lattice.
- domino: the union of two square lattice faces that share an edge.
- A tiling \mathcal{T} of \mathcal{D} is set of non intersecting dominos whose union is \mathcal{D}. Call $\Omega_{\mathcal{D}}$ the set of all tilings of \mathcal{D}.

Domino Tilings

- Consider a simply connected domain \mathcal{D} of the square lattice.
- domino: the union of two square lattice faces that share an edge.
- A tiling \mathcal{T} of \mathcal{D} is set of non intersecting dominos whose union is \mathcal{D}. Call $\Omega_{\mathcal{D}}$ the set of all tilings of \mathcal{D}.
- Equivalently, a tiling can be viewed as a perfect matching or dimer cover \mathcal{T}^{*} of the dual graph or as a lattice routing.

Domino Tilings

- To each tilings we can associate a height function $h_{\mathcal{T}}$ on vertices $v \in \mathcal{D}$.

Domino Tilings

- To each tilings we can associate a height function $h_{\mathcal{T}}$ on vertices $v \in \mathcal{D}$.
- Partial order on $\Omega_{\mathcal{D}}: \mathcal{T}<\mathcal{T}^{\prime}$ if $h_{\mathcal{T}}(v)<h_{\mathcal{T}^{\prime}}(v)$ for all $v \in \mathcal{D}$.

Domino Tilings

- To each tilings we can associate a height function $h_{\mathcal{T}}$ on vertices $v \in \mathcal{D}$.
- Partial order on $\Omega_{\mathcal{D}}: \mathcal{T}<\mathcal{T}^{\prime}$ if $h_{\mathcal{T}}(v)<h_{\mathcal{T}^{\prime}}(v)$ for all $v \in \mathcal{D}$.
- In particular, we denote the unique maximal and minimal tilings by $\mathcal{T}_{\text {max }}$ and $\mathcal{T}_{\text {min }}$, respectively.

Maximal and minimal tilings of a square domain.

Domino Tilings

- We can assign positive weights w_{e} to the dual edges. A tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{e \in \mathcal{T}^{*}} w_{e}$.

Domino Tilings

- We can assign positive weights w_{e} to the dual edges. A tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{e \in \mathcal{T}^{*}} w_{e}$.
- Normalizing by $Z=\sum_{\mathcal{T} \in \Omega_{\mathcal{D}}} W(\mathcal{T})$, defines a probability distribution on the space of tilings.

Domino Tilings

- We can assign positive weights w_{e} to the dual edges. A tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{e \in \mathcal{T}^{*}} W_{e}$.
- Normalizing by $Z=\sum_{\mathcal{T} \in \Omega_{\mathcal{D}}} W(\mathcal{T})$, defines a probability distribution on the space of tilings.
- $P[\mathcal{T}]=\frac{1}{Z} W(\mathcal{T})$

Domino Tilings

- We can assign positive weights w_{e} to the dual edges. A tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{e \in \mathcal{T}^{*}} w_{e}$.
- Normalizing by $Z=\sum_{\mathcal{T} \in \Omega_{\mathcal{D}}} W(\mathcal{T})$, defines a probability distribution on the space of tilings.
- $P[\mathcal{T}]=\frac{1}{Z} W(\mathcal{T})$
- Setting all weights to 1 gives the uniform distribution. Z counts the number of tilings.

Domino Tilings

- We can assign positive weights w_{e} to the dual edges. A tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{e \in \mathcal{T}^{*}} w_{e}$.
- Normalizing by $Z=\sum_{\mathcal{T} \in \Omega_{\mathcal{D}}} W(\mathcal{T})$, defines a probability distribution on the space of tilings.
- $P[\mathcal{T}]=\frac{1}{Z} W(\mathcal{T})$
- Setting all weights to 1 gives the uniform distribution. Z counts the number of tilings.
- Instead, can assign volume weights q_{v} to each vertex. Tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{v \in \mathcal{D}} q_{v}^{h_{\mathcal{T}}(v)}$.

Domino Tilings

- We can assign positive weights w_{e} to the dual edges. A tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{e \in \mathcal{T}^{*}} w_{e}$.
- Normalizing by $Z=\sum_{\mathcal{T} \in \Omega_{\mathcal{D}}} W(\mathcal{T})$, defines a probability distribution on the space of tilings.
- $P[\mathcal{T}]=\frac{1}{Z} W(\mathcal{T})$
- Setting all weights to 1 gives the uniform distribution. Z counts the number of tilings.
- Instead, can assign volume weights q_{v} to each vertex. Tiling \mathcal{T} has weight $W(\mathcal{T})=\prod_{v \in \mathcal{D}} q_{v}^{h_{\mathcal{T}}(v)}$.
We are trying to sample from these distributions.

