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Action-angle duality

for a Poisson-Lie deformation of the BCn Sutherland system

based on joint works with T.F. Görbe and I. Marshall

Consider two Liouville integrable Hamiltonian systems (M,ω,H) and
(M̂, ω̂, Ĥ). These systems are said to be in action-angle duality

if there exist Darboux coordinates qi, pi on (dense open subset of)
M , and Darboux coordinates λk, θk on (dense open subset of) M̂ ,
and a global symplectomorphism R : M → M̂ such that

H ◦ R−1 depends only on λ (action variables for H) and

Ĥ ◦ R depends only on q (action variables for Ĥ).

This is non-trivial if both H(q, p) and Ĥ(λ, θ) are interesting.

Self-duality is the special case when H and Ĥ have the same form.
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Action-angle duality is particularly interesting when it relates two

(one-dimensional) many-body systems in such a way that

the qi describe particle positions for H(q, p) and

the λi describe particle positions for Ĥ(λ, θ).

It was discovered by Ruijsenaars (1988-95) that Calogero-Moser

and Toda type systems enjoy duality relations.

The simplest example is the self-dual Calogero-Moser system:

HCal(q, p) =
1

2

n∑
k=1

p2
k +

1

2

∑
j 6=k

µ2

(qk − qj)2
.

The simplest dual pair is provided by hyperbolic Sutherland

Hhyp−Suth =
1

2

n∑
k=1

p2
k +

1

2

∑
j 6=k

µ2

sinh2(qk − qj)

and its Ruijsenaars dual

Ĥrat−RS =
n∑

k=1

(cosh θk)
∏
j 6=k

[
1 +

µ2

(λk − λj)2

]1

2
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Action-angle dualities of many-body systems were much studied in

the nineties, e.g., by Fock, Gorsky, Nekrasov, Rosly and Roubtsov.

In recent years, the subject was investigated by Pusztai, and myself

in collaboration with Klimcik, Ayadi, Kluck, Görbe and Marshall.

Reshetikhin pointed out dualities for many-body systems extended

by ‘spin’ degrees of freedom.

My aim is to understand all known examples of action-angle duality

in group theoretic terms, using Hamiltonian reduction, and to derive

new ones. Here, I focus on systems built on the BCn root system.



In 1993, van Diejen introduced the following integrable classical

Hamiltonian:

HvD(λ, θ; c0, c1, c2, c
′
1, c
′
2) =

n∑
j=1

(cosh θj)Vj(λ; c)
1
2 + U(λ; c)

Vj(λ; c) =
2∏
i=1

[
1 +

sinh2 ci

sin2 λj

] [
1 +

sinh2 c′i
cos2 λj

] n∏
k 6=j

[
1 +

sinh2 c0

sin2(λj ± λk)

]

U(λ; c) = (sinh c0)−2
2∏
i=1

sinh(ci) cosh(c′i)
n∏

k=1

[
1 +

sinh2 c0

sin2 λk

]

+(sinh c0)−2
2∏
i=1

cosh(ci) sinh(c′i)
n∏

k=1

[
1 +

sinh2 c0
cos2 λk

]

In the standard trigonometric case the Darboux coordinates λj, θj
and the 5 ‘coupling constants’ c = (c0, c1, c2, c

′
1, c
′
2) are real. The

model admits a plethora of different real forms and limits.

3



Scaling limits are obtained by introducing two more parameters α and β and

afterwards taking them to zero in HvD(αλ, βθ;αβc). Scaling with β leads to the

trigonometric BCn Sutherland model: limβ→0 β
−2 (HvD(λ, βθ;βc)− C) =

1

2

n∑
j=1

θ2
j +

1

2

∑
k 6=j

c20
sin2(λj ± λk)

+
n∑

j=1

(
a2

sin2 λj
+

b2

cos2 λj

)
.

Scaling with α leads to the rational van Diejen model: limα→0HvD(αλ, θ;αc) =

n∑
j=1

(cosh θj)

 2∏
i=1

1 +
c2i
λ2
j

 n∏
k 6=j

(
1 +

c20
(λj ± λk)2

)1
2

+
c1c2

c20

n∏
j=1

1 +
c20
λ2
j


Scaling both with α and β leads to the rational Calogero model of type Bn:

HCal =
1

2

n∑
j=1

θ2
j +

1

2

∑
k 6=j

c20
(λj ± λk)2

+
n∑

j=1

a2

λ2
j

.

