Paths and Arctic Curves: the Tangent Method at work
(P.DiFrancesco, M. Lapa (UIUC Physics), E. Goiter)
O. Intoduction

1. The tangent method
2. Doming tilings of the Aztec Diamond
3. Rhombus tilings with a special boundary
4. Alternating Sign matrices (with a symmetry axis)
5. Conclusion
O. Introduction

Combinatorial problems:
Tiling of finite domain with finite set of tiles
Ex: a.dominos $\prod_{2 \times 1}^{\square}$, Azterdiamand
b. rhambi <> 刃V "half "-hexagon

NILP $=$ Non-intersecting lattice paths $\left\{a_{i}\right\} \rightarrow\left\{e_{i}\right\}$, special
boundary

Asymptotics

- appecrance of different phases \rightarrow order "aystal"

Ex - M朔欮 dominocrystal 'disordan "liquid"

- Hle path aystal

Asymptotics

- appearance of different phases \rightarrow order "aystal"

Ex - 楜需 dominocuystal

- Ilo path aystal
- At longe size $(D \rightarrow N D, N \rightarrow \infty)$ there is a Sharp separation between these phases $=A R C T I C$ CURVE

Enumeration

- reformulate all problems in terms of N/LP

Enumeration

- reformulate all problems in tams of NILP
- Use Gessel-Viennot-Lindstöm determinant

$$
\begin{aligned}
& Z_{\left.\left\{a_{i}\right) \rightarrow e_{i}\right\}}=\operatorname{det}\left(Z_{a_{i} \rightarrow e_{j}}\right)=p_{p a r t i t i o n ~ f r a m ~ f a n c t i o n ~ o f ~}^{a_{1}-a_{n}} \\
& \underset{1 \leq i, j \leq n}{ }\left(Z_{a_{i} \rightarrow e_{j}}\right)=p a t \text { fisk fam } a_{1} \ldots a_{n} \\
& \underset{a \rightarrow b}{Z}=\sum_{\substack{\text { paths } \\
a \rightarrow b}} w\left(\text { path); w(path) }=\prod_{\text {edges }} w(\text { edge) }\right.
\end{aligned}
$$

Enumeration

- reformulate all problems in terms of NILP
- Use Gessel-Viennot-Lindstöm determinant

$$
\begin{aligned}
& Z_{\left\langle a_{i} \rightarrow j e_{i}\right\}}=\operatorname{det}_{1 \leq i, j \leq n}\left(Z_{a_{i} \rightarrow e_{j}}\right) \\
& =\begin{array}{c}
\text { partition function of } \\
\text { parts fran } a_{1-1}-a_{n} \\
t_{0} e_{1} \ldots e_{n}
\end{array} \\
& Z_{a \rightarrow b}=\sum_{\substack{\text { parks } \\
a \rightarrow b}} w(\text { path }) ; w(\text { path })=\prod_{\text {edges }} w(\text { edge })
\end{aligned}
$$

- Calculate det by $L U$ decampaition of $A=\left(z_{a_{i} \rightarrow e_{j}}\right)$

$$
\operatorname{det}(A)=\operatorname{det}(U) \quad L=\left(\begin{array}{cc}
1 & 0 \\
x_{0} & 1 \\
1
\end{array}\right) U=\left(\begin{array}{cc}
x & \cdots \\
0 & \cdots \\
x
\end{array}\right)
$$

- use generating functions as a tool

1. TANGENT METHOD [ColomoSporticllo 16]

- lages size

1. TANGENT method [ColomoSporticllo 16$]$

- Change the setting

a_{n}

$$
\sum_{e} Z_{n, e} \times Z_{x \rightarrow e_{n}^{\prime}}
$$

- large size

Relies on 2 properties:

1. "left to its an devices, a directed random path with freed end pants is most likely to follar a straight line"
2." The line follased by the external path away from the others is tangent to the arctic curve \&"
2. can be proved rigorausly.
3. still an assumption