Domino Tilings on the GPU

- A tiling is rotatable at a vertex v if the faces adjacent to v are covered by two parallel dominos. An elementary rotation at v rotates the dominos in place.

Domino Tilings on the GPU

- A tiling is rotatable at a vertex v if the faces adjacent to v are covered by two parallel dominos. An elementary rotation at v rotates the dominos in place.

Domino Tilings on the GPU

- A tiling is rotatable at a vertex v if the faces adjacent to v are covered by two parallel dominos. An elementary rotation at v rotates the dominos in place.

- Let $R_{v}: \Omega_{\mathcal{D}} \rightarrow \Omega_{\mathcal{D}}$ be the function that enacts an elementary rotation at v.

Domino Tilings on the GPU

- A tiling is rotatable at a vertex v if the faces adjacent to v are covered by two parallel dominos. An elementary rotation at v rotates the dominos in place.

- Let $R_{v}: \Omega_{\mathcal{D}} \rightarrow \Omega_{\mathcal{D}}$ be the function that enacts an elementary rotation at v.

Theorem (Thurston)

Two tilings \mathcal{T} and \mathcal{T}^{\prime} of a domain \mathcal{D} are connected by a sequence of elementary rotations.

Domino Tilings on the GPU

- If v and v^{\prime} are not adjacent, then $R_{v} \circ R_{v^{\prime}}=R_{v^{\prime}} \circ R_{v}$.

Domino Tilings on the GPU

- If v and v^{\prime} are not adjacent, then $R_{v} \circ R_{v^{\prime}}=R_{v^{\prime}} \circ R_{v}$.
- Call S an admissible cluster of vertices if no two vertices in S are adjacent.

Domino Tilings on the GPU

- If v and v^{\prime} are not adjacent, then $R_{v} \circ R_{v^{\prime}}=R_{v^{\prime}} \circ R_{v}$.
- Call S an admissible cluster of vertices if no two vertices in S are adjacent.
- Define a cluster rotation: $R_{S}=\prod_{v \in S} R_{v}$.

Domino Tilings on the GPU

- If v and v^{\prime} are not adjacent, then $R_{v} \circ R_{v^{\prime}}=R_{v^{\prime}} \circ R_{v}$.
- Call S an admissible cluster of vertices if no two vertices in S are adjacent.
- Define a cluster rotation: $R_{S}=\prod_{v \in S} R_{v}$.
- Markov Chain: A random walk on $\Omega_{\mathcal{D}}$ with initial tiling $\mathcal{T}^{(0)}$ and random clusters $\left\{S_{i}\right\}$ has $n^{\text {th }}$ step

$$
\mathcal{T}^{(n)}=R^{(n)}(\mathcal{T}), \text { where } R^{(n)}=R_{S_{n}} \circ \ldots \circ R_{S_{1}}
$$

Theorem

In the limit $n \rightarrow \infty$ the random tiling $\mathcal{T}^{(n)}$ is uniformly distributed.

Domino Tilings on the GPU

Coupling from the Past:

- An algorithm due to Propp and Wilson; ensures exact sampling.

Domino Tilings on the GPU

Coupling from the Past:

- An algorithm due to Propp and Wilson; ensures exact sampling.
- Define backward walk with initial tiling $\mathcal{T}^{(0)}$ and random clusters $\left\{S_{i}\right\}$ has $n^{\text {th }}$ step

$$
\mathcal{T}^{(-n)}=R^{(-n)}\left(\mathcal{T}^{(0)}\right) \text {, where } R^{(-n)}=R_{S_{1}} \circ \ldots \circ R_{S_{n}}
$$

Domino Tilings on the GPU

Coupling from the Past:

- An algorithm due to Propp and Wilson; ensures exact sampling.
- Define backward walk with initial tiling $\mathcal{T}^{(0)}$ and random clusters $\left\{S_{i}\right\}$ has $n^{\text {th }}$ step

$$
\mathcal{T}^{(-n)}=R^{(-n)}\left(\mathcal{T}^{(0)}\right) \text {, where } R^{(-n)}=R_{S_{1}} \circ \ldots \circ R_{S_{n}}
$$

- Almost surely there exists n such that $\left|R^{(-n)}\left(\Omega_{\mathcal{D}}\right)\right|=1$. We say the Markov chain has collapsed.

Domino Tilings on the GPU

Coupling from the Past:

- An algorithm due to Propp and Wilson; ensures exact sampling.
- Define backward walk with initial tiling $\mathcal{T}^{(0)}$ and random clusters $\left\{S_{i}\right\}$ has $n^{\text {th }}$ step

$$
\mathcal{T}^{(-n)}=R^{(-n)}\left(\mathcal{T}^{(0)}\right) \text {, where } R^{(-n)}=R_{S_{1}} \circ \ldots \circ R_{S_{n}}
$$

- Almost surely there exists n such that $\left|R^{(-n)}\left(\Omega_{\mathcal{D}}\right)\right|=1$. We say the Markov chain has collapsed.
- The unique element in the range of $R^{(-n)}$ is distributed uniformly.

