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Introduction

The aim of molecular dynamics simulations is to understand the
relationships between the macroscopic properties of a molecular
system and its atomistic features. In particular, one would like to
evaluate numerically macroscopic quantities from models at the
microscopic scale.

Many applications in various fields: biology, physics, chemistry,
materials science.

The basic ingredient: a potential V which associates to a
configuration (x1, ..., xNatom

) = x ∈ R
3Natom an energy

V (x1, ..., xNatom
) ∈ R. The dimension d = 3Natom is large (a few

hundred thousand to millions).
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Introduction

Newton equations of motion:

{

dX t = M−1Pt dt,
dPt = −∇V (X t) dt,
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Introduction
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.
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Introduction
Newton equations of motion + thermostat: Langevin dynamics:

{

dX t = M−1Pt dt,

dPt = −∇V (X t) dt − γM−1Pt dt +
√

2γβ−1dW t ,

where γ > 0. Langevin dynamics is ergodic wrt

µ(dx)⊗ Z−1
p exp

(

−β ptM−1p
2

)

dp with

dµ = Z−1 exp(−βV (x)) dx ,

where Z =
∫

exp(−βV (x)) dx is the partition function and
β = (kBT )−1 is proportional to the inverse of the temperature.

In the following, we focus on the over-damped Langevin (or
gradient) dynamics

dX t = −∇V (X t) dt +
√

2β−1dW t ,

which is also ergodic wrt µ.
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Introduction

These dynamics are used to compute macroscopic quantities:

(i) Thermodynamics quantities (averages wrt µ of some
observables): stress, heat capacity, free energy,...

Eµ(ϕ(X )) =

∫

Rd

ϕ(x)µ(dx) ≃ 1

T

∫ T

0

ϕ(X t) dt.

(ii) Dynamical quantities (averages over trajectories): diffusion
coefficients, viscosity, transition rates,...

E(F((X t)t≥0)) ≃
1

M

M
∑

m=1

F((Xm
t )t≥0).

Difficulty: In practice, X t is a metastable process.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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−→ • Slow convergence of trajectorial averages
• Transitions between metastable states are rare events
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A toy example in material sciences
The 7 atoms Lennard Jones cluster in 2D.

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

Figure: Low energy conformations of the Lennard-Jones cluster.

−→ simulation
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Simulations of biological systems
Unbinding of a ligand from a protein

(Diaminopyridine-HSP90, Courtesy of SANOFI)

Elementary time-step for the molecular dynamics = 10−15 s

Dissociation time = 0.5 s

Challenge: bridge the gap between timescales
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Introduction

For computing thermodynamics quantities, there is a clear
classification of available methods, and the difficulties are now well
understood (in particular for free energy computations, see for
example [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently
dynamical quantities remains a challenge.

The aim of this talk is twofold:

• First, discuss a numerical method to efficiently sample
metastable dynamics: the parallel replica method proposed by
A. Voter.

• Second, justify rigorously kinetic Monte Carlo models which
are used to simulate metastable dynamics over long times
using a jump process between metastable states.

Both analysis will be based on the notion of quasi-stationary
distribution.
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Accelerated dynamics

The bottom line of the accelerated dynamics proposed by A. Voter
in the late 90’s is to get efficiently the state-to-state dynamics.
Three algorithms: Parallel replica, Hyperdynamics, Temperature
Accelerated Dynamics.

Let us consider the overdamped Langevin dynamics:

dX t = −∇V (X t) dt +
√

2β−1dW t

and let assume that we are given a mapping

S : Rd → N

which to a configuration in R
d associates a state number. Think of

a numbering of the wells of the potential V .

Objective: generate very efficiently a trajectory (St)t≥0 which has
(almost) the same law as (S(X t))t≥0.
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The Quasi-Stationary Distribution

How to take advantage of metastability to build efficient sampling
techniques ?

