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Graded manifolds

A graded manifold is “like a manifold,” but we also allow odd local
coordinates.
The odd coordinates anticommute with themselves and commute
with the even coordinates.
We also assign a Z-degree
to coordinates (in physics ghost number). In this talk, I will assume

parity = Z-degree modulo 2

If M is a graded manifold, then C∞(M) is a graded commutative
algebra.
Example: M = T [1]N, N an ordinary manifolds:

Coordinates q i on N degree 0; fiber coordinates v i degree +1.
C∞(M) = Ω•(N).
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Cohomological vector fields

If M is a graded manifold, a differential on C∞(M) has been
called by Vaintrob a cohomological vector field (cvf).
Explanation:

Derivation on C∞(M) = vector field Q on M.
Differential = deg Q = 1 and [Q,Q] = 0.

Example: M = T [1]N, N an ordinary manifolds.
The de Rham differential on N is a cvf on C∞(M): Q =

∑
i v i ∂

∂q i

Example: M = g[1], g a Lie algebra:
All coordinates ci have degree 1.
C∞(M) = Λ•g∗.
The Chevalley–Eilenberg differential on g is a cvf:

Q =
1
2

∑
ijk

f ij
k cicj

∂

∂ck

with f ij
k the structure constants. (In physics the BRST operator.)
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Graded symplectic forms

A graded symplectic form ω of degree n is a closed,
nondegenerate 2-form with internal degree equal to n.
Example: M = T ∗[1]N, N an ordinary manifolds:

Coordinates q i on N degree 0; fiber coordinates pi degree 1.
C∞(M) = X•(N) (multivector fields).
ω =

∑
i dpi dq i is a graded symplectic form of degree 1.

The Schouten–Nijenhuis bracket on multivector fields is the
associated Poisson bracket.

This may be generalized to M = T ∗[n]N, N an ordinary manifold:

Coordinates q i on N degree 0; fiber coordinates pi degree n.
ω =

∑
i dpi dq i is a graded symplectic form of degree n.
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Differential graded symplectic structure

A differential graded symplectic structure of degree n on a
graded manifold M is a pair (ω,Q) where:

ω is a a graded symplectic form of degree n, and
Q is a symplectic cvf, i.e.,

LQ ω = 0 and [Q,Q] = 0

A stronger version is when Q is Hamiltonian, i.e., there is a function
S (necessarily of degree n + 1) such that

ιQω = dS and {S,S} = 0 (classical master equation)

As observed by Roytenberg, if n 6= −1, a symplectic cvf is always
Hamiltonian (with a unique Hamiltonian function):

S =
1

n + 1
ιE ιQω

with E the “graded Euler vector field”: E(f ) = deg f f .
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Examples of differential graded symplectic structures

Example: M = T ∗[1]N, N an ordinary manifolds:
A function S of degree 2 on M is then the same as a bivector field
π on N.
The master equation {S,S} = 0 translates to [π, π] = 0; i.e., π is a
Poisson bivector field.
Q is then the Poisson–Lichnerowicz differential.

Example: M = g[1], g a Lie algebra:
A nondegenerate symmetric bilinear form on g can be viewed as a
constant symplectic form of degree 2 on g[1].
If Q corresponds to the Chevalley–Eilenberg differential, it is
symplectic iff the pairing is invariant.
The corresponding Hamiltonian function turns out to be

S =
1
6

∑
f ijk cicjck

with f ijk the structure constants with one index raised by using the
pairing.

7 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

Examples of differential graded symplectic structures

Example: M = T ∗[1]N, N an ordinary manifolds:
A function S of degree 2 on M is then the same as a bivector field
π on N.
The master equation {S,S} = 0 translates to [π, π] = 0; i.e., π is a
Poisson bivector field.
Q is then the Poisson–Lichnerowicz differential.

Example: M = g[1], g a Lie algebra:
A nondegenerate symmetric bilinear form on g can be viewed as a
constant symplectic form of degree 2 on g[1].
If Q corresponds to the Chevalley–Eilenberg differential, it is
symplectic iff the pairing is invariant.
The corresponding Hamiltonian function turns out to be

S =
1
6

∑
f ijk cicjck

with f ijk the structure constants with one index raised by using the
pairing.

