< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Holonomy braidings, biquandles and quantum invariants of links with SL2C flat connections. Representation Theory, Mathematical Physics and Integrable Systems at CIRM.

Nathan Geer

Utah State University

June 5, 2018

Joint work with Christian Blanchet, Bertrand Patureau-Mirand and Nicolai Reshetikhin.

5. (Bi)qua

6. Main Theorem

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

I. Holonomy Braidin

5. (Bi)quar

6. Main Theorem

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

Example: A quantum invariant of links with $\mathsf{SL}(2,\mathbb{C})$ flat connection in their complements.

5. (Bi)quar

6. Main Theorem

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

Example: A quantum invariant of links with $\mathsf{SL}(2,\mathbb{C})$ flat connection in their complements.

Topology

Algebra

5. (Bi)quand

6. Main Theorem

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

Example: A quantum invariant of links with $SL(2, \mathbb{C})$ flat connection in their complements.

Topology

Links with $SL(2, \mathbb{C})$ flat connection in their complements

Algebra

Diagrams colored with representation of the unrestricted quantum groups

5. (Bi)quan

6. Main Theorem

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

Example: A quantum invariant of links with $\mathsf{SL}(2,\mathbb{C})$ flat connection in their complements.

Topology

Links with $SL(2, \mathbb{C})$ flat connection in their complements

Representations of the fundumental quandle

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

5. (Bi)quan

6. Main Theorem

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

 $\underbrace{\text{Example:}}_{\text{connection in their complements.}} A \text{ quantum invariant of links with } SL(2,\mathbb{C}) \text{ flat}$

Topology

Links with $SL(2, \mathbb{C})$ flat connection in their complements

Representations of the fundumental quandle

Problems

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

Solutions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

5. (Bi)quano

6. Main Theorem

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

 $\underbrace{\text{Example:}}_{\text{connection in their complements.}} A \text{ quantum invariant of links with } SL(2,\mathbb{C}) \text{ flat}$

Topology

Links with $SL(2, \mathbb{C})$ flat connection in their complements

Representations of the fundumental quandle

Problems

Not braided

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

Solutions

holonomy braiding

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

5. (Bi)quano

6. Main Theorem

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

 $\underbrace{\text{Example:}}_{\text{connection in their complements.}} A \text{ quantum invariant of links with } SL(2,\mathbb{C}) \text{ flat}$

Topology

Links with $SL(2, \mathbb{C})$ flat connection in their complements

Representations of the fundumental quandle

Problems

Not braided zero quantum dimensions

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

Solutions

holonomy braiding modified trace

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

5. (Bi)quand

6. Main Theorem

<u>Goal</u>: Extend the Kashaev-Reshetikhin holonomy braiding to a general theory for Reshetikhin-Turaev ribbon type functor for tangles with quandle representations.

Example: A quantum invariant of links with $SL(2, \mathbb{C})$ flat connection in their complements.

Topology

Links with $SL(2, \mathbb{C})$ flat connection in their complements

Representations of the fundumental quandle

Problems

Not braided zero quantum dimensions Not defined everywhere

Algebra

Diagrams colored with representation of the unrestricted quantum groups

Biquandle colorings

Solutions

holonomy braiding modified trace gauge transformations <⇒> ⇒ ⇒ ∞ ∝ ∾

The pivotal category of the unrestricted quantum group

Let $q = e^{\frac{2\pi\sqrt{-1}}{\ell}} \in \mathbb{C}$ be the !th root of unity. Set $r = \frac{\ell}{2}$ if ! is even and r = ! if ! is odd.

The pivotal category of the unrestricted quantum group

Let $q = e^{\frac{2\pi\sqrt{-1}}{\ell}} \in \mathbb{C}$ be the !th root of unity. Set $r = \frac{\ell}{2}$ if ! is even and r = ! if ! is odd.

