László Fehér, Szeged and Budapest, Hungary

Action-angle duality

for a Poisson-Lie deformation of the BC_{n} Sutherland system based on joint works with T.F. Görbe and I. Marshall

Consider two Liouville integrable Hamiltonian systems (M, ω, H) and $(\widehat{M}, \widehat{\omega}, \widehat{H})$. These systems are said to be in action-angle duality if there exist Darboux coordinates q_{i}, p_{i} on (dense open subset of) M, and Darboux coordinates λ_{k}, θ_{k} on (dense open subset of) \widehat{M}, and a global symplectomorphism $\mathcal{R}: M \rightarrow \widehat{M}$ such that
$H \circ \mathcal{R}^{-1}$ depends only on λ (action variables for H) and
$\widehat{H} \circ \mathcal{R}$ depends only on q (action variables for \widehat{H}).
This is non-trivial if both $H(q, p)$ and $\widehat{H}(\lambda, \theta)$ are interesting.
Self-duality is the special case when H and \widehat{H} have the same form.

Action-angle duality is particularly interesting when it relates two (one-dimensional) many-body systems in such a way that
the q_{i} describe particle positions for $H(q, p)$ and
the $\quad \lambda_{i}$ describe particle positions for $\widehat{H}(\lambda, \theta)$.
It was discovered by Ruijsenaars (1988-95) that Calogero-Moser and Toda type systems enjoy duality relations.

The simplest example is the self-dual Calogero-Moser system:

$$
H_{\text {Caı }}(q, p)=\frac{1}{2} \sum_{k=1}^{n} p_{k}^{2}+\frac{1}{2} \sum_{j \neq k} \frac{\mu^{2}}{\left(q_{k}-q_{j}\right)^{2}}
$$

The simplest dual pair is provided by hyperbolic Sutherland

$$
H_{\text {hyp-Suth }}=\frac{1}{2} \sum_{k=1}^{n} p_{k}^{2}+\frac{1}{2} \sum_{j \neq k} \frac{\mu^{2}}{\sinh ^{2}\left(q_{k}-q_{j}\right)}
$$

and its Ruijsenaars dual

$$
\widehat{H}_{\text {rat-RS }}=\sum_{k=1}^{n}\left(\cosh \theta_{k}\right) \prod_{j \neq k}\left[1+\frac{\mu^{2}}{\left(\lambda_{k}-\lambda_{j}\right)^{2}}\right]^{\frac{1}{2}}
$$

Action-angle dualities of many-body systems were much studied in the nineties, e.g., by Fock, Gorsky, Nekrasov, Rosly and Roubtsov. In recent years, the subject was investigated by Pusztai, and myself in collaboration with Klimcik, Ayadi, Kluck, Görbe and Marshall. Reshetikhin pointed out dualities for many-body systems extended by 'spin' degrees of freedom.

My aim is to understand all known examples of action-angle duality in group theoretic terms, using Hamiltonian reduction, and to derive new ones. Here, I focus on systems built on the $B C_{n}$ root system.

In 1993, van Diejen introduced the following integrable classical Hamiltonian:

$$
\begin{gathered}
H_{\mathrm{VD}}\left(\lambda, \theta ; c_{0}, c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}\right)=\sum_{j=1}^{n}\left(\cosh \theta_{j}\right) \mathcal{V}_{j}(\lambda ; c)^{\frac{1}{2}}+\mathcal{U}(\lambda ; c) \\
\mathcal{V}_{j}(\lambda ; c)=\prod_{i=1}^{2}\left[1+\frac{\sinh ^{2} c_{i}}{\sin ^{2} \lambda_{j}}\right]\left[1+\frac{\sinh ^{2} c_{i}^{\prime}}{\cos ^{2} \lambda_{j}}\right] \prod_{k \neq j}^{n}\left[1+\frac{\sinh ^{2} c_{0}}{\sin ^{2}\left(\lambda_{j} \pm \lambda_{k}\right)}\right] \\
\mathcal{U}(\lambda ; c)=\left(\sinh c_{0}\right)^{-2} \prod_{i=1}^{2} \sinh \left(c_{i}\right) \cosh \left(c_{i}^{\prime}\right) \prod_{k=1}^{n}\left[1+\frac{\sinh ^{2} c_{0}}{\sin ^{2} \lambda_{k}}\right] \\
+\left(\sinh c_{0}\right)^{-2} \prod_{i=1}^{2} \cosh \left(c_{i}\right) \sinh \left(c_{i}^{\prime}\right) \prod_{k=1}^{n}\left[1+\frac{\sinh ^{2} c_{0}}{\cos ^{2} \lambda_{k}}\right]
\end{gathered}
$$

In the standard trigonometric case the Darboux coordinates λ_{j}, θ_{j} and the 5 'coupling constants' $c=\left(c_{0}, c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}\right)$ are real. The model admits a plethora of different real forms and limits.