7 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

BFnV structures

There are three important particular cases:
n = −1 This is the Batalin–Vilkovisky (BV) formalism used in

QFT. The Hamiltonian function is required to exist as an
extra assumption.

n = 0 This is the Batalin–Fradkin–Vilkovisky (BFV) formalism
used to give a cohomological resolution of symplectic
reduction (see next).

n = 1 If there are only coordinates of nonnegative degree,
this is just the example of M = T ∗[1]N with a Poisson
structure on N.
More generally, it describes Poisson structures up to
homotopy (i.e., the Poisson bracket is an L∞-structure).

We may call the general case of degree n a BFn+1V structure.

Poisson∞ = BF2V
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BFV

Symplectic reduction in codimension one (BFV)

Let (N, ωN) be a symplectic manifold, φ a function and
C := φ−1(0) a submanifold.
The restriction of ωN to C is degenerate. Its kernel is generated
by the Hamiltonian vector field Xφ of φ:

ιXφ
ωN = dφ ≈ 0

We define C = C/Xφ. Algebraically,

C∞(C) = (C∞(N)/ < φ >)Xφ = N(< φ >)/ < φ >,

with N(< φ >) = {f ∈ C∞(N) : {φ, f} = gφ, g ∈ C∞(N)}.
Define M = N × T ∗R[1], ω = ωN + dbdc, S = cφ a dgs manifold
of degree 0. Then

Qb = φ, Qf = {φ, f}c, Qc = 0.

In particular, in degree 0 and −1:

Q(f + gcb) = {φ, f}c − gφc, Q(hb) = hφ+ {φ,h}cb.

Hence H0
Q(M) = C∞(C).
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BFV

Symplectic reduction of coistropic submanifolds

The previous slide may be generalized to the case when we have
a set of r functions φi and a submanifold

C := {x ∈ N : φi (x) = 0 i = 1, . . . , r}

Assume that C is coisotropic, i.e., {φi , φj}|C = 0 ∀i , j .
The kernel of the restriction of ωN to C is generated by the
Hamiltonian vector fields of the φis. We denote by C the quotient
of C by this kernel. (The reduced phase space.)
The main result by BFV and Stasheff is that

C∞(C) = H0
Q(M) as Poisson algebras

with: M = N × T ∗Rr [1], ω = ωN +
∑r

i=1 dbidci ,

S =
r∑

i=1

ciφ
i + · · ·

where the dots contain higher powers of the bis and are obtained
by cohomological perturbation theory.

10 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

BFV

Symplectic reduction of coistropic submanifolds

The previous slide may be generalized to the case when we have
a set of r functions φi and a submanifold

C := {x ∈ N : φi (x) = 0 i = 1, . . . , r}

Assume that C is coisotropic, i.e., {φi , φj}|C = 0 ∀i , j .
The kernel of the restriction of ωN to C is generated by the
Hamiltonian vector fields of the φis. We denote by C the quotient
of C by this kernel. (The reduced phase space.)
The main result by BFV and Stasheff is that

C∞(C) = H0
Q(M) as Poisson algebras

with: M = N × T ∗Rr [1], ω = ωN +
∑r

i=1 dbidci ,

S =
r∑

i=1

ciφ
i + · · ·

where the dots contain higher powers of the bis and are obtained
by cohomological perturbation theory.

10 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

BFV

Equivariant momentum map

A special case is when the φi are the components of an
equivariant momentum map φ : N → g∗.
In this case we have

S =
r∑

i=1

ciφ
i +

1
2

∑
f ij
k bk cicj

Q in this case is also called the BRS operator.
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BV

The BV formalism

Let F be an odd finite dimensional symplectic manifold. By
results of Batalin–Vilkovisky, Witten, Schwarz, Khudaverdian,
Ševera. . . :

1 Half densities on F naturally define densities on Lagrangian
submanifolds of F, so they can be integrated.

2 There is a canonically defined operator ∆ on half densities
satisfying ∆2 = 0.

3
∫
L

∆ρ = 0, for L Lagrangian, ρ half density.
4 d

dt

∫
Lt
σ = 0 if ∆σ = 0 and Lt a family of Lagrangian submanifolds.