APPLYING THE TANGENT METHOD:
Summary: 1. Compute the "escaping path" partition function $Z_{n, l}$ and "1pt-function" $H_{n, e}:=\frac{Z_{n, e}}{Z_{n, 0}} \leftarrow$ escaping pint at l
2. Compute the free path partition function

$$
Y_{l, e^{\prime}}=\text { single path from } l \rightarrow e^{\prime}
$$

3. Scaling estimate $\sum_{\ell} H_{n, e} Y_{e, e^{\prime}}$ $n \rightarrow \infty \quad l=n j \quad e^{\prime}=n a$ new endpoint; $a=$ free parameter

$$
\text { then } \left.\sum_{e} H_{n, \rho} Y_{e, e^{\prime}} \sim \int d \xi e^{n\left(S_{0}(\xi)+S_{1}(\xi, a)\right.}\right)
$$

by saddle paint \rightarrow most likely $\bar{J}=\zeta_{0}=f=t_{n}(a)$
\Rightarrow tangent line $=$ thru $n T$ and na
\Rightarrow (6) as envelope, for varying a.

- We must estimate $H_{n, e=n j}$ at large
- Do exact enumeration first. $\quad Z_{n, 0}=\operatorname{LGVdet}=\operatorname{det}\left(A_{i j}\right)$ $Z_{n, e}=\operatorname{det}_{0 \leq i, j \leq n}\left(\widetilde{A}_{i j}\right)$ where $\left\{\begin{array}{l}\widetilde{A}_{i j}=A_{i j} \quad j<n \\ \tilde{A}_{i n}=Z_{i \rightarrow e^{\prime}}\end{array}\right.$ only the last column differs

LU decomposition:
[DF+Lapa 17]

Then $\rightarrow L^{-1} \tilde{A}=\tilde{U}$ with \tilde{U} upper kiangular $\tilde{U}_{i j}=U_{i j}{ }_{j<n}$
and

$$
\begin{aligned}
& H_{n, e}=\frac{U_{i j}}{\operatorname{det}(\tilde{A})}=U_{i j} \quad \tilde{U}_{n, n}^{j<n} \\
& U_{n, n}
\end{aligned} \quad \begin{aligned}
& \left(=\frac{\operatorname{det} \tilde{U}}{\operatorname{det} U}\right)
\end{aligned}
$$

It all boils down to LU decauposition
NB: $\tilde{U}_{n, n}=\sum_{i}\left(L^{-1}\right)_{n, i} \cdot \tilde{A}_{i n}=$ alternating sum, not good fr cage in estimates \rightarrow TURN IT INTO a>0 sum!!
2. Domino Tilings of the Aztec Diamond

Z_{n}
LGV matix:

$$
A_{i j}=\left.\frac{1}{1-z-w-z_{w}}\right|_{z^{i} \omega j}=\sum_{p=0}^{M m(i j)} \frac{(i+j-p)!}{p!(i-p)!(j-p)!}
$$

LU decamporition

$$
\begin{aligned}
& L_{i j}=\left.\frac{1}{1-z(1+w)}\right|_{z i \omega j}=\binom{i}{j} \quad\left(L^{-1}\right)_{i j}=(-1)^{i+j}\binom{i}{j} \\
& U_{i j}=\left.\frac{1}{1-w(1+2 z)}\right|_{z i w j}=2^{i}\binom{j}{i}
\end{aligned}
$$

Partition function:

$$
Z_{n}=\operatorname{det} A=\prod_{0}^{n} U_{i i}=2^{n(n+1) / 2}
$$

$Z_{n, e}$ LGV matix: $\quad \widetilde{A}_{i j}= \begin{cases}A_{i j} & j<n \\ A_{i+-n, n} & j=n\end{cases}$
LUdecomposition: $\quad L^{-1} \widetilde{A}=\widetilde{U}$

$$
\tilde{U}_{i j}=\left\{\begin{array}{cc}
U_{i j} & j<n \\
\sum_{i} L^{-1} i k \overline{A_{R n}} & j=n
\end{array}\right.
$$

