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Why GPUs?

e Common-place in most modern personal computers (as well
as XBoxes, Playstations, etc.).

@ Vector/Data parallelism: to each element of an array of data
execute the same instructions in parallel (computer graphics
e.g lighting or rendering a surface)

@ Design: Several multi-core processors with their own shared
memory, each with several cores. A shared global memory.
(ex: 10 processors, each with 64 cores, for a total of 640
cores)

@ Kernels contain the instructions that all the cores will execute.

@ Drawbacks: limited memory, limited ability to communicate
between cores, SIMD architecture bad at handling branching
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Consider a simply connected domain D of the square lattice.

domino: the union of two square lattice faces that share an
edge.

A tiling T of D is set of non intersecting dominos whose
union is D. Call Qp the set of all tilings of D.

Equivalently, a tiling can be viewed as a perfect matching or
dimer cover T* of the dual graph or as a lattice routing.
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@ To each tilings we can associate a height function hy on
vertices v € D.

e Partial order on Qp: T < T if hr(v) < hy(v) for all v € D.

@ In particular, we denote the unique maximal and minimal
tilings by Tmax and Tmin, respectively.
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Maximal and minimal tilings of a square domain.
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@ We can assign positive weights we to the dual edges. A tiling
T has weight W(T) = [].cq we.

o Normalizing by Z = > .o W(T), defines a probability
distribution on the space of tilings.

° PIT]=3W(T)
@ Setting all weights to 1 gives the uniform distribution. Z
counts the number of tilings.

@ Instead, can assign volume weights g, to each vertex. Tiling
T has weight W(T) =1],cp g,

We are trying to sample from these distributions.
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Domino Tilings on the GPU

o A tiling is rotatable at a vertex v if the faces adjacent to v are
covered by two parallel dominos. An elementary rotation at v
rotates the dominos in place.

Al o~ Iml

o Let R, : Qp — Qp be the function that enacts an elementary
rotation at v.

Theorem (Thurston)

Two tilings T and T’ of a domain D are connected by a sequence
of elementary rotations.
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If v and v/ are not adjacent, then R, o R, = R, o R,.

Call S an admissible cluster of vertices if no two vertices in S
are adjacent.

Define a cluster rotation: Rs = [],cs Ry.

@ Markov Chain: A random walk on Qp with initial tiling 7
and random clusters {S;} has n'" step

7 = RD(T), where R = Rs, o...0 R,

In the limit n — oo the random tiling T" is uniformly distributed.
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Domino Tilings on the GPU

Coupling from the Past:
@ An algorithm due to Propp and Wilson; ensures exact
sampling.
o Define backward walk with initial tiling 7(®) and random
clusters {S;} has nt’ step

T(=n) — R(_")(T(O)), where R(-") — Rs, o...oRs,

o Almost surely there exists n such that |R(=")(Qp)| = 1. We
say the Markov chain has collapsed.

o The unique element in the range of R(=" is distributed
uniformly.

@ We can construct R so that it preserves the partial ordering.
The Markov chain has collapsed iff
R(_n)(Tmax) — R(_n)(Tmin)-



Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.



Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

@ v is rotatable if s, =12 or 5, = 3.



Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

@ v is rotatable if s, =12 or 5, = 3.

@ Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.



Algorithm

Implementation

@ At each vertex assign assign a state s, = ey + 2e1 + 4e + 8e3,
where we enumerate the edges adjacent to v in order N, S, E,
W and ¢ is 1 if a domino crosses edge i, 0 otherwise.

@ v is rotatable if s, =12 or 5, = 3.

@ Admissible clusters S are chosen by: first checkerboard
coloring the vertices, choose a color at random, then choose a
random subset of the given color.

@ An algorithm of Thurston efficiently constructs Tmax and Tmin
for a given domain.
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Algorithm

Implementation

Data parallelism:

@ Kernels Rotate and Update implement Rs.

o First the GPU independently attempts rotations at all, say,
white vertices (Rotate). Then it updates the state at all black
vertices (Update).

@ Substantial parallelism: Each vertex of the tiling can be
assigned to a work unit of the GPU; there is minimal
communication necessary between work units.