Let us consider a metastable state W , and

TW = inf{t ≥ 0,X t 6∈ W }.

Lemma: Let X t start in the well W . Then there exists a probability
distribution ν with support W such that

lim
t→∞

L(X t |TW > t) = ν.

Remark: Quantitative definition of a metastable state:
exit time ≫ local equilibration time
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The Quasi-Stationary Distribution

Property 1: ∀t > 0, ∀A ⊂ W ,

ν(A) =

∫

W

P(X x
t ∈ A, t < T x

W ) ν(dx)
∫

W

P(t < T x
W ) ν(dx)

.

If X 0 ∼ ν and if (X s)0≤s≤t has not left the well, then X t ∼ ν.

Property 2: Let L = −∇V · ∇+ β−1∆ be the infinitesimal
generator of (X t). Then the density u1 of ν (dν = u1(x)dx) is the
first eigenfunction of L∗ = div (∇V + β−1∇) with absorbing
boundary conditions:

{

L∗u1 = −λ1u1 on W ,

u1 = 0 on ∂W .
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The Quasi-Stationary Distribution

Property 3: If X 0 ∼ ν then,

• the first exit time TW from W is exponentially distributed
with parameter λ1 ;

• TW is independent of the first hitting point XTW
on ∂W ;

• the exit point distribution is proportional to −∂nu1: for all
smooth test functions ϕ : ∂W → R,

E
ν(ϕ(XTW

)) = −

∫

∂W
ϕ∂nu1 dσ

βλ1

∫

W

u1(x) dx

.
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Link with kinetic Monte Carlo models (1/2)
Starting from the QSD in W , the exit event from W is Markovian:
it can be rewritten as one step of a Markov jump process (kinetic
Monte Carlo or Markov state model):

∂W1

∂W2

∂W3

∂W4
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Link with kinetic Monte Carlo models (2/2)

Let us introduce λ1 = 1/E(TW ) and

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

.

To each possible exit region ∂Wi is associated a rate k(i) = λ1p(i).
If τi ∼ E(k(i)) are independent, then

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).
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Escaping from a metastable state

How to use these properties to design efficient algorithms ?

Assume that the stochastic process remained trapped for a very
long time in a metastable state W . How to accelerate the escape
event from W , in a statistically consistent way ?

Remark: In practice, one needs to:

• Choose the partition of the domain into (metastable) states;

• Associate to each state an equilibration time (a.k.a.
decorrelation time).

These are not easy tasks... we will come back to that.

Remark: All the algorithms below equally apply to the Langevin
dynamics but the extensions of the mathematical results to the
Langevin dynamics are not straightforward...
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The Parallel Replica Algorithm
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The Parallel Replica Algorithm
Idea: perform many independent exit events in parallel.

Two steps:
• Distribute N independent initial conditions in W according to

the QSD ν ;
• Consider the first exit event, and multiply it by the number of

replicas.
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The Parallel Replica Algorithm
Why is it consistent ?

• Exit time is independent of exit point so that

X
I0

T
I0
W

L
= X 1

T 1
W
,

where I0 = arg mini (T
i
W );

• Exit times are i.i.d. exponentially distributed so that, for all N,

N min(T 1
W , . . . ,T

N
W )

L
= T 1

W .

Remark: In practice, discrete time processes are used. Exponential
laws become geometric, and one can adapt the algorithm by using
the identity [Aristoff, TL, Simpson, 2014]: if τi i.i.d. with geometric law,

N[min(τ1, . . . , τN)− 1] + min[i ∈ {1, . . . ,N}, τi = min(τ1, . . . , τN)]
L
= τ1.
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The Parallel Replica Algorithm

The full algorithm is in three steps:

• Decorrelation step

• Dephasing step

• Parallel step
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The Parallel Replica Algorithm

Decorrelation step: run the dynamics on a reference walker...
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The Parallel Replica Algorithm

Decorrelation step: ... until it remains trapped for a time τcorr .
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.