1-pt function:

$$
H_{n, l}=\frac{\operatorname{det} \tilde{A}}{\operatorname{det} A}=\frac{\tilde{U}_{n, n}}{U_{n, n}}=\frac{1}{2^{n}} \sum_{j=0}^{l}\binom{n}{j}
$$

Proof:

$$
\begin{aligned}
\widetilde{U}_{n, 1} & =\sum_{i} \underbrace{L_{n, i}^{-1}}_{(-1)^{n+i}\binom{n}{i}} \tilde{A}_{i, n}=\sum_{i} L_{n, i}^{-1} \underbrace{A_{i+-n, n}}_{\left.\frac{1}{1-z-w-z w}\right|_{z^{i n+n}} w^{n}} \\
& \left.=\sum_{i}(-z)^{n-i}\binom{n}{i} \frac{1}{1-z-w-z w} \right\rvert\, z^{e} w^{n} \\
& =\left.\frac{(1-z)^{n}}{1-z-w-z w}\right|_{z^{e} w^{n}}=\left.(1-z)^{n} \frac{(1+z)^{n}}{(1-z)^{n+1}}\right|_{z^{e}}=\left.\frac{(1+z)^{n}}{1-z}\right|_{z^{e}} \\
& =\sum_{0}^{e}\binom{n}{j} \quad \text { ged } .
\end{aligned}
$$

Yea

Single path from $(l, 2 n-l) \rightarrow(k, k)$ exiting diamad

$$
Y_{\ell, k}=A_{n-l, k-n-1}+A_{n-l-1, k-n-1}
$$

Tangent method: asymptotics of $\sum_{e} H_{n, e} Y_{e, k}$
Scaling: n lange $l=n j \quad k=n z \quad j \in(0,1) ; z>1$.

$$
\begin{aligned}
& Y_{n, 1} Y_{n \pi, n x} \sim 2 A_{n(1-5), n(z-1)} \sim \int_{0}^{M_{i n}(1-5, x-1)} d \theta e^{S_{0}(\theta, 3, z)} \\
& S_{0}(\theta, \zeta, z)=(z-j-\theta) \log (z-j-\theta)-\theta \log \theta-(1-\xi-\theta) \log (-\bar{j}-\theta) \\
& \text { stiving } \\
& -(z-1-\theta) \log (z-1-\theta)
\end{aligned}
$$

$$
\begin{array}{r}
\text { (Hn?)} \left.\begin{array}{r}
H_{n, n j} \sim \frac{1}{2 n} \sum_{j=0}^{l}\binom{n}{j} \sim \int_{0}^{\zeta} d \varphi e^{n S_{1}(\varphi, z)} \\
S_{1}(\varphi, z)
\end{array}\right)=-\varphi \log \varphi-(1-\varphi) \log (1-\varphi)-\log 2
\end{array}
$$

Saddle paint:
total action: $S=S_{0}+S_{1}(\varphi, \theta, \zeta, z)$

$$
\frac{\partial S}{\partial \varphi}=0 \Rightarrow \varphi_{0}=\frac{1}{2}
$$

$\left\{\begin{array}{l}\text { (1) } \zeta>\frac{1}{2} \text { then } S_{1}(\varphi \cdot, z)=0 \quad \text { and } H_{n, n}, \sim 1 \\ \text { (2) } \zeta<\frac{1}{2} \text { then } S_{1}(\xi, z) \text { dominates }=-\zeta \log T-(1-3) \log (1-\zeta)-\log 2\end{array}\right.$

$$
\begin{cases}(1) J>\frac{1}{2} & S=S_{0}(\theta, 5, z) \\ (2) 5<\frac{1}{2} & S=S_{0}(\theta, 5, z)+S_{1}(\zeta, z)\end{cases}
$$