Scaling limits are obtained by introducing two more parameters α and β and afterwards taking them to zero in $H_{\mathrm{vD}}(\alpha \lambda, \beta \theta ; \alpha \beta c)$. Scaling with β leads to the trigonometric $B C_{n}$ Sutherland model: $\lim _{\beta \rightarrow 0} \beta^{-2}\left(H_{\mathrm{VD}}(\lambda, \beta \theta ; \beta c)-C\right)=$

$$
\frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}+\frac{1}{2} \sum_{k \neq j} \frac{c_{0}^{2}}{\sin ^{2}\left(\lambda_{j} \pm \lambda_{k}\right)}+\sum_{j=1}^{n}\left(\frac{a^{2}}{\sin ^{2} \lambda_{j}}+\frac{b^{2}}{\cos ^{2} \lambda_{j}}\right)
$$

Scaling with α leads to the rational van Diejen model: $\lim _{\alpha \rightarrow 0} H_{\mathrm{VD}}(\alpha \lambda, \theta ; \alpha c)=$

$$
\sum_{j=1}^{n}\left(\cosh \theta_{j}\right)\left[\prod_{i=1}^{2}\left(1+\frac{c_{i}^{2}}{\lambda_{j}^{2}}\right) \prod_{k \neq j}^{n}\left(1+\frac{c_{0}^{2}}{\left(\lambda_{j} \pm \lambda_{k}\right)^{2}}\right)\right]^{\frac{1}{2}}+\frac{c_{1} c_{2}}{c_{0}^{2}} \prod_{j=1}^{n}\left[1+\frac{c_{0}^{2}}{\lambda_{j}^{2}}\right]
$$

Scaling both with α and β leads to the rational Calogero model of type B_{n} :

$$
H_{\mathrm{CaI}}=\frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2}+\frac{1}{2} \sum_{k \neq j} \frac{c_{0}^{2}}{\left(\lambda_{j} \pm \lambda_{k}\right)^{2}}+\sum_{j=1}^{n} \frac{a^{2}}{\lambda_{j}^{2}}
$$

It is an open question to derive the 5-coupling van Diejen system by Hamiltonian reduction. Today, I report on progress for certain 3parametric limiting cases. First, I recall that the trigonometric $B C_{n}$ Sutherland system and its action-angle dual arises from a reduction of $T^{*} S U(2 n)$ [Pusztai '12, Feher-Görbe '14].

A dual pair associated with the $B C_{n}$ root system

The trigonometric $B C_{n}$ Sutherland system
$H(q, p)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{1 \leq j<k \leq n}\left(\frac{\gamma}{\sin ^{2}\left(q_{j}-q_{k}\right)}+\frac{\gamma}{\sin ^{2}\left(q_{j}+q_{k}\right)}\right)+\sum_{j=1}^{n} \frac{\gamma_{1}}{\sin ^{2}\left(q_{j}\right)}+\sum_{j=1}^{n} \frac{\gamma_{2}}{\sin ^{2}\left(2 q_{j}\right)}$
is dual to the (completed) rational Ruijsenaars-Schneider-van Diejen system

$$
\begin{aligned}
\widehat{H}(\lambda, \theta) & =\sum_{j=1}^{n} \cos \left(\theta_{j}\right)\left[1-\frac{u^{2}}{\lambda_{j}^{2}}\right]^{\frac{1}{2}}\left[1-\frac{v^{2}}{\lambda_{j}^{2}}\right]^{\frac{1}{2}} \prod_{\substack{k=1 \\
(k \neq j)}}^{n}\left[1-\frac{\mu^{2}}{\left(\lambda_{j}-\lambda_{k}\right)^{2}}\right]^{\frac{1}{2}}\left[1-\frac{\mu^{2}}{\left(\lambda_{j}+\lambda_{k}\right)^{2}}\right]^{\frac{1}{2}} \\
& +\frac{u v}{\mu^{2}} \prod_{j=1}^{n}\left[1-\frac{\mu^{2}}{\lambda_{j}^{2}}\right]-\frac{u v}{\mu^{2}} . \quad \text { Here, the coupling constants are subject to }
\end{aligned}
$$

$\gamma>0, \gamma_{2}>0,4 \gamma_{1}+\gamma_{2}>0$, and $\mu>0,|u| \neq|v| \neq 0$. Duality holds under the relation $\gamma=\mu^{2}, \gamma_{1}=\frac{u v}{2}, \gamma_{2}=\frac{(u-v)^{2}}{2}$.
The Sutherland positions q live in the open polytope (Weyl alcove)

$$
\mathcal{D}_{q}=\left\{q \in \mathbb{R}^{n} \left\lvert\, \frac{\pi}{2}>q_{1}>\cdots>q_{n}>0\right.\right\}
$$

and the Sutherland actions λ (dual positions) fill the closed polyhedron

$$
\mathcal{D}_{\lambda}=\left\{\lambda \in \mathbb{R}^{n} \mid \lambda_{a}-\lambda_{a+1} \geq \mu(a=1, \ldots, n-1), \lambda_{n} \geq \max (|u|,|v|)\right\} .
$$

The above description of dual system is valid on a dense open submanifold parametrized by $\mathcal{D}_{\lambda}^{o} \times \mathbb{T}^{n}$. The torus \mathbb{T}^{n} collapses at the boundary of \mathcal{D}_{λ}.