• The unrestricted quantum group $U_q\mathfrak{sl}(2)$ is a \mathbb{C} -algebra given by generators $K^{\pm 1}$, E, F and relations:

$$KEK^{-1} = q^2E$$
, $KFK^{-1} = q^{-2}F$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

The pivotal category of the unrestricted quantum group

Let $q = e^{\frac{2\pi\sqrt{-1}}{\ell}} \in \mathbb{C}$ be the !th root of unity. Set $r = \frac{\ell}{2}$ if ! is even and r = ! if ! is odd.

• The unrestricted quantum group $U_q\mathfrak{sl}(2)$ is a \mathbb{C} -algebra given by generators $K^{\pm 1}$, E, F and relations:

$$KEK^{-1} = q^2E$$
, $KFK^{-1} = q^{-2}F$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

• $U_q\mathfrak{sl}(2)$ is a Hopf algebra where the coproduct is defined by

 $\Delta(K) = K \otimes K, \quad \Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1$

(日) (同) (三) (三) (三) (○) (○)

The pivotal category of the unrestricted quantum group

Let $q = e^{\frac{2\pi\sqrt{-1}}{\ell}} \in \mathbb{C}$ be the !th root of unity. Set $r = \frac{\ell}{2}$ if ! is even and r = ! if ! is odd.

• The unrestricted quantum group $U_q \mathfrak{sl}(2)$ is a \mathbb{C} -algebra given by generators $K^{\pm 1}$, E, F and relations:

$$KEK^{-1} = q^2E$$
, $KFK^{-1} = q^{-2}F$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

• $U_q\mathfrak{sl}(2)$ is a Hopf algebra where the coproduct is defined by

 $\Delta(K) = K \otimes K, \quad \Delta(E) = 1 \otimes E + E \otimes K, \quad \Delta(F) = K^{-1} \otimes F + F \otimes 1$

• Representation theory studied by C. De Concini, V. Kac, C. Procesi, N. Reshetikhin, M. Rosso and others.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Pivotal Category

By a U_{ξ} -weight module we mean a finite-dimensional module over U_{ξ} which restrict to a semi-simple module over Z_0 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pivotal Category

By a U_{ξ} -weight module we mean a finite-dimensional module over U_{ξ} which restrict to a semi-simple module over Z_0 .

Let \mathscr{C} be the tensor category of U_{ξ} -weight modules.

Pivotal Category

By a U_{ξ} -weight module we mean a finite-dimensional module over U_{ξ} which restrict to a semi-simple module over Z_0 .

Let \mathscr{C} be the tensor category of U_{ξ} -weight modules.

 ${\mathscr C}$ is a pivotal ${\mathbb C}$ -category: $V^* = \operatorname{Hom}_{\mathbb C}(V, {\mathbb C})$ and

$$\bigvee \bigvee = \overleftarrow{\operatorname{coev}}_V : \mathbb{C} \to V \otimes V^* \text{ is given by } 1 \mapsto \sum v_j \otimes v_j^*$$

$$\bigvee_{V} = \overleftarrow{\operatorname{ev}}_{V} \colon V^* \otimes V \to \mathbb{C} \text{ is given by } f \otimes w \mapsto f(w),$$

$$\bigvee = \overrightarrow{\operatorname{ev}}_V : V \otimes V^* \to \mathbb{C} \text{ is given by } v \otimes f \mapsto f(K^{1-r}v),$$

$$\bigvee^V = \overrightarrow{\operatorname{coev}}_V : \mathbb{C} \to V^* \otimes V \text{ is given by } 1 \mapsto \sum v_j^* \otimes K^{r-1} v_j,$$

where $\{v_j\}$ is a basis of V and $\{v_j^*\}$ is the dual basis of V^{*}.