Now extemize S over $\theta, J=\frac{\partial S}{\partial \theta}=\frac{\partial S}{\partial \zeta}=0$
(1) no solution
(2) $(1-j-\theta)(z-1-\theta)=\theta(z-j-\theta)$ and $(1-\zeta-\theta)(1-\zeta)=(z-j-\theta) \xi$
$\Rightarrow \zeta_{0}(z)=\frac{1}{2 z}$ most likely exit point $=\left(\zeta_{0}, 2-\xi_{0}\right)$
Tangent Family:

$$
L(x, y)=y-\frac{2-\zeta_{0}-z}{5_{0}-z} x+2 z \frac{1-\zeta_{0}}{5_{0}-z}=0
$$

Envelope $\quad \frac{\partial L}{\partial z}=L=0$
$\mathscr{G}: x^{2}+(y-1)^{2}=\frac{1}{2} \quad x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$

3. RHOMBUS TILING WITH SPECIAL BOUNDARY CONDITIONS

\rightarrow ai fixed but chosen arbitrarily

Partition function

- LGV matrix: $A_{i, j}=\binom{j+a_{i}}{j}$

- LU decomposition
- $L_{i j}^{-1}= \begin{cases}\frac{\prod_{s=0}^{i-1}\left(a_{i}-a_{s}\right)}{\prod_{\substack{s=0 \\ s \\ s \neq j}}\left(a_{i}-a_{s}\right)} & i \leqslant j \\ 0 & \text { otherwise }\end{cases}$
(uni-laver triangular)

$$
\text { - } \begin{array}{r}
U_{i j}=\sum_{k} L_{i k}^{-1} A_{k j}= \\
\prod_{0}^{i-1}\left(a_{i}-a_{s}\right) \oint \frac{d t}{i \pi} \frac{\frac{1}{j!} \frac{0_{0}^{j-1}(t+j-s)}{\prod_{0}}\left(t-a_{s}\right)}{\text { UPPER! }}
\end{array}
$$

$$
\begin{array}{r}
U_{i i}=-\operatorname{Res}=\frac{1}{i!} \prod_{0}^{i-1}\left(a_{i}-a_{s}\right) \\
\Rightarrow \quad Z_{n}=\operatorname{det}(A)=\operatorname{det} U=\frac{\Delta\left(a_{0}, a_{1},-a_{n}\right)}{\Delta\left(a_{1}, 2, \cdots n\right)} \\
\Delta\left(x_{0}, \cdots x_{n}\right)=\prod_{i<j}\left(x_{j}-x_{i}\right) \quad \text { (Vandeumande). }
\end{array}
$$

TANGENT METHOD
 Use LU decomposition!

One-paint function

$$
\begin{gathered}
\widetilde{A}_{i j}=\left\{\begin{array}{ll}
A_{i j} j<n & \left(l_{i n}\right) \\
\left(a_{i+n-l}\right. \\
n
\end{array}\right) j=n
\end{gathered}
$$

Single Path partition function

$$
Y_{e, r}=\binom{l+r-1}{e^{\prime}}
$$

Asymptolics and tangent method

$$
l=n \zeta ; r=n z ; \quad a_{i}=n \alpha(i / n)\left\{\begin{array}{l}
\alpha \text { pice, wise } C^{\prime} \\
\alpha^{\prime} \geqslant 1
\end{array}\right.
$$