Domino Tilings on the GPU

Coupling from the Past:

- An algorithm due to Propp and Wilson; ensures exact sampling.
- Define backward walk with initial tiling $\mathcal{T}^{(0)}$ and random clusters $\left\{S_{i}\right\}$ has $n^{\text {th }}$ step

$$
\mathcal{T}^{(-n)}=R^{(-n)}\left(\mathcal{T}^{(0)}\right) \text {, where } R^{(-n)}=R_{S_{1}} \circ \ldots \circ R_{S_{n}}
$$

- Almost surely there exists n such that $\left|R^{(-n)}\left(\Omega_{\mathcal{D}}\right)\right|=1$. We say the Markov chain has collapsed.
- The unique element in the range of $R^{(-n)}$ is distributed uniformly.
- We can construct R so that it preserves the partial ordering. The Markov chain has collapsed iff

$$
R^{(-n)}\left(\mathcal{T}_{\max }\right)=R^{(-n)}\left(\mathcal{T}_{\min }\right)
$$

Implementation

- At each vertex assign assign a state $s_{v}=e_{0}+2 e_{1}+4 e_{2}+8 e_{3}$, where we enumerate the edges adjacent to v in order $\mathrm{N}, \mathrm{S}, \mathrm{E}$, W and e_{i} is 1 if a domino crosses edge $i, 0$ otherwise.

Implementation

- At each vertex assign assign a state $s_{v}=e_{0}+2 e_{1}+4 e_{2}+8 e_{3}$, where we enumerate the edges adjacent to v in order $\mathrm{N}, \mathrm{S}, \mathrm{E}$, W and e_{i} is 1 if a domino crosses edge $i, 0$ otherwise.
- v is rotatable if $s_{v}=12$ or $s_{v}=3$.

Implementation

- At each vertex assign assign a state $s_{v}=e_{0}+2 e_{1}+4 e_{2}+8 e_{3}$, where we enumerate the edges adjacent to v in order $\mathrm{N}, \mathrm{S}, \mathrm{E}$, W and e_{i} is 1 if a domino crosses edge $i, 0$ otherwise.
- v is rotatable if $s_{v}=12$ or $s_{v}=3$.
- Admissible clusters S are chosen by: first checkerboard coloring the vertices, choose a color at random, then choose a random subset of the given color.

Implementation

- At each vertex assign assign a state $s_{v}=e_{0}+2 e_{1}+4 e_{2}+8 e_{3}$, where we enumerate the edges adjacent to v in order $\mathrm{N}, \mathrm{S}, \mathrm{E}$, W and e_{i} is 1 if a domino crosses edge $i, 0$ otherwise.
- v is rotatable if $s_{v}=12$ or $s_{v}=3$.
- Admissible clusters S are chosen by: first checkerboard coloring the vertices, choose a color at random, then choose a random subset of the given color.
- An algorithm of Thurston efficiently constructs $\mathcal{T}_{\text {max }}$ and $\mathcal{T}_{\text {min }}$ for a given domain.

Implementation

Data parallelism:

- Kernels Rotate and Update implement R_{S}.

Implementation

Data parallelism:

- Kernels Rotate and Update implement R_{S}.
- First the GPU independently attempts rotations at all, say, white vertices (Rotate). Then it updates the state at all black vertices (Update).

Implementation

Data parallelism:

- Kernels Rotate and Update implement R_{S}.
- First the GPU independently attempts rotations at all, say, white vertices (Rotate). Then it updates the state at all black vertices (Update).
- Substantial parallelism: Each vertex of the tiling can be assigned to a work unit of the GPU; there is minimal communication necessary between work units.

Implementation

Data parallelism:

- Kernels Rotate and Update implement R_{S}.
- First the GPU independently attempts rotations at all, say, white vertices (Rotate). Then it updates the state at all black vertices (Update).
- Substantial parallelism: Each vertex of the tiling can be assigned to a work unit of the GPU; there is minimal communication necessary between work units.
- A random walk is constructed by repeatedly applying Rotate and Update a set number of times.