The Quasi-Stationary Distribution Parallel Replica kMC and HTST Conclusion

The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
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The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
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The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
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The Parallel Replica Algorithm

Parallel step: update the time clock: Tsimu = Tsimu + NT .
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The Parallel Replica Algorithm

A new decorrelation step starts...
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The Parallel Replica Algorithm

New decorrelation step
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The Parallel Replica Algorithm

The three steps of ParRep:

• Decorrelation step: does the reference walker remain trapped
in a set ?

• Dephasing step: prepare many initial conditions in this
trapping set.

• Parallel step: detect the first escaping event.
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The decorrelation step

How to quantify the error introduced by the dephasing and parallel
steps, when the decorrelation step is successful ?

When the decorrelation step is successful, it is assumed that the
reference walker is distributed according to the QSD : if it was
indeed the case, the algorithm would be exact. The decorrelation
step can be seen as a way to probe this assumption. What is the
error introduced there ?
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The decorrelation step
We have the following error estimate in total variation norm: for
t ≥ C

λ2−λ1
,

sup
f ,‖f ‖L∞≤1

∣

∣

∣
E(f (TW−t,XTW

)|TW ≥ t)−E
ν(f (TW ,XTW

))
∣

∣

∣
≤ C exp(−(λ2−λ1)t),

where −λ2 < −λ1 < 0 are the two first eigenvalues of L∗ with
absorbing boundary conditions on ∂W .

This shows that τcorr should be chosen such that:

τcorr ≥
C

λ2 − λ1
.

On the other hand, it should be smaller than the typical time to
leave the well, E(TW ). Since E

ν(TW ) = 1/λ1, this typically
implies the spectral gap requirement,

C

λ2 − λ1
≤ 1

λ1
.
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The Parallel Replica Algorithm

This algorithm is very versatile: it works for entropic barriers, and
for any partition of the state space into states. But it requires some
a priori knowledge on the system: the equilibration time τcorr
attached to each state S .

Two questions: How to choose τcorr ? How to sample the QSD ?

We recently proposed a generalized Parallel Replica algorithm [Binder,

TL, Simpson, 2014] to solve these issues. It is based on two ingredients:

• the Fleming-Viot particle process

• the Gelman-Rubin statistical test
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The Fleming-Viot particle process
Start N processes i.i.d. from µ0, and iterate the following steps:

1. Integrate (in parallel) N realizations (k = 1, . . . ,N)

dX k
t = −∇V (X k

t ) dt +
√

2β−1dW k
t

until one of them, say X 1
t , exits;

2. Kill the process that exits;

3. With uniform probability 1/(N − 1), randomly choose one of
the survivors, X 2

t , . . . ,X
N
t , say X 2

t ;

4. Branch X 2
t , with one copy persisting as X 2

t , and the other
becoming the new X 1

t .

It is known that the empirical distribution

µt,N ≡ 1

N

N
∑

k=1

δX k
t

satisfies:
lim

N→∞
µt,N = L(X t |t < TW ).
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The generalized Parallel Replica algorithm

The generalized Parallel Replica algorithm consists in using a
Fleming-Viot particle process for the dephasing step and running in
parallel the decorrelation and the dephasing steps.

If the Fleming Viot particle process reaches stationarity before the
reference walker, go to the parallel step. Otherwise, restart a new
decorrelation / dephasing step.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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Numerical test case: the 7 atoms LJ cluster

(a) C0, V = −12.53 (b) C1, V = −11.50 (c) C2, V = −11.48

(d) C3, V = −11.40

We study the escape from the configuration C0 using overdamped
Langevin dynamics with β = 6. The next visited states are C1

or C2.
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Numerical test case: the 7 atoms LJ cluster

Method TOL 〈T 〉 P[C1] P[C2]