THM [DF Gritter 18] The tangent method leads to he following parametric arctic curve:

$$
\left\{\begin{array}{l}
X(t)=t-\frac{x(t)(1-x(t))}{x^{\prime}(t)} \\
Y(t)=(1-x(t))^{2} x^{\prime}(t) \\
x(t)=e^{-\int_{0}^{1} \frac{d u}{t-\alpha(u)}} \quad(t \in \mathbb{R}) \\
\text { moment } g f .
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Proof: }\left\{\begin{array}{l}
\left.H_{n, l=n \xi} \sim \oint \frac{d t}{2 i \pi} e^{n S_{0}(t, \zeta)} \quad \text { (up tot } \rightarrow n t\right) \\
Y_{l=n \xi, r=n z} \sim e^{n S_{1}(z, \zeta)}
\end{array}\right. \\
& S_{t_{0} t}=S_{0}+S_{1}=\int_{0}^{1} d u \log \left(\frac{t+u-\zeta}{t-\alpha(u)}\right)+(\xi+z) \log (\zeta+z)-\zeta \log \zeta \\
& -z \log z
\end{aligned}
$$

Proof: $\left\{\begin{array}{l}H_{n, l=n \xi} \sim \oint \frac{d t}{2 i \pi} e^{n S_{0}(t, j)} \\ Y_{l=n \xi, r=n z} \sim e^{n S_{1}(z, \zeta)}\end{array} \quad\right.$ (up tot $\left.\rightarrow n t\right)$

$$
S_{t o t}=S_{0}+S_{1}=\int_{0}^{1} \operatorname{du} \log \left(\frac{t+u-\zeta}{t-\alpha(u)}\right)+(\zeta+z) \log (\zeta+z)-\zeta \log \zeta
$$

Proof: $\left\{\begin{array}{l}\left.H_{n, l=n \xi} \sim \oint \frac{d t}{2 i \pi} e^{n S_{0}(t, \zeta)} \quad \text { (up tot } \rightarrow n t\right) \\ Y_{l=n \xi, r=n z} \sim e^{n S_{1}(z, \zeta)}\end{array}\right.$

$$
\begin{aligned}
& \begin{array}{r}
S_{t 0 t}=S_{0}+S_{1}=\int_{0}^{1} d u \log \left(\frac{t+u-\zeta}{t-\alpha(u)}\right)+(\zeta+z) \log (\Gamma+z)-\zeta \log \zeta \\
-z \log z
\end{array} \\
& \underset{(0, z+1)<}{\text { Saddle-pant: }} \frac{t+1-\zeta}{t-\xi} \underbrace{e^{-\int_{0}^{1} \frac{d u}{t-\alpha(u)}}}_{=: x(t)}=1 ; \frac{(\zeta+z)(t-\xi)}{\zeta(t+1-\zeta)}=1
\end{aligned}
$$

Tangentlene $\left.\quad \begin{array}{c}\text { Slope } \frac{x(t)-1}{x(t)} \\ x(t) Y \\ x(1-x(t))(X-t)^{-}=0\end{array}\right)$ Envelope

$$
\left.\begin{array}{l}
x(t) Y+(1-x(t))(X-t)=0 \\
x^{\prime}(t)(Y-X+t)+x(t)-1=0
\end{array}\right\} \Rightarrow \text { TH }
$$

3 equivalent problems
\Downarrow
allows to patch up various pieces of the arctic curve (differen t-domains of $t \in \mathbb{R}$)

Examples $\alpha(u)$ codes the baundery condition - pure case $a_{i}=p^{i}$

$$
\begin{aligned}
& \alpha(u)=p u \quad p>1 \\
& x(t)=\left(1-\frac{p}{t}\right)^{\frac{1}{p}}
\end{aligned}
$$

Case $p \in \mathbb{N}:$ arctic curve is algebraic, of degree $2 p-2$

- piecewise lunar case

$$
\begin{aligned}
& \varphi_{i}=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{i} \\
& \alpha^{\prime}(u)=p_{i} \quad u \in\left[\varphi_{i-1}, \varphi_{i}\right]
\end{aligned}
$$

$$
\theta_{i}=p_{1} \gamma_{1}+p_{2} \gamma_{2}+\cdots+p_{i} \gamma_{i}
$$

Particular cases: "freezing boundaries"
(1.) FREEZING

$$
p_{i}=1 \quad \gamma_{i}>0
$$

\rightarrow zigzag baindary
\rightarrow induces a frozen triangle inside the domain.