This dual pair results by reducing $T^{*} S U(2 n) \simeq\{(k, J) \mid k \in S U(2 n), J \in s u(2 n)\}$ using the symmetry group $K_{+} \times K_{+}$, with $K_{+}=S(U(n) \times U(n))$ being the blockdiagonal subgroup of $K=S U(2 n)$.
Before reduction, we have two Abelian Poisson algebras of ($K_{+} \times K_{+}$)-invariant Hamiltonians generated by

$$
\mathcal{H}_{a}(k, J)=\frac{1}{2} \operatorname{tr}(\mathrm{i} J)^{2 a} \quad \text { and } \quad \widehat{\mathcal{H}}_{a}(k, J):=\frac{1}{2} \operatorname{tr}\left(k^{\dagger} I k I\right)^{a} \quad \text { with } \quad I:=\operatorname{diag}\left(\mathbf{1}_{n},-\mathbf{1}_{n}\right) .
$$

The moment map values for the actions of K_{+}defined by left- and respectively by right-multiplications are fixed to be

$$
\operatorname{diag}\left(C(\mu), \mathbf{0}_{n}\right)+\mathrm{i}(\mu+u) I \quad \text { and } \quad \mathrm{i} v I
$$

where $C(\mu) \in u(n)$ reads $C(\mu)_{l m}=\mathrm{i} \mu\left(\delta_{l m}-1\right)$. Then λ and q arise as eigenvalues:
$-\mathrm{i} J \sim \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n},-\lambda_{1}, \ldots,-\lambda_{n}\right), \quad k^{\dagger} I k I \sim \operatorname{diag}\left(e^{2 i q_{1}}, \ldots, e^{2 \mathrm{i} q_{n}}, e^{-2 i q_{1}}, \ldots, e^{-2 i q_{n}}\right)$.
The Hamiltonians \mathcal{H}_{a} reduce to the commuting Sutherland Hamiltonians, which in their action-angle variables λ, θ become

$$
\mathcal{H}_{a}^{\text {red }}(\lambda)=\sum_{j=1}^{n}\left(\lambda_{j}\right)^{2 a}, \quad a=1, \ldots, n
$$

The Hamiltonians $\widehat{\mathcal{H}}_{a}$ reduce to the commuting RSvD Hamiltonians, which in their action-angle variables q, p become

$$
\widehat{\mathcal{H}}_{a}^{\mathrm{red}}(q)=\sum_{j=1}^{n} \cos \left(2 a q_{j}\right), \quad a=1, \ldots, n
$$

$\mathcal{H}_{1}^{\text {red }}$ gives H in the q, p coordinates and $\widehat{\mathcal{H}}_{1}^{\text {red }}$ gives \widehat{H} in the λ, θ coordinates.

Deformed dual pair from a reduction of a Heisenberg double

We shall reduce the standard Poisson-Lie analogue of $T^{*} S U(2 n)$. This is the (symplectic) Heisenberg double of Poisson $S U(2 n)$, which as a manifold is the real Lie group $\mathcal{M}:=S L(2 n, \mathbb{C})$.

- Every $g \in \mathcal{M}$ admits the alternative Iwasawa decompositions

$$
g=k_{L} b_{R}=b_{L} k_{R}, \quad k_{L}, k_{R} \in K, \quad b_{L}, b_{R} \in B,
$$

where $K:=S U(2 n)$ and $B:=B(2 n)$ consists of upper triangular matrices with positive diagonal. Using these, \mathcal{M} is equipped with the Alekseev-Malkin symplectic form

$$
\omega_{\mathcal{M}}=\frac{1}{2} \Im \operatorname{tr}\left(d b_{L} b_{L}^{-1} \wedge d k_{L} k_{L}^{-1}\right)+\frac{1}{2} \Im \operatorname{tr}\left(b_{R}^{-1} d b_{R} \wedge k_{R}^{-1} d k_{R}\right) .
$$

- The smooth functions depending only on b_{L}, or only on b_{R}, form two mutually commuting Poisson algebras, and similarly for k_{L} and k_{R}. These are (up to signs) the Poisson algebras of the standard Poisson groups K and B in duality.