It is an open question to derive the 5-coupling van Diejen system by
Hamiltonian reduction. Today, I report on progress for certain 3-
parametric limiting cases. First, I recall that the trigonometric BCn
Sutherland system and its action-angle dual arises from a reduction
of T ∗SU(2n) [Pusztai ‘12, Feher-Görbe ‘14].
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A dual pair associated with the BCn root system
The trigonometric BCn Sutherland system

H(q, p) =
1

2

n∑
j=1

p2
j+

∑
1≤j<k≤n

(
γ

sin2(qj − qk)
+

γ

sin2(qj + qk)

)
+

n∑
j=1

γ1

sin2(qj)
+

n∑
j=1

γ2

sin2(2qj)

is dual to the (completed) rational Ruijsenaars-Schneider-van Diejen system

Ĥ(λ, θ) =
n∑

j=1

cos(θj)

[
1−

u2

λ2
j

]1
2
[
1−

v2

λ2
j

]1
2

n∏
k=1

(k 6=j)

[
1−

µ2

(λj − λk)2

]1
2
[
1−

µ2

(λj + λk)2

]1
2

+
uv

µ2

n∏
j=1

[
1−

µ2

λ2
j

]
−
uv

µ2
. Here, the coupling constants are subject to

γ > 0, γ2 > 0, 4γ1 + γ2 > 0, and µ > 0, |u| 6= |v| 6= 0. Duality holds under the

relation γ = µ2, γ1 = uv
2
, γ2 = (u−v)2

2
.

The Sutherland positions q live in the open polytope (Weyl alcove)

Dq = {q ∈ Rn |
π

2
> q1 > · · · > qn > 0}

and the Sutherland actions λ (dual positions) fill the closed polyhedron

Dλ = {λ ∈ Rn | λa − λa+1 ≥ µ (a = 1, . . . , n− 1), λn ≥ max(|u|, |v|)}.

The above description of dual system is valid on a dense open submanifold
parametrized by Doλ × Tn. The torus Tn collapses at the boundary of Dλ.
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This dual pair results by reducing T ∗SU(2n) ' {(k, J) | k ∈ SU(2n), J ∈ su(2n)}
using the symmetry group K+×K+, with K+ = S(U(n)×U(n)) being the block-
diagonal subgroup of K = SU(2n).

Before reduction, we have two Abelian Poisson algebras of (K+ ×K+)-invariant
Hamiltonians generated by

Ha(k, J) =
1

2
tr (iJ)2a and Ĥa(k, J) :=

1

2
tr (k†IkI)a with I := diag(1n,−1n).

The moment map values for the actions of K+ defined by left- and respectively
by right-multiplications are fixed to be

diag(C(µ), 0n) + i(µ+ u)I and ivI,

where C(µ) ∈ u(n) reads C(µ)lm = iµ(δlm−1). Then λ and q arise as eigenvalues:

−iJ ∼ diag(λ1, . . . , λn,−λ1, . . . ,−λn), k†IkI ∼ diag(e2iq1, . . . , e2iqn, e−2iq1, . . . , e−2iqn).

The Hamiltonians Ha reduce to the commuting Sutherland Hamiltonians, which
in their action-angle variables λ, θ become

Hred
a (λ) =

n∑
j=1

(λj)
2a, a = 1, . . . , n.

The Hamiltonians Ĥa reduce to the commuting RSvD Hamiltonians, which in
their action-angle variables q, p become

Ĥred
a (q) =

n∑
j=1

cos(2aqj), a = 1, . . . , n.

Hred
1 gives H in the q, p coordinates and Ĥred

1 gives Ĥ in the λ, θ coordinates.
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Deformed dual pair from a reduction of a Heisenberg double

We shall reduce the standard Poisson-Lie analogue of T ∗SU(2n). This is the
(symplectic) Heisenberg double of Poisson SU(2n), which as a manifold is the
real Lie group M := SL(2n,C).

• Every g ∈M admits the alternative Iwasawa decompositions

g = kLbR = bLkR, kL, kR ∈ K, bL, bR ∈ B,
where K := SU(2n) and B := B(2n) consists of upper triangular matrices with
positive diagonal. Using these, M is equipped with the Alekseev-Malkin sym-
plectic form

ωM =
1

2
=tr (dbLb

−1
L ∧ dkLk

−1
L ) +

1

2
=tr (b−1

R dbR ∧ k−1
R dkR).

• The smooth functions depending only on bL, or only on bR, form two mutually
commuting Poisson algebras, and similarly for kL and kR. These are (up to signs)
the Poisson algebras of the standard Poisson groups K and B in duality.