Serial – 17.0 (0.502, 0.508) (0.491, 0.498)
ParRep 0.2 19.1 (0.508, 0.514) (0.485, 0.492)
ParRep 0.1 18.0 (0.506, 0.512) (0.488, 0.494)
ParRep 0.05 17.6 (0.505, 0.512) (0.488, 0.495)
ParRep 0 .01 17.0 (0.504, 0.510) (0.490, 0.496)

Method TOL 〈tcorr〉 〈Speedup〉 % Dephased

Serial – – – –
ParRep 0.2 0.41 29.3 98.5%
ParRep 0.1 .98 14.9 95.3%
ParRep 0.05 2.1 7.83 90.0%
ParRep 0 .01 11 1.82 52.1%
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Numerical test case: the 7 atoms LJ cluster

Figure: LJ
2D

7
: Cumulative distribution function of the escape time

from C0.
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kinetic Monte Carlo and Harmonic Transition State Theory

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4
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kMC models
Let us go back to the kinetic Monte Carlo model.

∂W1

∂W2

∂W3

∂W4

To each exit region ∂Wi is associated a rate k(i). Let τi ∼ E(k(i))
be independent exponential random variables. And then,

• The exit time is min(τ1, . . . , τI );

• The exit region is arg min(τ1, . . . , τI ).

Thus, (i) exit time and exit region are independent r.v. ; (ii) exit
time is E(k(1) + . . .+ k(I )); (iii) exit region is i with prob.

k(i)
k(1)+...+k(I ) .
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The Eyring Kramers law and HTST
In practice, kMC models are parameterized using HTST.

x1

z1

z2

z3

z4

∂W1

∂W2

∂W3∂W4

We assume in the following V (z1) < V (z2) < . . . < V (zI ).

Eyring Kramers law (HTST): k(i) = Ai exp (−β(V (zi )− V (x1)))
where Ai is a prefactor depending on V at zi and x1.
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kMC and HTST

Thus, one obtains the following law for the exit event:

• exit time and exit region are independent r.v.

• exit time is E(k(1) + . . .+ k(I )) and, when β is large

k(1) + . . .+ k(I ) ≃ k(1) = A1 exp (−β(V (z1)− V (x1)))

• exit region is i with probability k(i)
k(1)+...+k(I ) and, when β is

large,

k(i)

k(1) + . . .+ k(I )
≃ k(i)

k(1)
=

Ai

A1
exp (−β(V (zi )− V (z1)))

Our aim: justify and analyze this method.
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Back to overdamped Langevin and the QSD
Starting from the QSD dν = u1(x)dx , we already know that

• the exit time TW and the exit point XTW
are independent r.v.

• the exit time is exponentially distributed with parameter λ1

• the exit region is ∂Wi with probability

p(i) = P(XTW
∈ ∂Wi ) = −

∫

∂Wi

∂nu1 dσ

βλ

∫

W

u1(x) dx

.

We thus need to prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1
exp (−β(V (zi )− V (z1))).
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Small temperature regime
The question is thus: consider (λ1, u1) such that (first eigenvalue

eigenfunction pair)

{

div (∇Vu1 + β−1∇u1) = −λ1u1 on W ,

u1 = 0 on ∂W .

We assume wlg u1 > 0 and
∫

u2

1
eβV = 1.

In the small temperature regime (β → ∞), prove that

λ1 ≃ A1 exp (−β(V (z1)− V (x1)))

and

−

∫

∂Wi

∂nu1 dσ

βλ1

∫

W

u1(x) dx

≃ Ai

A1
exp (−β(V (zi )− V (z1))).
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Assumptions
• W is an open bounded smooth domain in R

d .
• V : W → R is a Morse function with a single critical point x1.