The 'master system' $\left(\mathcal{M}, \omega_{\mathcal{M}},\left\{\mathcal{H}_{a}\right\},\left\{\hat{\mathcal{H}}_{a}\right\}\right)$ is now defined as follows. Using the Iwasawa decomposition of $g \in \mathcal{M}=S L(2 n, \mathbb{C})$, written as $g=k b$, we introduce the 'unreduced Lax matrices'

$$
\Omega(g):=b b^{\dagger} \quad \text { and } \quad L(g):=k^{\dagger} I k I, \quad \text { with } \quad I:=\operatorname{diag}\left(\mathbf{1}_{n},-\mathbf{1}_{n}\right) .
$$

Two Abelian Poisson algebras are generated by the Hamiltonians

$$
\mathcal{H}_{a}(g):=\frac{1}{2} \operatorname{tr} \Omega(g)^{a} \quad \text { and } \quad \widehat{\mathcal{H}}_{a}(g):=\frac{1}{2} \operatorname{tr} L(g)^{a}, \quad a=1,2, \ldots
$$

They are invariant with respect to the action of the symmetry group $K_{+} \times K_{+}$ defined by

$$
K_{+} \times K_{+} \times \mathcal{M} \ni\left(\eta_{L}, \eta_{R}, g\right) \mapsto \eta_{L} g \eta_{R}^{-1} \in \mathcal{M}, \quad K_{+}=\{k \in K \mid I k I=k\} .
$$

$K_{+}<K$ is a Poisson subgroup and the action of $K_{+} \times K_{+}$is a Poisson action generated by the following moment map (in Lu's sense)

$$
\mathcal{M} \in g \mapsto\left(\pi_{N}\left(b_{L}\right), \pi_{N}\left(b_{R}^{-1}\right)\right) \in B / N \times B / N,
$$

where $\pi_{N}: B \rightarrow B / N$ is the projection associated with the normal subgroup $N<B=B(2 n)$ of elements having 1_{n} as $n \times n$ diagonal blocks.

The constraints and the key spectral invariants

Inspired by experience, we consider the moment map 'constraint surface'

$$
\mathcal{M}_{0}:=\left\{g \in \mathcal{M} \mid b_{R}:=b=\left(\begin{array}{cc}
e^{-v} \mathbf{1}_{n} & * \\
0 & e^{v} \mathbf{1}_{n}
\end{array}\right), b_{L}=\left(\begin{array}{cc}
e^{u} \sigma & * \\
0 & e^{-u} \mathbf{1}_{n}
\end{array}\right)\right\},
$$

where $\sigma:=\sigma(\mu) \in B(n)$ satisfies $\sigma \sigma^{\dagger}=e^{-2 \mu} \mathbf{1}_{n}+\widehat{V} \widehat{V}^{\dagger}$ with fixed $\widehat{V} \in \mathbb{C}^{n}$ verifying $|\widehat{V}|^{2}=e^{-2 \mu}\left(e^{2 n \mu}-1\right)$. Here, u, v and $\mu>0$ are real constants $(|u| \neq|v|)$.

Our task is to construct two suitable models of the reduced phase space

$$
\mathcal{M}_{\text {red }}=\mathcal{M}_{0} /\left(K_{+}(\sigma) \times K_{+}\right) \quad \text { where } \quad K_{+}(\sigma)=\left\{\eta \in K_{+} \mid \eta \sigma \sigma^{\dagger} \eta^{-1}=\sigma \sigma^{\dagger}\right\} .
$$

\mathcal{M}_{0} is a principal bundle over $\mathcal{M}_{\text {red }}$. It inherits a symplectic structure and two reduced Abelian Poisson algebras.

For any $g=k b \in \mathcal{M}_{0}, L(g)=k^{\dagger} I k I$ and $\Omega(g)=b b^{\dagger}$ are conjugate to unique diagonal matrices of the following form:

$$
L(g) \sim \operatorname{diag}\left(e^{2 i q_{1}}, \ldots, e^{2 i q_{n}}, e^{-2 i q_{1}}, \ldots, e^{-2 i q_{n}}\right) \quad \text { with } \quad \frac{\pi}{2} \geq q_{1} \geq q_{2} \geq \cdots \geq q_{n} \geq 0
$$

and

$$
\Omega(g) \sim \operatorname{diag}\left(e^{2 \lambda_{1}}, \ldots, e^{2 \lambda_{n}}, e^{-2 \lambda_{1}}, \ldots, e^{-2 \lambda_{n}}\right) \quad \text { with } \quad \lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{n} \geq|v|
$$

The respective 'spectral invariants' q_{i} and λ_{i} descend to functions on $\mathcal{M}_{\text {red }}$. Naturally, they (or their suitable functions) give rise to action variables. A crucial problem is to find their range of values.