Main example: F = ΠT ∗M, M manifold.
Then half densities on F = differential forms on M,∫

ΠN∗C ρ =
∫

C ρ, ∆ ≡ d.
Application: Use L as a gauge fixing.
Idea:

∫
L0

ill defined, so deform to
∫
Lt

, t 6= 0.
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BV

The master equation

Fix a half density ρ with ∆ρ = 0. On functions define ∆ by

∆f :=
∆(fρ)

ρ
.

In view of applications to path integrals, consider f = e
i
~ S. Then

∆f = 0 corresponds to the Quantum Master Equation (QME)

1
2

(S,S)− i~∆S = 0

Either working with ~→ 0 or assuming ∆S = 0, we get the
Classical Master Equation (CME)

(S,S) = 0

The main point here is that the CME may be defined on infinite
dimensional manifolds (needed in field theory). Integration
together with the actual definition of ∆ are deferred to a second
step (e.g., perturbative path integral quantization).
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BV

Further remarks

It is convenient to introduce a Z-grading (For simplicity in this
talk: parity = Z-grading modulo 2.).
One then assigns degrees so that S has degree zero and its
Hamiltonian vector field Q

ιQω = δS

has degree 1. This forces ω to have degree −1.
This way we have returned to differential graded symplectic
manifolds of degree −1: i.e., BV.
Note that in physics, degree 0 corresponds to physical fields. We
want the the action to be an extension of the physical action: this
is why we require degree 0.
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BV

Example: gauge theories

Suppose we have a gauge theory with space of fields FM , a local
action functional S0

M and a gauge group acting on it.
We denote by φ the fields, by c the ghosts and by δBRST the
BRST operator. We assign degrees by |φ| = 0 and |c| = 1.
We introduce antifields φ+, c+ with opposite nature than the field,
opposite parity and degrees given by |φ+| = −1 and |c+| = −2.
We denote by FM the space of all the (φ, c, φ+, c+)’s and we set

SM = S0
M(φ) +

∫
M

(φ+ δBRSTφ+ c+ δBRSTc),

ωM =

∫
M

(δφ+δφ+ δc+δc)

Then, if ∂M = ∅, the BV action S satisfies the CME.
We usually consider these “BRST-like” theories, but there are
more general examples.
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Relaxed structures

Suppose we have a graded manifold M with a cohomological
vector field Q and a closed 2-form ω of degree n.We set

α̌ := ιQω − dS

and
ω̌ := dα̌ = −LQ ω

It turns out that ω̌ is a closed, Q-invariant 2-form ω of degree
n + 1.
We denote by M the quotient of M by the kernel of ω̌ (assume it
is smooth). We denote by ω its symplectic form of degree n + 1.
It turns out that Q is projectable to a cohomological vector field
Q. So M becomes a dgs manifold of degree n + 1.
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Field theory

Suppose that M is a space of fields on some compact manifold
Σ.
Suppose we have a BFn−1V structure on M with ω, Q, and S
local.
This allows us to write ω, Q, and S also on some Σ with
boundary.
If S contains derivatives of the fields, there will be boundary
terms that spoil the structure.
This relaxed structure will however induce a BFnV structure on
the fields on ∂Σ (the kernel of ω̌ contains in particular fields in the
bulk).
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An application

Suppose (M, ω,Q,S) is a local BFnV structure on a space of
fields on Σ.
Then on the space of fields M on ∂Σ we get a BFn+1V structure.
If ∂Σ = ∅, we expect to quantize M to some graded vector space
H (with S some operator).
Example n = 0. On Σ we have a (relaxed) BFV structure
describing the reduced phase space of some field theory. On ∂Σ
we have a BF2V structure describing a Poisson structure
(possibly up to homotopy).
Example n = −1. On Σ we have a (relaxed) BV structure
describing the symmetry content of some field theory. On ∂Σ we
have a BFV structure describing its reduced phase space
(possibly up to homotopy).
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BFV-BF2V

Quantization of the example n = 0

If ∂Σ = ∅, we expect to get a vector space H by geometric
quantization of M together with a coboundary operator Ω
quantizing S. Its cohomology in degree zero describes a
quantization of the reduced phase space.
If ∂Σ 6= ∅, we expect H to be a representation of a quantization
of M.
For example, we may consider the deformation quantization ot
the Poisson structure described by M.
If Σ = Σ1 ∪D Σ2 with D a common boundary component for Σ1
and Σ2, we expect H for Σ to be recovered as the tensor product
of the Hs for Σ1 and Σ2 over the algebra associated to D.
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BFV-BF2V

Example: Chern–Simons

Let Σ be a 2-manifold and g a quadratic Lie algebra.
Let N be the space of g-valued 1-forms A (connections) on Σ
with the Atiyah–Bott symplectic structure ω = 1

2

∫
Σ
δAδA.

