Holonomy braidings, biquandles and quantum invariants of links with SL2C flat connections.
 Representation Theory, Mathematical Physics and Integrable Systems at CIRM.

Nathan Geer

Utah State University

$$
\text { June 5, } 2018
$$

> Joint work with
> Christian Blanchet, Bertrand Patureau-Mirand and Nicolai Reshetikhin.

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.
Topology \quad Algebra

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.
Topology
Links with SL $(2 \mathbb{C})$ flat
connection in their
complements

Algebra
Diagrams colored with representation of the unrestricted quantum groups

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.

Topology	$\underline{\text { Algebra }}$
Links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements	Diagrams colored with representation of the
unrestricted quantum groups	

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.

Topology
Links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements

Representations of the fundumental quandle

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

Solutions

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.
Topology
Links with $\mathrm{SL}(2 \mathbb{C})$ flat
connection in their
complements
Representations of the
fundumental quandle

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

Solutions
holonomy braiding

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.

Topology	$\underline{\text { Algebra }}$
Links with $\mathrm{SL}(2 \mathbb{C})$ flat connection in their complements	Diagrams colored with representation of the unrestricted quantum groups
Representations of the fundumental quandle	Biquandle colorings
Problems	$\underline{\text { Solutions }}$
zero quantum dimensions	holonomy braiding modified trace

Goal: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.
Example: A quantum invariant of links with $\operatorname{SL}(2 \mathbb{C})$ flat connection in their complements.

Topology Links with $\mathrm{SL}(2 \mathbb{C})$ flat connection in their complements	Diagrams colored with representation of the unrestricted quantum groups		
Representations of the fundumental quandle	Biquandle colorings	\quad	Problems
:---:			

The pivotal category of the unrestricted quantum group

Let $q=e^{\frac{2 \pi \sqrt{ }-1}{\ell}} \in \mathbb{C}$ be the ${ }^{\text {'th }}$ root of unity. Set $r=\frac{\ell}{2}$ if `is even and \(r=\)` if ` is odd.

The pivotal category of the unrestricted quantum group

Let $q=e^{\frac{2 \pi \sqrt{ }-1}{\ell}} \in \mathbb{C}$ be the `th root of unity. Set \(r=\frac{\ell}{2}\) if ` is even and $r={ }^{\prime}$ if ${ }^{\text {` }}$ is odd.

- The unrestricted quantum group $U_{q} \mathfrak{s l}(2)$ is a \mathbb{C}-algebra given by generators $K^{ \pm 1} E F$ and relations:
$K E K^{-1}=q^{2} E \quad K F K^{-1}=q^{-2} F \quad E F-F E=\frac{K-K^{-1}}{q-q^{-1}}$

The pivotal category of the unrestricted quantum group

Let $q=e^{\frac{2 \pi \sqrt{ }-1}{\ell}} \in \mathbb{C}$ be the ${ }^{\text {'th }}$ root of unity. Set $r=\frac{\ell}{2}$ if ` is even and \(r={ }^{\prime}\) if \({ }^{\text {` }}\) is odd.

- The unrestricted quantum group $U_{q \mathfrak{s l}}(2)$ is a \mathbb{C}-algebra given by generators $K^{ \pm 1} E F$ and relations:
$K E K^{-1}=q^{2} E \quad K F K^{-1}=q^{-2} F \quad E F-F E=\frac{K-K^{-1}}{q-q^{-1}}$
- $U_{q} \mathfrak{s l}(2)$ is a Hopf algebra where the coproduct is defined by
$\Delta(K)=K \otimes K \quad \Delta(E)=1 \otimes E+E \otimes K \quad \Delta(F)=K^{-1} \otimes F+F \otimes 1$

The pivotal category of the unrestricted quantum group

Let $q=e^{\frac{2 \pi \sqrt{ }-1}{\ell}} \in \mathbb{C}$ be the ${ }^{\text {'th }}$ root of unity. Set $r=\frac{\ell}{2}$ if ` is even and \(r={ }^{\prime}\) if \({ }^{\text {` }}\) is odd.

- The unrestricted quantum group $U_{q} \mathfrak{s l}(2)$ is a \mathbb{C}-algebra given by generators $K^{ \pm 1} E F$ and relations:
$K E K^{-1}=q^{2} E \quad K F K^{-1}=q^{-2} F \quad E F-F E=\frac{K-K^{-1}}{q-q^{-1}}$
- $U_{q} \mathfrak{s l}(2)$ is a Hopf algebra where the coproduct is defined by
$\Delta(K)=K \otimes K \quad \Delta(E)=1 \otimes E+E \otimes K \quad \Delta(F)=K^{-1} \otimes F+F \otimes 1$
- Representation theory studied by C. De Concini, V. Kac, C.