Moreover, x1 ∈ W and V (x1) = minW V .
• ∂nV > 0 on ∂W and V |∂W is a Morse function with local

minima reached at z1, . . . , zI with V (z1) < . . . < V (zI ).
• V (z1)− V (x1) > V (zI )− V (z1)
• ∀i ∈ {1, . . . I}, consider Bzi the basin of attraction for the

dynamics ẋ = −∇TV (x) and assume that

inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

x1

z1

z2

z3

z4
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Agmon distance

Here, da is the Agmon distance:

da(x , y) = inf
γ

∫ 1

0

g(γ(t))|γ′(t)| dt

where g =

{

|∇V | in W

|∇TV | in ∂W
, and the infimum is over all Lipschitz

paths γ : [0, 1] → W such that γ(0) = x and γ(1) = y . A few

properties:

• One has ∀x , y ∈ W , |V (x)− V (y)| ≤ da(x , y) ≤ C |x − y |
• On a neighborhood V of a local minima zi , the function
x 7→ da(x , zi ) satisfies the eikonal equation: |∇Φ|2 = |∇V |2
on V with boundary conditions Φ = V on V ∩ ∂W , and
Φ ≥ V (zi ).
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Results
[In preparation with G. Di Gesu, D. Le Peutrec and B. Nectoux] In the limit β → ∞, the
exit rate is

λ1 =

√

β

2π
∂nV (z1)

√

det(HessV )(x1)
√

det(HessV|∂W )(z1)
e−β(V (z1)−V (x1))(1+O(β−1)).

Moreover, for all open set Σi containing zi such that Σi ⊂ Bzi ,

∫

Σi
∂nu1 dσ
∫

W
u1

= −Ci (β)e
−β(V (zi )−V (x1))(1 + O(β−1)),

where Ci (β) =
β3/2
√

2π
∂nV (zi )

√

det(HessV )(x1)
√

det(HessV |∂W )(zi )
. Therefore,

P
ν(XTW

∈ Σi ) =
∂nV (zi )

√

det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(zi )
e−β(V (zi )−V (z1))(1+O(β−1)).
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Related results in the literature (1/3)

The result on λ1 is well known and actually holds under weaker
assumptions. See for example [Helffer Nier] [Le Peutrec].

Similar formulas are obtained concerning the problem on the whole
domain to compute the cascade of timescales down to the global
minimum.

• Potential theoretic approaches [Bovier, Schuette, Hartmann,...]

• Spectral analysis of the Fokker Planck operator on the whole
space and semi-classical analysis [Holley, Kusuoka, Stroock, Miclo, Schuette,

Helffer, Nier, Pavliotis]

Warning: The exit rate is (1/2) times the transition rate !
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Related results in the literature (2/3)
Another approach to study the exit problem from a domain: Large
deviation techniques [Freidlin, Wentzell, Day, Vanden Eijnden, Weare, Touchette,...].

Compared to our approach, the assumptions in LD are much less
stringent but LD only provides the exponential rates (not the
prefactors) and LD does not provide error bounds. (Moreover the fact that

the exit time is exponentially distributed and the independance property between exit time and exit

point are only obtained when β = ∞.)

There are also PDE versions of these results see [Matkowsky, Schuss, Maier,

Stein] for formal expansions, and [Holley, Kusuoka, Stroock, Kamin, Mathieu, Perthame]

for precise results.

Typical result [Freidlin, Wentzell, Theorem 5.1]: for all W ′ ⊂⊂ W , for any
γ > 0, for any δ > 0, there exists δ0 ∈ (0, δ] and β0 > 0 such that
for all β ≥ β0, for all x ∈ W ′ such that f (x) < min∂W f and for all
y ∈ ∂W ,

exp(−β(V (y)− V (z1) + γ)) ≤ P
x(XTW

∈ Vδ0(y))

≤ exp(−β(V (y)− V (z1)− γ))
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Related results in the literature (3/3)

Why do we care about prefactors ?

Consider a situation with two local minima on the boundary
(V (z1) < V (z2)). Compare

• the probability to leave through Σ2 such that z2 ∈ Σ2,
Σ2 ⊂ Bz2 and

• the probability to leave through Σ such that Σ ⊂ Bz1 and
infΣ V = V (z2).