The ‘master system’ (M, ωM, {Ha}, {Ĥa}) is now defined as follows. Using the
Iwasawa decomposition of g ∈ M = SL(2n,C), written as g = kb, we introduce
the ‘unreduced Lax matrices’

Ω(g) := bb† and L(g) := k†IkI, with I := diag(1n,−1n).

Two Abelian Poisson algebras are generated by the Hamiltonians

Ha(g) :=
1

2
tr Ω(g)a and Ĥa(g) :=

1

2
trL(g)a, a = 1,2, . . .
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They are invariant with respect to the action of the symmetry group K+ ×K+

defined by

K+ ×K+ ×M 3 (ηL, ηR, g) 7→ ηLgη
−1
R ∈M, K+ = {k ∈ K | IkI = k}.

K+ < K is a Poisson subgroup and the action of K+ × K+ is a Poisson action
generated by the following moment map (in Lu’s sense)

M∈ g 7→ (πN(bL), πN(b−1
R )) ∈ B/N ×B/N,

where πN : B → B/N is the projection associated with the normal subgroup
N < B = B(2n) of elements having 1n as n× n diagonal blocks.



The constraints and the key spectral invariants

Inspired by experience, we consider the moment map ‘constraint surface’

M0 :=

{
g ∈M

∣∣∣∣ bR := b =

(
e−v1n ∗

0 ev1n

)
, bL =

(
euσ ∗
0 e−u1n

)}
,

where σ := σ(µ) ∈ B(n) satisfies σσ† = e−2µ1n + V̂ V̂ † with fixed V̂ ∈ Cn verifying
|V̂ |2 = e−2µ(e2nµ − 1). Here, u, v and µ > 0 are real constants (|u| 6= |v|).

Our task is to construct two suitable models of the reduced phase space

Mred =M0/(K+(σ)×K+) where K+(σ) = {η ∈ K+ | ησσ†η−1 = σσ†}.
M0 is a principal bundle over Mred. It inherits a symplectic structure and two
reduced Abelian Poisson algebras.

For any g = kb ∈ M0, L(g) = k†IkI and Ω(g) = bb† are conjugate to unique
diagonal matrices of the following form:

L(g) ∼ diag(e2iq1, . . . , e2iqn, e−2iq1, . . . , e−2iqn) with
π

2
≥ q1 ≥ q2 ≥ · · · ≥ qn ≥ 0

and

Ω(g) ∼ diag(e2λ1, . . . , e2λn, e−2λ1, . . . , e−2λn) with λ1 ≥ λ2 ≥ . . . λn ≥ |v|.
The respective ‘spectral invariants’ qi and λi descend to functions on Mred.
Naturally, they (or their suitable functions) give rise to action variables. A crucial
problem is to find their range of values.
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Darboux coordinates and reduced Hamiltonians: Act I

We proved that the domain of the λ-variables is

Dλ =
{
λ ∈ Rn | λi − λi+1 ≥ µ (i = 1, . . . , n− 1), λn ≥ max(|v|, |u|)

}
.

We can parametrize a dense open subset M0
red ⊂ Mred by Darboux coordinates

λi, θj varying in D0
λ × Tn = {(λ, eiθ}, where D0

λ ⊂ Dλ is the interior. In these

coordinates Ĥred
1 becomes the RSvD type Hamiltonian

eu−v Ĥred
1 (λ, θ) = V (λ) +

n∑
k=1

cos θk
cosh2 λk

[
1−

sinh2 v

sinh2 λk

]1/2 [
1−

sinh2 u

sinh2 λk

]1/2

×
n∏
l=1

(l 6=k)

[
1−

sinh2 µ

sinh2(λk − λl)

]1/2 [
1−

sinh2 µ

sinh2(λk + λl)

]1/2

with

V (λ) =
sinh(v) sinh(u)

sinh2 µ

n∏
k=1

[
1−

sinh2 µ

sinh2 λk

]
−

cosh(v) cosh(u)

sinh2 µ

n∏
k=1

[
1 +

sinh2 µ

cosh2 λk

]
+C.

We also have the reduced Lax matrix Lred(λ, θ) generating Ĥred
j for j = 1, . . . , n.

Even globally on Mred, the other family Hred
j of reduced Hamiltonians reads

Hred
j =

n∑
i=1

cosh(2jλi).