Darboux coordinates and reduced Hamiltonians: Act I

We proved that the domain of the λ-variables is

$$
\mathcal{D}_{\lambda}=\left\{\lambda \in \mathbb{R}^{n} \mid \lambda_{i}-\lambda_{i+1} \geq \mu(i=1, \ldots, n-1), \lambda_{n} \geq \max (|v|,|u|)\right\} .
$$

We can parametrize a dense open subset $\mathcal{M}_{\text {red }}^{0} \subset \mathcal{M}_{\text {red }}$ by Darboux coordinates λ_{i}, θ_{j} varying in $\mathcal{D}_{\lambda}^{0} \times \mathbb{T}^{n}=\left\{\left(\lambda, e^{i \theta}\right\}\right.$, where $\mathcal{D}_{\lambda}^{0} \subset \mathcal{D}_{\lambda}$ is the interior. In these coordinates $\widehat{\mathcal{H}}_{1}^{\text {red }}$ becomes the RSvD type Hamiltonian
$e^{u-v} \widehat{\mathcal{H}}_{1}^{\text {red }}(\lambda, \theta)=V(\lambda)+\sum_{k=1}^{n} \frac{\cos \theta_{k}}{\cosh ^{2} \lambda_{k}}\left[1-\frac{\sinh ^{2} v}{\sinh ^{2} \lambda_{k}}\right]^{1 / 2}\left[1-\frac{\sinh ^{2} u}{\sinh ^{2} \lambda_{k}}\right]^{1 / 2}$

$$
\times \prod_{\substack{l=1 \\(l \neq k)}}^{n}\left[1-\frac{\sinh ^{2} \mu}{\sinh ^{2}\left(\lambda_{k}-\lambda_{l}\right)}\right]^{1 / 2}\left[1-\frac{\sinh ^{2} \mu}{\sinh ^{2}\left(\lambda_{k}+\lambda_{l}\right)}\right]^{1 / 2} \quad \text { with }
$$

$V(\lambda)=\frac{\sinh (v) \sinh (u)}{\sinh ^{2} \mu} \prod_{k=1}^{n}\left[1-\frac{\sinh ^{2} \mu}{\sinh ^{2} \lambda_{k}}\right]-\frac{\cosh (v) \cosh (u)}{\sinh ^{2} \mu} \prod_{k=1}^{n}\left[1+\frac{\sinh ^{2} \mu}{\cosh ^{2} \lambda_{k}}\right]+C$.
We also have the reduced Lax matrix $L_{\text {red }}(\lambda, \theta)$ generating $\widehat{\mathcal{H}}_{j}^{\text {red }}$ for $j=1, \ldots, n$.
Even globally on $\mathcal{M}_{\text {red }}$, the other family $\mathcal{H}_{j}^{\text {red }}$ of reduced Hamiltonians reads

$$
\mathcal{H}_{j}^{\text {red }}=\sum_{i=1}^{n} \cosh \left(2 j \lambda_{i}\right) .
$$

In this way, the λ_{i} play the double role of positions and actions.

Darboux coordinates and reduced Hamiltonians: Act II

The action variables (2π-periodic flows) corresponding to eigenvalues of $L(g)$ are $x_{i}:=\log \sin q_{i} \quad$ and their domain is proved to be

$$
\mathcal{D}_{x}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \leq s:=\min (0, v-u), x_{j}-x_{j+1} \geq \mu(j=1, \ldots, n-1)\right\} .
$$

The pair $\left(x, e^{\text {iy }}\right) \in \mathcal{D}_{x}^{0} \times \mathbb{T}^{n}$ gives Darboux coordinates on a dense open subset $\mathcal{M}_{\text {red }}^{\prime} \subset \mathcal{M}_{\text {red }}$. In these coordinates $\mathcal{H}_{1}^{\text {red }}$ becomes the RSvD type Hamiltonian

$$
\begin{gathered}
\mathcal{H}_{1}^{\mathrm{red}}(x, y)=U(x)-\sum_{j=1}^{n} \cos \left(y_{j}\right) U_{1}\left(x_{j}\right)^{\frac{1}{2}} \prod_{\substack{k=1 \\
k \neq j)}}^{n}\left[1-\frac{\sinh ^{2}(\mu)}{\sinh ^{2}\left(x_{j}-x_{k}\right)}\right]^{\frac{1}{2}} \\
U(x)=\frac{e^{-2 u}+e^{2 v}}{2} \sum_{j=1}^{n} e^{-2 x_{j}}, \quad U_{1}\left(x_{j}\right)=\left[1-\left(1+e^{2(v-u)}\right) e^{-2 x_{j}}+e^{2(v-u)} e^{-4 x_{j}}\right] .
\end{gathered}
$$

We also have the reduced Lax matrix $\Omega_{\text {red }}(x, y)$ generating $\mathcal{H}_{j}^{\text {red }}$ for $j=1, \ldots, n$.
The other family $\widehat{\mathcal{H}}_{j}^{\text {red }}$ of reduced Hamiltonians takes the following form:

$$
\widehat{\mathcal{H}}_{j}^{\text {red }}=\sum_{i=1}^{n} \cos \left(2 j q_{i}\right), \quad\left(\cos \left(2 j q_{i}\right) \text { is a polynomial in } \sin q_{i}=e^{x_{i}}\right) .
$$

Therefore the x_{i} also play the double role of positions and actions.
Consequence: Each reduced Hamiltonian $\widehat{\mathcal{H}}_{j}^{\text {red }}$ and $\mathcal{H}_{j}^{\text {red }}$ is non-degenerate and possesses a unique equilibrium point (which is shared by its family).