Procesi, N. Reshetikhin, M. Rosso and others.

Pivotal Category

By a U_{ξ}-weight module we mean a finite-dimensional module over U_{ξ} which restrict to a semi-simple module over Z_{0}.

Pivotal Category

By a U_{ξ}-weight module we mean a finite-dimensional module over U_{ξ} which restrict to a semi-simple module over Z_{0}.

Let \mathscr{C} be the tensor category of U_{ξ}-weight modules.

Pivotal Category

By a U_{ξ}-weight module we mean a finite-dimensional module over U_{ξ} which restrict to a semi-simple module over Z_{0}.

Let \mathscr{C} be the tensor category of U_{ξ}-weight modules.
\mathscr{C} is a pivotal \mathbb{C}-category: $V^{*}=\operatorname{Hom}_{\mathbb{C}}(V \mathbb{C})$ and

$$
v \bigcup=\overleftarrow{\operatorname{coee} v} v: \mathbb{C} \rightarrow V \otimes V^{*} \text { is given by } 1 \mapsto \sum v_{j} \otimes v_{j}^{*}
$$

$$
\}_{v}=\overleftarrow{\mathrm{e} v}_{v}: V^{*} \otimes V \rightarrow \mathbb{C} \text { is given by } f \otimes w \mapsto f(w)
$$

$$
\checkmark=\overrightarrow{\mathrm{ev}} v: V \otimes V^{*} \rightarrow \mathbb{C} \text { is given by } v \otimes f \mapsto f\left(K^{1-r} v\right)
$$

$$
\bigcup^{V}=\overrightarrow{\operatorname{coe} v} V: \mathbb{C} \rightarrow V^{*} \otimes V \text { is given by } 1 \mapsto \sum v_{j}^{*} \otimes K^{r-1} v_{j}
$$

where $\left\{v_{j}\right\}$ is a basis of V and $\left\{v_{j}^{*}\right\}$ is the dual basis of V^{*}.

Definition: modified trace

There exists a modified trace on the ideal of projective modules Proj of \mathscr{C} : a family of linear functions

$$
\left\{\mathrm{t}_{V}: \operatorname{End}_{\mathscr{C}} V \rightarrow \mathbb{C}\right\}_{V \in \operatorname{Proj}}
$$

such that the following two conditions hold:

Definition: modified trace

There exists a modified trace on the ideal of projective modules Proj of \mathscr{C} : a family of linear functions

$$
\left\{\mathrm{t}_{V}: \operatorname{End}_{\mathscr{C}} V \rightarrow \mathbb{C}\right\}_{V \in \operatorname{Proj}}
$$

such that the following two conditions hold:

- Cyclicity If $V W \in$ Proj, then for any morphisms $f: V \rightarrow W$ and $g: W \rightarrow V$ in \mathscr{C} we have

$$
\mathrm{t}_{V}(g f)=\mathrm{t}_{W}(f g)
$$

Definition: modified trace

There exists a modified trace on the ideal of projective modules Proj of \mathscr{C} : a family of linear functions

$$
\left\{\mathrm{t}_{V}: \operatorname{End}_{\mathscr{C}} V \rightarrow \mathbb{C}\right\}_{V \in \operatorname{Proj}}
$$

such that the following two conditions hold:

- Cyclicity If $V W \in$ Proj, then for any morphisms $f: V \rightarrow W$ and $g: W \rightarrow V$ in \mathscr{C} we have

$$
\mathrm{t}_{V}(g f)=\mathrm{t}_{W}(f g)
$$

- Partial trace properties If $V \in \operatorname{Proj}$ and $W \in \mathscr{C}$ then for any $f \in \operatorname{End}_{\mathscr{C}}(V \otimes W)$ and $g \in \operatorname{End}_{\mathscr{C}}(W \otimes V)$ we have

$$
\begin{aligned}
& \mathrm{t}_{V \otimes W}(f)=\mathrm{t}_{V}\left(\begin{array}{c}
v_{1}{ }^{w} \\
f \\
f
\end{array}\right) \\
& \mathrm{t}_{w \otimes V}(g)=\mathrm{t}_{V}(\overbrace{\overbrace{\uparrow}^{v} \mathrm{t}^{v}}^{g})
\end{aligned}
$$

The holonomy braiding

Theorem (Kashaev-Reshetikhin)
The conjugation by the h-adic universal R-matrix specializes at root of unity to an algebra morphism

$$
\mathscr{R}: U_{q} \mathfrak{s l}(2) \otimes U_{q} \mathfrak{s l}(2) \rightarrow\left(U_{q} \mathfrak{s l}(2) \otimes U_{q} \mathfrak{s l}(2)\right)\left[\mathcal{W}^{-1}\right]
$$

where $\mathcal{W}=\left(1 \otimes 1-\{1\}^{2 \ell} K^{-\ell} E^{\ell} \otimes F^{\ell} K^{\ell}\right) \in Z_{0} \otimes Z_{0}$.