Implementation

DominoTilerCFTP:

Compute the extremal tilings $\mathcal{T}_{\text {max }}$ and $\mathcal{T}_{\text {min }}$.
Initialize a list seeds with a random real number.
Repeat:
Initialize $\mathcal{T}_{\text {top }}=\mathcal{T}_{\text {max }}$
Initialize $\mathcal{T}_{\text {bottom }}=\mathcal{T}_{\text {min }}$
For $i=1$ to length of seeds:
Set $\mathcal{T}_{\text {top }}=\operatorname{RandomWalk}\left(\mathcal{T}_{\text {top }}\right.$, seeds $\left.s_{i}, 2^{i}\right)$
Set $\mathcal{T}_{\text {bottom }}=$ RandomWalk $\left(\mathcal{T}_{\text {bottom }}\right.$, seeds $\left.i, 2^{i}\right)$
If $\mathcal{T}_{\text {top }}=\mathcal{T}_{\text {bottom }}$, return $\mathcal{T}_{\text {bottom }}$.
Else, push a new random number to the beginning of seeds.

Lozenge Tilings

- Triangular lattice equivalent of domino tilings.
- Can be viewed as perfect matchings of the hexagonal lattice.
- Can also be associated to a height function $h_{\mathcal{T}}$ on vertices.
- Can be viewed as stacks of cubes.
- Elementary rotations:

- Admissible clusters chosen by tri-coloring vertices.

Six Vertex Model

- Assign "occupied" or "unoccupied" to the edges of a domain \mathcal{D} of the square lattice, such that the possible local configurations are:

$$
\begin{array}{lll}
\underset{a_{1}}{ } & \underset{b_{1}}{\perp} & \underset{c_{1}}{+} \\
\underset{a_{2}}{ } & \underset{b_{2}}{\mid} & \underset{c_{2}}{\mathbf{L}}
\end{array}
$$

- Each type of local configuration is assigned a weight.
- Configurations are in bijection with height functions.

Six Vertex Model

- Gibbs measure given by:

$$
\operatorname{Prob}(S)=\frac{1}{Z} W(S), \quad Z=\sum_{S} W(S)
$$

- Elementary moves are flips across faces:

- For fixed boundary conditions, the space of configurations is connected under elementary flips.
- Admissible cluster can be chosen by tricoloring faces.

Bibone Tilings

- Hexagonal lattice equivalent of Domino tilings.
- Can be viewed as perfect matchings of the triangle lattice (non-bipartite).
- Do not admit height functions.
- Set of tilings connected under three types of elementary rotations:

- For each type of local move one can find admissible clusters. $\overline{\text { B }}$

Rectangle-triangle Tilings

- Tilings of domains of the triangle lattice by isosceles triangles and rectangles with side lengths 1 and $\sqrt{3}$.
- Can be visualized as stacks of half-cubes (gives a partial ordering).
- Connected by single elementary move (adding/removing a half cube).

\leftrightarrow

Rectangle-triangle Tilings

- Can assign local weights t, c, and r, to faces of the triangular lattice in the following way:

r

C

- The weight of a tiling is given by the product of the weights of all the faces.
- Admissible clusters chosen as in the Lozenge case.

Results

Figure: (A) The time T in seconds to generate, with coupling-from-the-past, a random configuration of the six-vertex model on an $N \times N$ sized domain with domain wall boundary conditions and weights $(a, b, c)=(1,1,1)$. (B) The time to generate a random domino tiling of an $N \times N$ square.

Figure: Johannson showed that the fluctuations of the top-most path converges to the Airy process. In particular, the y-intercept of the path as shown above, after appropriate rescaling, converges to the Tracy-Widom distribution F_{2}. Right shows a normalized histogram of the y-intercept computed from 100 random tilings of an Aztec diamond of size 300 , with the distribution F_{2} superimposed.

Figure: A tiling of a rectangular Aztec diamond, with the Arctic curve superimposed in red.

Figure: A random tiling of the Aztec diamond with volume weights $q=20$ for all black vertices and $q=1 / 20$ for all white vertices.

Figure: A random tiling of a weird region by lozenges.

Figure: A tiling of a partial hexagon (A) by rectangles and triangles, and
(B) by lozenges.

Figure：Choosing weights $t=.5, r=1, c=1$ produces tilings that look like snowflakes．

Figure: A tiling of a trapezoid by bibones.

Figure: The six-vertex model with weights $a=1, b=1, c=\sqrt{8}$, ($\Delta=-3$), and domain wall boundary conditions. (A) shows a random configuration and (B) shows only the gaseous region.

Figure: (A) shows the average density of c-vertices and (B) shows the average density of horizontal edges computed, with 1000 random configurations. The arctic curve is superimposed in red.

Figure: The average density of horizontal edges in with weight $\Delta=0$ in an L-shaped region with domain wall type boundary conditions, computed with 1000 samples.

Figure: The average density of horizontal edges with weights $a=2 b, \Delta=-3$, computed with 1000 samples.

(A)

(B)

Figure: The six-vertex model with weights $\left(a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right)=(1,1, .3, .7, .3, .7)$ on a cylinder. (A) shows a random configuration on the cylinder. (B) shows the average density of paths, taken over 100 sample.

End!

https://github.com/GPUTilings