In this way, the λi play the double role of positions and actions.
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Darboux coordinates and reduced Hamiltonians: Act II

The action variables (2π-periodic flows) corresponding to eigenvalues of L(g) are

xi := log sin qi and their domain is proved to be

Dx =
{
x ∈ Rn | x1 ≤ s := min(0, v − u), xj − xj+1 ≥ µ (j = 1, . . . , n− 1)

}
.

The pair (x, eiy) ∈ D0
x × Tn gives Darboux coordinates on a dense open subset

M′
red ⊂Mred. In these coordinates Hred

1 becomes the RSvD type Hamiltonian

Hred
1 (x, y) = U(x)−

n∑
j=1

cos(yj)U1(xj)
1
2

n∏
k=1

(k 6=j)

[
1−

sinh2(µ)

sinh2(xj − xk)

]1
2

U(x) =
e−2u + e2v

2

n∑
j=1

e−2xj, U1(xj) =
[
1− (1 + e2(v−u))e−2xj + e2(v−u)e−4xj

]
.

We also have the reduced Lax matrix Ωred(x, y) generating Hred
j for j = 1, . . . , n.

The other family Ĥred
j of reduced Hamiltonians takes the following form:

Ĥred
j =

n∑
i=1

cos(2jqi), (cos(2jqi) is a polynomial in sin qi = exi).

Therefore the xi also play the double role of positions and actions.

Consequence: Each reduced Hamiltonian Ĥred
j and Hred

j is non-degenerate and
possesses a unique equilibrium point (which is shared by its family).
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Two global models of Mred

The action-angle variables λi, θj are not good coordinates on Mred where λ
reaches the boundary of the polyhedron Dλ. To describe the global structure
of Mred, we introduce the complex variables

ζj =
√
λj − λj+1 − µ

j∏
k=1

e−iθk, j = 1, . . . , n− 1, ζn =
√
λn − |u|

n∏
k=1

e−iθk.

The boundary of Dλ is characterized by the vanishing of some ζk, and for the
dense open part M0

red we have

D0
λ × Tn ⇐⇒ (C∗)n, with C∗ = C \ {0}.

The complex variables remain valid when we ‘add the zeros’, and the standard
symplectic vector space (M̂, ω̂) = (Cn, i

∑n
j=1 dζj ∧ dζ∗j ) gives a global model of

Mred. The point ζ = 0 corresponds to the common equilibrium of the reduced
Hamiltonians Hred

j .

Analogously, we combine the variables xi, yj into complex coordinates

Zj =
√
xj − xj+1 − µ

n∏
k=j+1

eiyk, j = 1, . . . , n− 1, Zn =
√
s− x1

n∏
k=1

eiyk.

Using these, the symplectic manifold (M,ω) = (Cn, i
∑n

j=1 dZj∧dZ∗j ) represents an
alternative model of Mred. The point Z = 0 corresponds to common equilibrium
of the dual Hamiltonians Ĥred

j .

We have the reduced Lax matrices, generating the reduced Hamiltonians, in
terms of both global models of Mred explicitly.
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Remark: In Zn we have s = min(0, v − u), and in the formula of ζn we assumed that |u| > |v|.

Consequence: The identity map of the reduced phase space Mred translates
into a (very non-trivial) symplectomorphism from Cn to Cn, which parametrizes

both models M and M̂ of Mred. This is the duality map R that produces
action-angle variables for our pair of integrable systems obtained by Hamiltonian
reduction. The Hamiltonian flows of the action variables are equivalent to
the standard torus action on the symplectic vector space Cn ' R2n.

In summary, we have generalized the reduction treatment of the duality between
the trigonometric BCn Sutherland system

H(q, p) =
1

2

n∑
j=1

p2
j+

∑
1≤j<k≤n

(
γ

sin2(qj − qk)
+

γ

sin2(qj + qk)

)
+

n∑
j=1

γ1

sin2(qj)
+

n∑
j=1

γ2

sin2(2qj)

and the rational Ruijsenaars-Schneider-van Diejen system

Ĥ(λ, θ) =
n∑

j=1

cos(θj)

[
1−

u2

λ2
j

]1
2
[
1−

v2

λ2
j

]1
2

n∏
k=1

(k 6=j)

[
1−

µ2

(λj − λk)2

]1
2
[
1−

µ2

(λj + λk)2

]1
2

+
uv

µ2

n∏
j=1

[
1−

µ2

λ2
j

]
−
uv

µ2
.