Two global models of $\mathcal{M}_{\text {red }}$

The action-angle variables λ_{i}, θ_{j} are not good coordinates on $\mathcal{M}_{\text {red }}$ where λ reaches the boundary of the polyhedron \mathcal{D}_{λ}. To describe the global structure of $\mathcal{M}_{\text {red }}$, we introduce the complex variables

$$
\zeta_{j}=\sqrt{\lambda_{j}-\lambda_{j+1}-\mu} \prod_{k=1}^{j} e^{-\mathrm{i} \theta_{k}}, \quad j=1, \ldots, n-1, \quad \zeta_{n}=\sqrt{\lambda_{n}-|u|} \prod_{k=1}^{n} e^{-i \theta_{k}}
$$

The boundary of \mathcal{D}_{λ} is characterized by the vanishing of some ζ_{k}, and for the dense open part $\mathcal{M}_{\text {red }}^{0}$ we have

$$
\mathcal{D}_{\lambda}^{0} \times \mathbb{T}^{n} \Longleftrightarrow\left(\mathbb{C}^{*}\right)^{n}, \quad \text { with } \quad \mathbb{C}^{*}=\mathbb{C} \backslash\{0\}
$$

The complex variables remain valid when we 'add the zeros', and the standard symplectic vector space $(\widehat{M}, \widehat{\omega})=\left(\mathbb{C}^{n}, i \sum_{j=1}^{n} d \zeta_{j} \wedge d \zeta_{j}^{*}\right)$ gives a global model of $\mathcal{M}_{\text {red. }}$. The point $\zeta=0$ corresponds to the common equilibrium of the reduced Hamiltonians $\mathcal{H}_{j}^{\text {red }}$.
Analogously, we combine the variables x_{i}, y_{j} into complex coordinates

$$
\mathcal{Z}_{j}=\sqrt{x_{j}-x_{j+1}-\mu} \prod_{k=j+1}^{n} e^{\mathrm{i} y_{k}}, \quad j=1, \ldots, n-1, \quad \mathcal{Z}_{n}=\sqrt{s-x_{1}} \prod_{k=1}^{n} e^{\mathrm{i} y_{k}}
$$

Using these, the symplectic manifold $(M, \omega)=\left(\mathbb{C}^{n}, i \sum_{j=1}^{n} d \mathcal{Z}_{j} \wedge d \mathcal{Z}_{j}^{*}\right)$ represents an alternative model of $\mathcal{M}_{\text {red }}$. The point $\mathcal{Z}=0$ corresponds to common equilibrium of the dual Hamiltonians $\widehat{\mathcal{H}}_{j}^{\text {red }}$.
We have the reduced Lax matrices, generating the reduced Hamiltonians, in terms of both global models of $\mathcal{M}_{\text {red }}$ explicitly.

Remark: In \mathcal{Z}_{n} we have $s=\min (0, v-u)$, and in the formula of ζ_{n} we assumed that $|u|>|v|$.
Consequence: The identity map of the reduced phase space $\mathcal{M}_{\text {red }}$ translates into a (very non-trivial) symplectomorphism from \mathbb{C}^{n} to \mathbb{C}^{n}, which parametrizes both models M and \widehat{M} of $\mathcal{M}_{\text {red }}$. This is the duality map \mathcal{R} that produces action-angle variables for our pair of integrable systems obtained by Hamiltonian reduction. The Hamiltonian flows of the action variables are equivalent to the standard torus action on the symplectic vector space $\mathbb{C}^{n} \simeq \mathbb{R}^{2 n}$.

In summary, we have generalized the reduction treatment of the duality between the trigonometric $B C_{n}$ Sutherland system
$H(q, p)=\frac{1}{2} \sum_{j=1}^{n} p_{j}^{2}+\sum_{1 \leq j<k \leq n}\left(\frac{\gamma}{\sin ^{2}\left(q_{j}-q_{k}\right)}+\frac{\gamma}{\sin ^{2}\left(q_{j}+q_{k}\right)}\right)+\sum_{j=1}^{n} \frac{\gamma_{1}}{\sin ^{2}\left(q_{j}\right)}+\sum_{j=1}^{n} \frac{\gamma_{2}}{\sin ^{2}\left(2 q_{j}\right)}$
and the rational Ruijsenaars-Schneider-van Diejen system