・ロト ・西ト ・ヨト ・ヨー うらぐ

5. (Bi)quan

6. Main Theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition: modified trace

There exists a modified trace on the ideal of projective modules Proj of \mathscr{C} : a family of linear functions

 $\{\mathsf{t}_V:\mathsf{End}_{\mathscr{C}}V\to\mathbb{C}\}_{V\in\mathsf{Proj}}$

such that the following two conditions hold:

6. Main Theorem

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition: modified trace

There exists a modified trace on the ideal of projective modules Proj of \mathscr{C} : a family of linear functions

$${\mathsf{t}_V : \mathsf{End}_{\mathscr{C}} V \to \mathbb{C}}_{V \in \mathsf{Proj}}$$

such that the following two conditions hold:

• Cyclicity If $V, W \in \text{Proj}$, then for any morphisms $f : V \to W$ and $g : W \to V$ in \mathscr{C} we have

$$\mathsf{t}_V(gf)=\mathsf{t}_W(fg).$$

Definition: modified trace

There exists a modified trace on the ideal of projective modules Proj of \mathscr{C} : a family of linear functions

$$\{\mathsf{t}_V:\mathsf{End}_{\mathscr{C}}V\to\mathbb{C}\}_{V\in\mathsf{Proj}}$$

such that the following two conditions hold:

• Cyclicity If $V, W \in \text{Proj}$, then for any morphisms $f : V \to W$ and $g : W \to V$ in \mathscr{C} we have

$$\mathsf{t}_V(gf)=\mathsf{t}_W(fg).$$

• Partial trace properties If $V \in \text{Proj}$ and $W \in \mathscr{C}$ then for any $f \in \text{End}_{\mathscr{C}}(V \otimes W)$ and $g \in \text{End}_{\mathscr{C}}(W \otimes V)$ we have

$$t_{V\otimes W}(f) = t_V \begin{pmatrix} \bigvee_{\downarrow} & W \\ f \\ \downarrow \end{pmatrix}$$

$$t_{W\otimes V}(g) = t_V \begin{pmatrix} \bigvee_{\downarrow} & \psi \\ f \\ \downarrow \end{pmatrix} .$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The holonomy braiding

Theorem (Kashaev-Reshetikhin)

The conjugation by the h-adic universal R-matrix specializes at root of unity to an algebra morphism

$$\mathscr{R}: U_q\mathfrak{sl}(2) \otimes U_q\mathfrak{sl}(2) \to (U_q\mathfrak{sl}(2) \otimes U_q\mathfrak{sl}(2))[\mathcal{W}^{-1}]$$

where
$$\mathcal{W} = \left(1 \otimes 1 - \{1\}^{2\ell} \mathcal{K}^{-\ell} \mathcal{E}^{\ell} \otimes \mathcal{F}^{\ell} \mathcal{K}^{\ell}\right) \in Z_0 \otimes Z_0.$$

 $\begin{aligned} \mathscr{R}(E^{r}\otimes 1) &= E^{r}\otimes K^{r} \qquad \mathscr{R}(1\otimes F^{r}) = K^{-r}\otimes F^{r} \\ \mathscr{R}(1\otimes E^{r}) &= K^{r}\otimes E^{r} + E^{r}\otimes 1\big(1 - (1\otimes K^{2r})\mathcal{W}^{-1}\big) \\ \mathscr{R}(F^{r}\otimes 1) &= F^{r}\otimes K^{-r} + 1\otimes F^{r}\big(1 - (K^{-2r}\otimes 1)\mathcal{W}^{-1}\big) \end{aligned}$

 $\mathscr{R}(\mathsf{K}^{r}\otimes 1)=(\mathsf{K}^{r}\otimes 1)\,\mathcal{W},\qquad \mathscr{R}(1\otimes \mathsf{K}^{r})=(1\otimes \mathsf{K}^{r})\,\mathcal{W}^{-1}$

where $\mathcal{W} = \left(1 \otimes 1 - \{1\}^{2\ell} \mathcal{K}^{-\ell} \mathcal{E}^{\ell} \otimes \mathcal{F}^{\ell} \mathcal{K}^{\ell}\right) \in Z_0 \otimes Z_0.$ This map on $Z_0 \otimes Z_0$ is given by:

$$\mathscr{R}: U_q\mathfrak{sl}(2) \otimes U_q\mathfrak{sl}(2) \to (U_q\mathfrak{sl}(2) \otimes U_q\mathfrak{sl}(2))[\mathcal{W}^{-1}]$$