Particular cases: "freezing boundaries"
(2.) GAPS

$$
p_{i}=\infty \quad r_{i}=0
$$

$$
\delta_{i}=\gamma_{i} p_{i}>0
$$

\rightarrow flat boundary

- partially frozen baondaries (portions/ $p_{i}=1$)

Example: $k=5 \gamma_{i}=\frac{1}{5} ; p_{1}=1, p_{2}=2, p_{3}=1, p_{4}=2, p_{5}=1$

- partially frozen bandaries (portionsw/gaps)

Example: $k=3 \quad p_{1}=p_{3}=2 \quad$ gap $\quad \begin{aligned} & p_{2}=\infty \\ & \gamma_{2}=0\end{aligned} \quad \delta_{2}=1 ; \gamma_{1}=\gamma_{3}=\frac{1}{2}$.

- fully frozen boundaries (only $\alpha^{\prime}=1$ or gaps)

- non-linear cases

1. $\alpha(u)=p u+q u^{2} \quad(p \geqslant 1 ; q>0)$

$$
x(t)=\left(\frac{p-2 t+\sqrt{p^{2}+4 q t}}{p-2 t-\sqrt{p^{2}+4 q t}}\right)^{\frac{1}{\sqrt{p^{2}+4 q t}}}
$$

2. $\alpha(u)=\frac{1}{a} u^{a} \quad a \in(0,1)$

$$
\begin{aligned}
& a \in(0,1) \\
& x(t)=e^{-{ }_{2} F_{1}\left(1, \frac{1}{a} ; \left.1+\frac{1}{a} \right\rvert\, \frac{1}{a t}\right) / t}
\end{aligned}
$$

A Geometric Construction of the Arctic curve

4. Vertically Symmettic Altemaling sign matices

$$
[D F+\text { Lopa } 17]
$$

VSASM

osculating paths symmetic wrt vertical hine.

TANGENT METHOD

Crucial relation [Razumov-Stroganov 04]

$$
\begin{aligned}
& \frac{1}{N_{V S A S M}(2 n+1)} \sum_{l=1}^{2 n} N_{V S A S M}(2 n+1, e) t_{\text {position f1 in last edumn }}^{e-1} \\
& =\frac{1}{N_{\text {ASM }}(2 n-1)} \frac{t}{1+t} \sum_{i=1}^{2 n} N_{\text {ASM }}(2 n, i) t^{i-1} \\
& H_{n, l}=\frac{N_{V \operatorname{SASM}}(2 n+1, l)}{N_{\operatorname{sASM}}(2 n+1)} \quad Y_{e, k}=\sum_{i=0}^{M_{\operatorname{ma}}(k-1,2 n+l-l)}\binom{k-1}{i}\binom{2 n+1-l}{i}
\end{aligned}
$$

(6) $4\left((x-1)^{2}+y^{2}-x y\right)+4(x-1)+8 y+1=0$
\Rightarrow quarter of ellipse

complete by symmetry = same result as ASMs

CONCLUSION

- It works, but why?
\rightarrow must shaw tangency to \mathscr{C}
- Beyond NILP = it still woks. Why? and what kind of interaction can wee allow
- many other examples - Osculating schröder
- inhomogenears weights
- fused 6V ...

Merci!
[1] P. Di Franceseo and M. Loupa, "Arctic curres in Palk models fram the tangest melhod" JPhys A: Math Thea 51 (2018) 155202. ArXiv 1711.03182 [math-ph].
[2] P.Di Franceyco and E.Guitter,"Arctic curves for palks wilh arbitory starting paints: a tangent meth. d approach" ArXiv 1803. 11463 [math-ph].

Bon Amiversaire Kolya!