$$
\begin{aligned}
\widehat{H}(\lambda, \theta) & =\sum_{j=1}^{n} \cos \left(\theta_{j}\right)\left[1-\frac{u^{2}}{\lambda_{j}^{2}}\right]^{\frac{1}{2}}\left[1-\frac{v^{2}}{\lambda_{j}^{2}}\right]^{\frac{1}{2}} \prod_{\substack{k=1 \\
(k \neq j)}}^{n}\left[1-\frac{\mu^{2}}{\left(\lambda_{j}-\lambda_{k}\right)^{2}}\right]^{\frac{1}{2}}\left[1-\frac{\mu^{2}}{\left(\lambda_{j}+\lambda_{k}\right)^{2}}\right]^{\frac{1}{2}} \\
& +\frac{u v}{\mu^{2}} \prod_{j=1}^{n}\left[1-\frac{\mu^{2}}{\lambda_{j}^{2}}\right]-\frac{u v}{\mu^{2}}
\end{aligned}
$$

It is well-known that the cotangent bundle $T^{*} S U(2 n)$ can be recovered as a limit of the Heisenberg double $S L(2 n, \mathbb{C})$. Next, I outline how the limit appears for the corresponding dual pairs of integrable Hamiltonians.

The cotangent bundle limit

- Limit of $\widehat{\mathcal{H}}_{1}^{\text {red }}$ to dual $B C_{n}$ Sutherland: Introduce positive scaling parameter α. Then, on the domain $\mathcal{D}_{\lambda}^{0} \times \mathbb{T}^{n}$, we obtain

$$
\lim _{\alpha \rightarrow 0} \widehat{\mathcal{H}}_{1}^{\text {red }}(\alpha \lambda, \theta ; \alpha \mu, \alpha u, \alpha v)=\widehat{H}(\lambda, \theta ; \mu, u, v)
$$

where \widehat{H} is the dual of the $B C_{n}$ Sutherland Hamiltonian. The symplectic form is also rescaled during the limit. This is very similar to the α-scaling limit of H_{vD}.

- Limit of $\mathcal{H}_{1}^{\text {red }}$ to $B C_{n}$ Sutherland: Define new Darboux coordinates q_{i}, p_{i} by

$$
\exp \left(x_{i}\right)=\sin \left(q_{i}\right) \quad \text { and } \quad y_{i}=p_{i} \tan \left(q_{i}\right)
$$

and then make the substitution
$u \rightarrow \beta u, \quad v \rightarrow \beta v, \quad \mu \rightarrow \beta \mu, \quad p \rightarrow \beta p, \quad \omega_{\text {red }} \rightarrow \beta \omega_{\text {red }}, \quad$ using a parameter $\beta>0$.
Then $\mathcal{H}_{1}^{\text {red }}(x, y ; u, v, \mu)$ admits the scaling limit

$$
\lim _{\beta \rightarrow 0} \frac{\mathcal{H}_{1}^{\text {red }}(\log \sin q, \beta p \tan q ; \beta \mu, \beta u, \beta v)-n}{\beta^{2}}=H_{\mathrm{Suth}}\left(q, p ; \gamma, \gamma_{1}, \gamma_{2}\right),
$$

with $\gamma=\mu^{2}$ etc. The domain of x and correspondingly that of q depends on β, and in the $\beta \rightarrow 0$ limit we recover the usual $B C_{n}$ domain (Weyl alcove) for q.
The second limit is rather singular: $e^{i y_{j}} \in U(1)$ and p_{j} runs over \mathbb{R} in the limit. This limit is similar to the β-scaling limit of H_{vD}.

Our 3-parametric systems appear to be half way in between the 5-parametric H_{vD} and the dual pair $H_{\text {suth }}, \widehat{H}$ coming from $T^{*} S U(2 n)$.

How to recover our 3-parametric systems from the 5-parametric H_{VD} ?
First of all, we replace λ, θ by $\mathrm{i} \lambda, \mathrm{i} \theta$ in $H_{\mathrm{v} D}$, which gives

$$
\begin{gathered}
H_{\mathrm{vD}}^{\prime}\left(\lambda, \theta ; c_{0}, c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}\right)=\sum_{j=1}^{n}\left(\cos \theta_{j}\right) \mathcal{V}_{j}^{\prime}(\lambda ; c)^{\frac{1}{2}}+\mathcal{U}^{\prime}(\lambda ; c) \\
\mathcal{V}_{j}^{\prime}(\lambda ; c)=\prod_{i=1}^{2}\left[1-\frac{\sinh ^{2} c_{i}}{\sinh ^{2} \lambda_{j}}\right]\left[1+\frac{\sinh ^{2} c_{i}^{\prime}}{\cosh ^{2} \lambda_{j}}\right] \prod_{k \neq j}^{n}\left[1-\frac{\sinh ^{2} c_{0}}{\sinh ^{2}\left(\lambda_{j} \pm \lambda_{k}\right)}\right] \\
\mathcal{U}^{\prime}(\lambda ; c)=\left(\sinh c_{0}\right)^{-2} \prod_{i=1}^{2} \sinh \left(c_{i}\right) \cosh \left(c_{i}^{\prime}\right) \prod_{k=1}^{n}\left[1-\frac{\sinh ^{2} c_{0}}{\sinh ^{2} \lambda_{k}}\right] \\
+\left(\sinh c_{0}\right)^{-2} \prod_{i=1}^{2} \cosh \left(c_{i}\right) \sinh \left(c_{i}^{\prime}\right) \prod_{k=1}^{n}\left[1+\frac{\sinh ^{2} c_{0}}{\cosh ^{2} \lambda_{k}}\right]
\end{gathered}
$$