The conjugation by the h-adic universal R-matrix specializes at root of unity to an algebra morphism

Theorem (Kashaev-Reshetikhin)

6. Main Theorem

1. Introduction

ice 4. Holono

Holonomy Braiding

5. (Bi)quandles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

6. Main Theorem

$B : \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :

1. Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $B: \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :
 - 1. B is a bijection,

$B : \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :

- 1. B is a bijection,
- 2. *B* is sideway invertible $(\exists S^{\pm 1} : \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X})$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $B: \mathbf{X} \times \mathbf{X} \to \mathbf{X} \times \mathbf{X}$ is a biqundle :

- 1. B is a bijection,
- 2. *B* is sideway invertible $(\exists S^{\pm 1} : \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X})$,
- 3. B satisfy the set-theoretic Yang-Baxter equation

 $(\mathsf{id} \times B) \circ (B \times \mathsf{id}) \circ (\mathsf{id} \times B) = (B \times \mathsf{id}) \circ (\mathsf{id} \times B) \circ (B \times \mathsf{id}),$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $B: \mathbf{X} \times \mathbf{X} \to \mathbf{X} \times \mathbf{X}$ is a bigundle :

- 1. B is a bijection,
- 2. *B* is sideway invertible $(\exists S^{\pm 1} : \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X})$,
- 3. B satisfy the set-theoretic Yang-Baxter equation

 $(\mathsf{id} \times B) \circ (B \times \mathsf{id}) \circ (\mathsf{id} \times B) = (B \times \mathsf{id}) \circ (\mathsf{id} \times B) \circ (B \times \mathsf{id}),$

4. there exists a bijection " : $X \rightarrow X$ such that S(x, x) = ("(x), "(x)) for all $x \in X$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $B: \mathbf{X} \times \mathbf{X} \to \mathbf{X} \times \mathbf{X}$ is a bigundle :

- 1. B is a bijection,
- 2. *B* is sideway invertible $(\exists S^{\pm 1} : \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X})$,
- 3. B satisfy the set-theoretic Yang-Baxter equation

 $(\mathsf{id} \times B) \circ (B \times \mathsf{id}) \circ (\mathsf{id} \times B) = (B \times \mathsf{id}) \circ (\mathsf{id} \times B) \circ (B \times \mathsf{id}),$

4. there exists a bijection " : $X \rightarrow X$ such that S(x, x) = ("(x), "(x)) for all $x \in X$.

Sideway invertible means:

if
$$B(x_1, x_2) = (x_4, x_3)$$
 then $S(x_4, x_1) = (x_3, x_2)$.

 $B : \mathbf{X} \times \mathbf{X} \rightarrow \mathbf{X} \times \mathbf{X}$ is a biqundle :

- 1. B is a bijection,
- 2. *B* is sideway invertible $(\exists S^{\pm 1} : \mathbf{X} \times \mathbf{X} \xrightarrow{\sim} \mathbf{X} \times \mathbf{X})$,
- 3. B satisfy the set-theoretic Yang-Baxter equation

 $(\mathsf{id} \times B) \circ (B \times \mathsf{id}) \circ (\mathsf{id} \times B) = (B \times \mathsf{id}) \circ (\mathsf{id} \times B) \circ (B \times \mathsf{id}),$

 there exists a bijection " : X → X such that S(x, x) = (" (x), " (x)) for all x ∈ X.

Sideway invertible means:

if
$$B(x_1, x_2) = (x_4, x_3)$$
 then $S(x_4, x_1) = (x_3, x_2)$.

We use B to color edges of a tangle diagram with color in **X**:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Reidemeister moves

Theorem

Any tangle isotopy from T_1 to T_2 induce a canonical bijection between **X**-coloring of the diagrams of their regular projections D_1 and D_2 .