Then, in the limit β → ∞,

P
ν(XTW

∈ Σ)

Pν(XTW
∈ Σ2)

= O(β−1/2).
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Discussion on the assumptions (1/5)

The assumption

∀i ∈ {1, . . . I}, inf
z∈Bc

zi

da(z , zi ) > V (zI )− V (z1)

seems indeed important to get the expected results.
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Discussion on the assumptions (2/5)
Let us consider the potential function V (x , y) = x2 + y2 − ax with
a ∈ (0, 1/9) on the domain W . Two saddle points: z1 = (1, 0) and
z2 = (−1, 0) (and V (z2)− V (z1) = 2a). One can check that the
above assumptions are satisfied.

Σ2

z2 z1

The domain W

x1
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Discussion on the assumptions (3/5)
With a = 1/10, let us plot

• the numerical results f : β 7→ ln P
ν(XTW

∈ Σ2)

• the theoretical result g : β 7→ lnB2 − β(V (z2)−V (z1)), where

B2 =
∂nV (z2)

√
det Hess(V |∂W )(z1)

∂nV (z1)
√

det Hess(V |∂W )(z2)
is the expected prefactor.
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Discussion on the assumptions (4/5)
Same result with a = 1/20.
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Discussion on the assumptions (5/5)
We now modify the potential such that the assumption on the
Agmon distance is not satisfied anymore.
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Sketch of the proof
The difficult part is to find an approximation for
∫

Σi
∂nu1dσ =

∫

Σi
∂nv1e

−βV , where v1 = u1e
βV .

We have
{

L(0)v1 = −λ1v1 on W ,

v1 = 0 on ∂W ,

where L(0) = β−1∆−∇V · ∇ is a self adjoint operator on
L2(e−βV ). We are interested in ∇v1 · n, and ∇v1 satisfies











L(1)∇v1 = −λ1∇v1 on W ,

∇T v1 = 0 on ∂W ,

(β−1div −∇V ·)∇v1 = 0 on ∂W ,

where
L(1) = β−1∆−∇V · ∇ − Hess(V ).

Therefore ∇v1 is an eigenvector (eigen-1-form) of −L(1) associated
with the small eigenvalue λ1.
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Sketch of the proof

Let Π(p) = 1[0,β−3/2](−L(p)) be the spectral projection operator on

small eigenvalues. We know that, for β large, dim(RanΠ(0)) = 1
and dim(RanΠ(1)) = I [Helffer,Sjöstrand]:

RanΠ(0) = Span(v1)

RanΠ(1) = Span(ψ1, . . . , ψI ).

Since ∇v1 ∈ RanΠ(1),

∫

Σi

∂nv1 exp(−βV ) =
I

∑

j=1

〈∇v1, ψj〉L2(e−βV )

∫

Σi

ψj · ne−βV .

The idea is now to build so-called quasi-modes which approximate
the eigenvectors of L(0) and L(1) associated with small eigenvalues
in the regime β → ∞, in order to approximate the terms in the
sum.
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Sketch of the proof

• RanΠ(0): an approximation of v1 is given by

ṽ = Z−11W ′

where W ′ ⊂⊂ W .

• RanΠ(1): an approximation of RanΠ(1) is Span(ψ̃1, . . . , ψ̃I )
where (ψ̃i )1≤i≤I are solutions to auxiliary eigenvalue problems,
attached to the local minima (zi )1≤i≤I .

Two tools:

• Agmon estimates (the support of ψ̃i is essentially in a
neighborhood of zi ):

∃N > 0, ‖eβda(zi ,·)/2ψ̃i‖H1(e−βV ) = O(βN).