We let C denote the space of flat connections. Then C turns out
to be the quotient by gauge transformations.
BFV: M = N × T ∗Ω0(Σ, g)[1] and

S =

∫
Σ

(c,FA) +
1
2

(b, [c, c])

On ∂Σ we get ω =
∫
∂Σ
δAδc,

S =
1
2

∫
∂Σ

cdAc

We can interpret this as an affine Poisson structure on Ω1(Σ, g),
which we may regard as the dual of the affine Lie algebra
ĝ = Ω0(Σ, g)⊕ R.
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BV-BFV

Quantization of the example n = −1

In this case, we expect to get a vector space H by geometric
quantization of M together with a coboundary operator Ω

quantizing S. We expect the gauge fixed integral of e
i
~ S to yield

an Ω-closed state (defined up to Ω-exact terms).
If Σ = Σ1 ∪D Σ2 with D a common boundary component for Σ1
and Σ2, we expect the state for Σ to be recovered as the pairing
of the states for Σ1 and Σ2 in the Hilbert space associated to D.
We produced a rather general construction, which relies on the
existence of a “nice” polarization of M. The construction also
keeps track of “residual fields" (e.g., zero modes).
We have successfully applied this construction to abelian BF
theories:

S0
M =

∫
M

B dA

with
(A,B) ∈ FM = Ω1(M)⊕ Ωd−2(M)
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BV-BFV

Deformations of abelian BF theory

By perturbing abelian BF theory, we have extended the
construction to other theories like

1 Quantum mechanics and topological quantum mechanics
2 Split Chern–Simons theory
3 2D Yang–Mills theory
4 Poisson sigma model

In the last example, one can e.g. recover the associativity of
Kontsevich’s star product from the composition of states.
2D Yang–Mills theory has been recently studied in full detail by
Mnëv and Iraso also for manifolds with corners. This way, one
may recover the full nonperturbative results out of the
perturbative expansions.

22 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

BV-BFV

Deformations of abelian BF theory

By perturbing abelian BF theory, we have extended the
construction to other theories like

1 Quantum mechanics and topological quantum mechanics
2 Split Chern–Simons theory
3 2D Yang–Mills theory
4 Poisson sigma model

In the last example, one can e.g. recover the associativity of
Kontsevich’s star product from the composition of states.
2D Yang–Mills theory has been recently studied in full detail by
Mnëv and Iraso also for manifolds with corners. This way, one
may recover the full nonperturbative results out of the
perturbative expansions.

22 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

BV-BFV

Deformations of abelian BF theory

By perturbing abelian BF theory, we have extended the
construction to other theories like

1 Quantum mechanics and topological quantum mechanics
2 Split Chern–Simons theory
3 2D Yang–Mills theory
4 Poisson sigma model

In the last example, one can e.g. recover the associativity of
Kontsevich’s star product from the composition of states.
2D Yang–Mills theory has been recently studied in full detail by
Mnëv and Iraso also for manifolds with corners. This way, one
may recover the full nonperturbative results out of the
perturbative expansions.

22 / 24



Differential Graded Symplectic Manifolds BFnV structures Relaxed BFnV Structures Quantization

BV-BFV

Final remarks

Other theories like scalar field, spinor field, Yang–Mills can be
treated alike (but one has to take renormalization into account).
Classical BV-BFV gravity theories (in the Einstein–Hilbert as well
as in the Palatini–Cartan version) have also been studied.
A discretized version of nonabelian BF theory has also been
studied: in this setting, all spaces are finite dimensional and all
the quantum BV-BFV results are rigorous from the start.
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BV-BFV

Happy Birthday
Kolya
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