Reidemeister moves

Theorem

Any tangle isotopy from T_1 to T_2 induce a canonical bijection between **X**-coloring of the diagrams of their regular projections D_1 and D_2 . The bijection is obtained by a sequence of colored Reidemeister moves.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Colorings

Theorem (V. Lebed, L. Vendramin)

Any biquandle (\mathbf{X}, B) induces a "quandle" Q and there is a bijection between \mathbf{X} -colorings and Q-colorings of diagrams.

Colorings

Theorem (V. Lebed, L. Vendramin)

Any biquandle (\mathbf{X}, B) induces a "quandle" Q and there is a bijection between \mathbf{X} -colorings and Q-colorings of diagrams.

The case $U_q \mathfrak{sl}(2)$: $(\mathbf{X}, B) \xrightarrow{\text{induce}} Q \simeq (SL_2(\mathbb{C}), \text{conjugation})$

Colorings

Theorem (V. Lebed, L. Vendramin)

Any biquandle (\mathbf{X}, B) induces a "quandle" Q and there is a bijection between \mathbf{X} -colorings and Q-colorings of diagrams.

The case
$$U_q \mathfrak{sl}(2)$$
: $(\mathbf{X}, B) \xrightarrow{\text{induce}} Q \simeq (SL_2(\mathbb{C}), \text{conjugation})$

<u>Fundamental quandle</u>: Given a tangle Γ , let $Q(\Gamma, *)$ be the set of homotopy classes of continuous paths $#: [0,1) \to M$ such that #(0) = * and $\lim_{t\to 1} #(t)$ exist and is equal to some point of the tangle Γ .

Colorings

Theorem (V. Lebed, L. Vendramin)

Any biquandle (\mathbf{X}, B) induces a "quandle" Q and there is a bijection between \mathbf{X} -colorings and Q-colorings of diagrams.

The case
$$U_q \mathfrak{sl}(2)$$
: $(\mathbf{X}, B) \xrightarrow{\text{induce}} Q \simeq (SL_2(\mathbb{C}), \text{conjugation})$

<u>Fundamental quandle</u>: Given a tangle Γ , let $Q(\Gamma, *)$ be the set of homotopy classes of continuous paths $\# : [0, 1) \to M$ such that #(0) = * and $\lim_{t\to 1} \#(t)$ exist and is equal to some point of the tangle Γ .

If Q is a quandle then a <u>Q-tangle</u> is a quandle morphism $Q(\Gamma, *) \rightarrow Q$.

Key lemma

Lemma

For any *B*-colored diagram and for generic $x \in X$, this chain of *B*-colored Reidemeister moves is not broken:

Proof of the invariance

Let D and D' be two B-colored diagrams representing isotopic Q-tangles. Then it is possible that D and D' are <u>not</u> related by sequence of colored Reidemeister moves but:

Proposition

For generic $x \in \mathbf{X}$, $id_{(x,+)} \otimes D$ and $id_{(x,+)} \otimes D'$ are related by a sequence of B-colored Reidemeister moves.

Corollary

F(D)=F(D').

Furthermore, we can prove that the modified trace is gauge invariant so that the property also hold for closed diagrams.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- N. Geer, B. Patureau-Mirand <u>The trace on projective</u> representations of quantum groups. arXiv:1610.09129.
- Kashaev, R., Reshetikhin, N. Invariants of tangles with flat connections in their complements. 151–172, Proc. Sympos. Pure Math., 73, Amer. Math. Soc., Providence, RI, 2005.
- Many papers on unrestricted quantum groups by C. De Concini, V.G. Kac, C. Procesi, N. Reshetikhin, M. Rosso.
- V. Lebed, L. Vendramin <u>Homology of left non-degenerate</u> set-theoretic solutions to the Yang-Baxter equation, Advances Math. 304 (2017), 1219-1261.

Thank you and Happy Birthday Kolya!