@ A random walk is constructed by repeatedly applying Rotate
and Update a set number of times.
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Implementation

DominoTilerCFTP:

Compute the extremal tilings Tmax and Tmin.
Initialize a list seeds with a random real number.
Repeat:

Initialize Tiop = Tmax
Initialize Tpottom = Tmin
For i = 1 to length of seeds:
Set Tiop = RandomWalk(Top, seeds;, 2%)
Set Thottom = RandomWalk(Tpottom, Seeds;, 2')
If 77.‘op = Tbottom, return Tpottom.
Else, push a new random number to the beginning of seeds.
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Lozenge Tilings

Triangular lattice equivalent of domino tilings.

Can be viewed as perfect matchings of the hexagonal lattice.
Can also be associated to a height function hy on vertices.
Can be viewed as stacks of cubes.

Elementary rotations:
NI

Admissible clusters chosen by tri-coloring vertices.
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Six Vertex Model

@ Assign “occupied” or “unoccupied”’ to the edges of a domain
D of the square lattice, such that the possible local
configurations are:

=g

di by (5]

T 1L
@ Each type of local configuration is assigned a weight.
e Configurations are in bijection with height functions.

— Of1|Of1/0|-1§0
aH -1

1§2/1|0|-1jO0f41

o O

1§2/1/0f81/0]|-1

+1 -1 Ofj1/0|-1j01 |0
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Six Vertex Model

@ Gibbs measure given by:

Prob(S) = %W(S), Z=Y w(s)
S

@ Elementary moves are flips across faces:

<~

@ For fixed boundary conditions, the space of configurations is
connected under elementary flips.

@ Admissible cluster can be chosen by tricoloring faces.
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Other Models

Bibone Tilings

Hexagonal lattice equivalent of Domino tilings.

@ Can be viewed as perfect matchings of the triangle lattice
(non-bipartite).

Do not admit height functions.

Set of tilings connected under three types of elementary
rotations:

@ For each type of local move one can find admissible clusters. s
0 / 33
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Other Models Rectangle-triangle Tilings

Rectangle-triangle Tilings

@ Tilings of domains of the triangle lattice by isosceles triangles
and rectangles with side lengths 1 and /3.

@ Can be visualized as stacks of half-cubes (gives a partial
ordering).

e Connected by single elementary move (adding/removing a half

0 @ e
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Rectangle-triangle Tilings

@ Can assign local weights t, ¢, and r, to faces of the triangular
lattice in the following way:

s € Mk

r

@ The weight of a tiling is given by the product of the weights
of all the faces.

@ Admissible clusters chosen as in the Lozenge case.
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Results
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Figure: (A) The time T in seconds to generate, with
coupling-from-the-past, a random configuration of the six-vertex model
on an N x N sized domain with domain wall boundary conditions and
weights (a, b, c) = (1,1,1). (B) The time to generate a random domino
tiling of an N x N square.
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Figure: Johannson showed that the fluctuations of the top-most path
converges to the Airy process. In particular, the y-intercept of the path
as shown above, after appropriate rescaling, converges to the
Tracy-Widom distribution F,. Right shows a normalized histogram of the
y-intercept computed from 100 random tilings of an Aztec diamond of
size 300, with the distribution F, superimposed.



Results

Figure: A tiling of a rectangular Aztec diamond, with the Arctic curve
superimposed in red.
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Results

Figure: A random tiling of the Aztec diamond with volume weights
g = 20 for all black vertices and g = 1/20 for all white vertices.
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Figure: A random tiling of a weird region by lozenges.
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Results

Figure: A tiling of a partial hexagon (A) by rectangles and triangles, and
(B) by lozenges.
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Figure: Choosing weights t = .5,r = 1, c = 1 produces tilings that look

like snowflakes.
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Figure: A tiling of a trapezoid by bibones.
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Results

Figure: The six-vertex model with weights a=1,b=1,c = /8,
(A = —3), and domain wall boundary conditions. (A) shows a random
configuration and (B) shows only the gaseous region.
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Results

Figure: (A) shows the average density of c-vertices and (B) shows the
average density of horizontal edges computed, with 1000 random
configurations. The arctic curve is superimposed in red.
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Results

Figure: The average density of
horizontal edges in with weight
A =0 in an L-shaped region
with domain wall type boundary
conditions, computed with 1000
samples.

Figure: The average density of
horizontal edges with weights
a=2b, A =-3, computed
with 1000 samples.
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(A) (®)

Figure: The six-vertex model with weights

(a1, a2, b1, b2, a1, ) = (1,1,.3,.7,.3,.7) on a cylinder. (A) shows a
random configuration on the cylinder. (B) shows the average density of
paths, taken over 100 sample.
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Results

https://github.com/GPUTilings
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