• WKB approximations:

∃N > 0, ψ̃i ≃ Z−1
i d(eβV /2e−βda(zi ,·)/2)βp.
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Sketch of the proof
The last step consists in projecting the approximation of ∇v1 on
the approximation of RanΠ(1).
Using the assumptions V (z1)− V (x1) > V (zI )− V (z1) and
infz∈Bc

zi
da(z , zi ) > V (zI )− V (zi ), one can check that ṽ and

(ψ̃i )i=1...I are such that

• [Normalization] ṽ ∈ H1
0 (e

−βV ) and ‖ṽ‖L2(e−βV ) = 1. ∀i ,
ψ̃i ∈ H1

T (e
−βV ) and ‖ψ̃i‖L2(e−βV ) = 1.

• [Good quasimodes]
• ∀δ > 0

‖(1 − Π(0))ṽ‖2

L2(e−βV ) = O(e−β(V (z1)−V (x1)−δ)),

• ∃ε > 0, ∀i ,
‖(1 − Π(1))ψ̃i‖2

H1(e−βV ) = O(e−β(V (zI )−V (z1)+ε))

• [Orthonomality of quasimodes] ∃ε0 > 0, ∀i < j

〈ψ̃i , ψ̃j〉L2(e−βV ) = O( e−
β
2
(V (zj )−V (zi )+ε0) ).
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Sketch of the proof

• [Decomposition of ∇ṽ ] ∃Ci , p, ∀i ,

〈∇ṽ , ψ̃i 〉L2(e−βV ) = Ci β
−pe−

β
2
(V (zi )−V (x1)) (1 + O(β−1) ).

• [Normal components of the quasimodes] ∃Bi ,m, ∀i , j
∫

Σi

ψ̃j ·n e−βV dσ =

{

Bi β
−m e−

β
2
V (zi ) ( 1 + O(β−1) ) if i = j

0 if i 6= j

Then for i = 1, ..., n, when β → ∞
∫

Σi

∂nv1 e−βV dσ = CiBi β
−(p+m) e−

β
2
(2V (zi )−V (x1)) (1+O(β−1))
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Sketch of the proof

The proof is based on the formula:

∫

Σi

∂nv1 exp(−βV ) =

I
∑

j=1

〈∇v1, ψj〉L2(e−βV )

∫

Σi

ψj · ne−βV .

Using the fact that v1 = Π(0)ṽ and that (ψ1, . . . , ψI ) can be
obtained by a Gram-Schmidt procedure on (Π(1)ψ̃1, . . . ,Π

(1)ψ̃I ),
one can rewrite this formula in terms of ṽ and (ψ̃i )1≤i≤n. Injecting
the estimates then yields the result.
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Conclusions

• There are two other accelerated dynamics methods:
Hyperdynamics and Temperature Accelerated Dynamics. From
ParRep to Hyper to TAD, the underlying assumptions for the
algorithms to be correct are more and more stringent.

• The QSD is a good intermediate between continuous state
dynamics and kMC-like approximations (Markov state models).
Transition rates could be defined starting from the QSD.

• The QSD can be used to analyze the validity of kMC models
and the Eyring-Kramers law, in the small temperature regime.
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Simulating dynamics

There are many other numerical techniques:

• Going from state A to state B:
• Local search: the string method [E, Ren, Vanden-Eijnden], max flux

[Skeel], transition path sampling methods [Chandler, Bolhuis, Dellago],
• Global search, ensemble of trajectories: splitting techniques

[Cérou, Guyader, TL, Weare], transition interface sampling [Bolhuis, van

Erp], forward flux sampling [Allen, Valeriani, ten Wolde], milestoning
techniques [Elber, Schuette, Vanden-Eijnden]

• Importance sampling approaches on paths, reweighting [Dupuis,

Vanden-Einjden, Weare, Schuette, Hartmann]

• Saddle point search techniques [Mousseau, Henkelman] and graph
exploration [Wales]

• Starting from a long trajectory, extract states: clustering,
Hidden Markov chain [Schuette]
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Conclusion

A book on the mathematics of stochastic MD:
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