Then we put $c_{0}=\mu, c_{1}=u, c_{2}=v$ and recover $\widehat{\mathcal{H}}_{1}^{\text {red }}$ as follows:

$$
\frac{e^{u-v}}{4} \widehat{\mathcal{H}}_{1}^{\mathrm{red}}(\lambda, \theta ; \mu, u, v)-n=\lim _{\substack{c_{1}^{\prime} \rightarrow-\infty \\ c_{2}^{\prime} \rightarrow+\infty}} e^{c_{1}^{\prime}-c_{2}^{\prime}} H_{\mathrm{VD}}^{\prime}(\lambda, \theta ; c)
$$

By a different limit, we can also recover $\mathcal{H}_{1}^{\text {red }}$.

Conclusion and open problems

The examples presented illustrate how Hamiltonian reduction leads to integrable many-body systems enjoying action-angle duality. This framework is useful for studying several other systems as well.

We can show that by applying suitable analytic continuations, specializations and limits, van Diejen's 5-coupling many-body Hamiltonian $H_{v D}$ reproduces both of our reduced Hamiltonians $\mathcal{H}_{1}^{\text {red }}$ and $\widehat{\mathcal{H}}_{1}^{\text {red }}$. (The details are given in our papers, using slightly different notations.)

The main open problem related to this talk:
Can one generalize our 3-parametric reduction in such a way to accommodate 5 -parameters and yield the 5 -coupling systems of van Diejen?

Another long standing open problem: Is there a reduction picture behind the (real, repulsive) hyperbolic RS system?

$$
H_{\mathrm{hyp}-\mathrm{RS}}=\sum_{k=1}^{n}\left(\cosh p_{k}\right) \prod_{j \neq k}\left[1+\frac{\sinh ^{2} \mu}{\sinh ^{2}\left(q_{k}-q_{j}\right)}\right]^{\frac{1}{2}}
$$

The general idea: Starting with Abelian algebras \mathfrak{H}^{1} and \mathfrak{H}^{2} on a master phase space \mathcal{M}, the reduced Abelian algebras are defined by $\mathfrak{H}_{\text {red }}^{i} \circ \pi_{0}=\mathfrak{H}^{i} \circ \iota_{0}$ for $i=1,2$. They turn into Abelian algebras of the models M and \widehat{M} of $\mathcal{M}_{\text {red }}$ according to $\mathfrak{H} \circ \Psi=\mathfrak{H}_{\text {red }}^{1}=\widehat{\mathfrak{Q}} \circ \widehat{\Psi}$ and $\mathfrak{Q} \circ \Psi=\mathfrak{H}_{\text {red }}^{2}=\widehat{\mathfrak{H}} \circ \widehat{\Psi}$.

References

This talk was mainly based on the following papers:
L.F. and T.F. Görbe, Duality between the trigonometric BC(n) Sutherland system and a completed rational Ruijsenaars-Schneider-van Diejen system, Journ. Math. Phys. 55, 102704 (2014)
L.F. and T.F. Görbe, On a Poisson-Lie deformation of the $B C(n)$ Sutherland system, Nucl. Phys. B 901, 85-114 (2015)
L.F. and I. Marshall, The action-angle dual of an integrable Hamiltonian system of Ruijsenaars-Schneider-van Diejen type, J. Phys. A: Math. Theor. 50, 314004 (2017)
L.F. and I. Marshall, Global description of action-angle duality for a Poisson-Lie deformation of the trigonometric $B C_{n}$ Sutherland system, arXiv:1710.08760

Predecessors of the joint works with Görbe and Marshall are:
L.F. and B.G. Pusztai, A class of Calogero type reductions of free motion on a simple Lie group, Lett. Math. Phys. 79, 263-277 (2007)
B.G. Pusztai, The hyperbolic $B C(n)$ Sutherland and the rational $B C(n)$ Ruijsenaars-Schneidervan Diejen models: Lax matrices and duality, Nucl. Phys. B 856, 528-551 (2012)
I. Marshall, A new model in the Calogero-Ruijsenaars family, Commun. Math. Phys. 338, 563-587 (2015)

References to the fundamental papers of Ruijsenaars, van Diejen, Fock-Gorsky-Nekrasov-Roubtsov, and others, as well as to the reduction techniques used, can be found in the above sources.