The holonomy braiding

Theorem (Kashaev-Reshetikhin)
The conjugation by the h-adic universal R-matrix specializes at root of unity to an algebra morphism

$$
\mathscr{R}: U_{q} \mathfrak{s l}(2) \otimes U_{q} \mathfrak{s l}(2) \rightarrow\left(U_{q} \mathfrak{s l}(2) \otimes U_{q} \mathfrak{s l}(2)\right)\left[\mathcal{W}^{-1}\right]
$$

where $\mathcal{W}=\left(1 \otimes 1-\{1\}^{2 \ell} K^{-\ell} E^{\ell} \otimes F^{\ell} K^{\ell}\right) \in Z_{0} \otimes Z_{0}$.
This map on $Z_{0} \otimes Z_{0}$ is given by:

$$
\begin{gathered}
\mathscr{R}\left(K^{r} \otimes 1\right)=\left(K^{r} \otimes 1\right) \mathcal{W} \quad \mathscr{R}\left(1 \otimes K^{r}\right)=\left(1 \otimes K^{r}\right) \mathcal{W}^{-1} \\
\mathscr{R}\left(E^{r} \otimes 1\right)=E^{r} \otimes K^{r} \quad \mathscr{R}\left(1 \otimes F^{r}\right)=K^{-r} \otimes F^{r} \\
\mathscr{R}\left(1 \otimes E^{r}\right)=K^{r} \otimes E^{r}+E^{r} \otimes 1\left(1-\left(1 \otimes K^{2 r}\right) \mathcal{W}^{-1}\right) \\
\mathscr{R}\left(F^{r} \otimes 1\right)=F^{r} \otimes K^{-r}+1 \otimes F^{r}\left(1-\left(K^{-2 r} \otimes 1\right) \mathcal{W}^{-1}\right)
\end{gathered}
$$

$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :
$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :

1. B is a bijection,
$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :
2. B is a bijection,
3. B is sideway invertible $\left(\exists S^{ \pm 1}: \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X}\right)$,
$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :
4. B is a bijection,
5. B is sideway invertible $\left(\exists S^{ \pm 1}: \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X}\right)$,
6. B satisfy the set-theoretic Yang-Baxter equation

$$
(\mathrm{id} \times B) \circ(B \times \mathrm{id}) \circ(\mathrm{id} \times B)=(B \times \mathrm{id}) \circ(\mathrm{id} \times B) \circ(B \times \mathrm{id})
$$

$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :

1. B is a bijection,
2. B is sideway invertible $\left(\exists S^{ \pm 1}: \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X}\right)$,
3. B satisfy the set-theoretic Yang-Baxter equation

$$
(\mathrm{id} \times B) \circ(B \times \mathrm{id}) \circ(\mathrm{id} \times B)=(B \times \mathrm{id}) \circ(\mathrm{id} \times B) \circ(B \times \mathrm{id})
$$

4. there exists a bijection $\alpha: X \rightarrow X$ such that $S(x x)=(\alpha(x) \alpha(x))$ for all $x \in X$
$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :
5. B is a bijection,
6. B is sideway invertible $\left(\exists S^{ \pm 1}: \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X}\right)$,
7. B satisfy the set-theoretic Yang-Baxter equation

$$
(\mathrm{id} \times B) \circ(B \times \mathrm{id}) \circ(\mathrm{id} \times B)=(B \times \mathrm{id}) \circ(\mathrm{id} \times B) \circ(B \times \mathrm{id})
$$

4. there exists a bijection $\alpha: X \rightarrow X$ such that $S(x x)=(\alpha(x) \alpha(x))$ for all $x \in X$
Sideway invertible means:

$$
\text { if } B\left(x_{1} x_{2}\right)=\left(\begin{array}{ll}
x_{4} & x_{3}
\end{array}\right) \text { then } S\left(x_{4} x_{1}\right)=\left(\begin{array}{ll}
x_{3} & x_{2}
\end{array}\right)
$$

$B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :

1. B is a bijection,
2. B is sideway invertible $\left(\exists S^{ \pm 1}: \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X}\right)$,
3. B satisfy the set-theoretic Yang-Baxter equation

$$
(\mathrm{id} \times B) \circ(B \times \mathrm{id}) \circ(\mathrm{id} \times B)=(B \times \mathrm{id}) \circ(\mathrm{id} \times B) \circ(B \times \mathrm{id})
$$

4. there exists a bijection $\alpha: X \rightarrow X$ such that $S(x x)=(\alpha(x) \alpha(x))$ for all $x \in X$
Sideway invertible means:

$$
\text { if } B\left(x_{1} x_{2}\right)=\left(\begin{array}{ll}
x_{4} & x_{3}
\end{array}\right) \text { then } S\left(\begin{array}{ll}
x_{4} & x_{1}
\end{array}\right)=\left(\begin{array}{ll}
x_{3} & x_{2}
\end{array}\right)
$$

We use B to color edges of a tangle diagram with color in \mathbf{X} :

Reidemeister moves

Theorem
Any tangle isotopy from T_{1} to T_{2} induce a canonical bijection between \mathbf{X}-coloring of the diagrams of their regular projections D_{1} and D_{2}.