It is well-known that the cotangent bundle T ∗SU(2n) can be recovered as a limit
of the Heisenberg double SL(2n,C). Next, I outline how the limit appears for the
corresponding dual pairs of integrable Hamiltonians.
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The cotangent bundle limit

• Limit of Ĥred
1 to dual BCn Sutherland: Introduce positive scaling parameter α.

Then, on the domain D0
λ × Tn, we obtain

lim
α→0
Ĥred

1 (αλ, θ;αµ, αu, αv) = Ĥ(λ, θ;µ, u, v),

where Ĥ is the dual of the BCn Sutherland Hamiltonian. The symplectic form is
also rescaled during the limit. This is very similar to the α-scaling limit of HvD.

• Limit of Hred
1 to BCn Sutherland: Define new Darboux coordinates qi, pi by

exp(xi) = sin(qi) and yi = pi tan(qi),

and then make the substitution

u→ βu, v → βv, µ→ βµ, p→ βp, ωred → βωred, using a parameter β > 0.

Then Hred
1 (x, y;u, v, µ) admits the scaling limit

lim
β→0

Hred
1 (log sin q, βp tan q;βµ, βu, βv)− n

β2
= HSuth(q, p; γ, γ1, γ2),

with γ = µ2 etc. The domain of x and correspondingly that of q depends on β,
and in the β → 0 limit we recover the usual BCn domain (Weyl alcove) for q.

The second limit is rather singular: eiyj ∈ U(1) and pj runs over R in the limit.
This limit is similar to the β-scaling limit of HvD.

Our 3-parametric systems appear to be half way in between the 5-parametric

HvD and the dual pair HSuth, Ĥ coming from T ∗SU(2n).
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How to recover our 3-parametric systems from the 5-parametric HvD?

First of all, we replace λ, θ by iλ, iθ in HvD, which gives

H ′vD(λ, θ; c0, c1, c2, c
′
1, c
′
2) =

n∑
j=1

(cos θj)V ′j(λ; c)
1

2 + U ′(λ; c)

V ′j(λ; c) =
2∏
i=1

[
1−

sinh2 ci

sinh2 λj

] [
1 +

sinh2 c′i
cosh2 λj

] n∏
k 6=j

[
1−

sinh2 c0

sinh2(λj ± λk)

]
,

U ′(λ; c) = (sinh c0)−2
2∏
i=1

sinh(ci) cosh(c′i)
n∏

k=1

[
1−

sinh2 c0

sinh2 λk

]

+(sinh c0)−2
2∏
i=1

cosh(ci) sinh(c′i)
n∏

k=1

[
1 +

sinh2 c0

cosh2 λk

]

Then we put c0 = µ, c1 = u, c2 = v and recover Ĥred
1 as follows:

eu−v

4
Ĥred

1 (λ, θ;µ, u, v)− n = lim
c′1→−∞
c′2→+∞

ec
′
1−c

′
2H ′vD(λ, θ; c).

By a different limit, we can also recover Hred
1 .
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Conclusion and open problems

The examples presented illustrate how Hamiltonian reduction leads to integrable
many-body systems enjoying action-angle duality. This framework is useful for
studying several other systems as well.

We can show that by applying suitable analytic continuations, specializations and
limits, van Diejen’s 5-coupling many-body Hamiltonian HvD reproduces both of
our reduced Hamiltonians Hred

1 and Ĥred
1 . (The details are given in our papers,

using slightly different notations.)

The main open problem related to this talk:

Can one generalize our 3-parametric reduction in such a way to accommodate
5-parameters and yield the 5-coupling systems of van Diejen?

Another long standing open problem: Is there a reduction picture behind the
(real, repulsive) hyperbolic RS system?

Hhyp−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

sinh2µ

sinh2(qk − qj)

]1

2
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The general idea: Starting with Abelian algebras H1 and H2 on a master phase space M, the

reduced Abelian algebras are defined by Hired ◦ π0 = Hi ◦ ι0 for i = 1,2. They turn into Abelian

algebras of the models M and M̂ ofMred according to H◦Ψ = H1
red = Q̂◦Ψ̂ and Q◦Ψ = H2

red = Ĥ◦Ψ̂.

M0 M

M Mred M̂

Rn Rn

ψ
π0

ψ̂

ι0

q
R

Ψ̂Ψ

λ

ι∗0(H1)× ι∗0(H2)

H×Q H1
red × H2

red Q̂× Ĥ

ψ∗

Ψ∗

π∗0

Ψ̂∗

ψ̂∗

R∗
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