Reidemeister moves

Theorem
Any tangle isotopy from T_{1} to T_{2} induce a canonical bijection between X-coloring of the diagrams of their regular projections D_{1} and D_{2}. The bijection is obtained by a sequence of colored Reidemeister moves.

RII-+

$R I I_{+-}$

$R I^{f}$

Colorings

Theorem (V. Lebed, L. Vendramin)
Any biquandle ($\mathbf{X} B$) induces a "quandle" Q and there is a bijection between \mathbf{X}-colorings and Q-colorings of diagrams.

Colorings

Theorem (V. Lebed, L. Vendramin)
Any biquandle ($\mathbf{X} B$) induces a "quandle" Q and there is a bijection between \mathbf{X}-colorings and Q-colorings of diagrams.

The case $U_{q} \mathfrak{s l}(2): \quad(\mathbf{X} B) \xrightarrow{\text { induce }} Q \simeq\left(\mathrm{SL}_{2}(\mathbb{C})\right.$ conjugation $)$

Colorings

Theorem (V. Lebed, L. Vendramin)
Any biquandle ($\mathbf{X} B$) induces a "quandle" Q and there is a bijection between \mathbf{X}-colorings and Q-colorings of diagrams.

The case $U_{q} \mathfrak{s l}(2): \quad(\mathbf{X} B) \xrightarrow{\text { induce }} Q \simeq\left(\mathrm{SL}_{2}(\mathbb{C})\right.$ conjugation $)$

Fundamental quandle: Given a tangle Γ, let $Q(\Gamma *)$ be the set of homotopy classes of continuous paths $\gamma:\left[\begin{array}{ll}0 & 1\end{array}\right) \rightarrow M_{\Gamma}$ such that $\mathrm{Y}(0)=*$ and $\lim _{t \rightarrow 1} \mathrm{Y}(t)$ exist and is equal to some point of the tangle Γ.

Colorings

Theorem (V. Lebed, L. Vendramin)
Any biquandle ($\mathbf{X} B$) induces a "quandle" Q and there is a bijection between \mathbf{X}-colorings and Q-colorings of diagrams.

The case $U_{q} \mathfrak{s l}(2): \quad(\mathbf{X} B) \xrightarrow{\text { induce }} Q \simeq\left(\mathrm{SL}_{2}(\mathbb{C})\right.$ conjugation $)$

Fundamental quandle: Given a tangle Γ, let $Q(\Gamma *)$ be the set of homotopy classes of continuous paths $\gamma:\left[\begin{array}{ll}0 & 1\end{array}\right) \rightarrow M_{\Gamma}$ such that $\mathrm{Y}(0)=*$ and $\lim _{t \rightarrow 1} \mathrm{Y}(t)$ exist and is equal to some point of the tangle Γ.

If Q is a quandle then a Q-tangle is a quandle morphism $Q(\Gamma *) \rightarrow Q$.

Key lemma

Lemma
For any B-colored diagram and for generic $x \in \mathbf{X}$, this chain of B-colored Reidemeister moves is not broken:

Proof of the invariance

Let D and D^{\prime} be two B-colored diagrams representing isotopic Q-tangles. Then it is possible that D and D^{\prime} are not related by sequence of colored Reidemeister moves but:

Proposition

For generic $x \in \mathbf{X}, \mathrm{id}_{(x,+)} \otimes D$ and $\mathrm{id}_{(x,+)} \otimes D^{\prime}$ are related by a sequence of B-colored Reidemeister moves.

Corollary
$F(D)=F\left(D^{\prime}\right)$.
Furthermore, we can prove that the modified trace is gauge invariant so that the property also hold for closed diagrams.

R
N. Geer, B. Patureau-Mirand - The trace on projective representations of quantum groups. arXiv:1610.09129.
(R) Kashaev, R., Reshetikhin, N. - Invariants of tangles with flat connections in their complements. 151-172, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005.

國 Many papers on unrestricted quantum groups by C. De Concini, V.G. Kac, C. Procesi, N. Reshetikhin, M. Rosso.

围 V. Lebed, L. Vendramin - Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation, Advances Math. 304 (2017), 1219-1261.

