Quantitative uniform propagation of chaos for
Maxwell molecules

Joaquin Fontbona
(joint work with Roberto Cortez )

Center for Mathematical Modeling, University of Chile

CIRM Workshop, April 2017

Joaquinn Fontbona (U. of Chile ) Boltzmann equation CIRM Workshop, April 2017 1/28



@ The spatially homogeneous Boltzmann equation
© Propagation of chaos

© Main result and outline of the proof

@ Coupling construction

© Time-dependent estimate

@ Uniform relaxation and time independent bound

Joaquinn Fontbona (U. of Chile ) Boltzmann equation CIRM Workshop, April 2017



1. The spatially homogeneous
Boltzmann equation



The spatially homogeneous Boltzmann equation
Boltzmann equation

Boltzmann equation on R? (1872)

Of +v-Vof =Q(f, f)

@ Describes infinitely many gas particles evolving in Q C R?,
interacting through binary elastic collisions.
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The spatially homogeneous Boltzmann equation
Boltzmann equation

Boltzmann equation on R? (1872)

Of +v-Vof =Q(f, f)

@ Describes infinitely many gas particles evolving in Q C R?,
interacting through binary elastic collisions.

o [ = fi(x,v): density of particles at position z € Q C R? with
velocity v € R? at time ¢ > 0.

@ (: bilinear operator (to be specified), acting only on velocity

o Very difficult!

e Following Kac ('56), we consider spatially homogeneous version:

f = fi(v).
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The spatially homogeneous Boltzmann equation

Spatially homogeneous Boltzmann equation

Spatially homogeneous Boltzmann equation on R?

3, fi(v) = Q(fs, fi)(v
=~ / o, / doB(|v — v.|,0) [fi(v") i) = fi(v) fi(w)],

o vV =1(v,v,,0) = H%—i—%a

/ / L « v—0
o v, =V, (v,v,,0) = "= — %
@ 0: deviation angle, defined by cosf = ﬁ)’:g:l ‘0.

@ B(|v —w,/,0) : collision kernel, depends on physics of the model.
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The spatially homogeneous Boltzmann equation

Spatially homogeneous Boltzmann equation

Spatially homogeneous Boltzmann equation on R?

3, fi(v) = Q(fs, fi)(v
=~ / o, / doB(|v — v.|,0) [fi(v") i) = fi(v) fi(w)],

o vV =1(v,v,,0) = H%—i—%a

o L vt |[v—v4]
o v, =V, (v,v,,0) 1= T — B

@ 0: deviation angle, defined by cosf =

Vs
|[v—v*|

+ 0.

@ B(|v —w,/,0) : collision kernel, depends on physics of the model.

In the sequel, “Boltzmann equation” always means its
spatially homogeneous version
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The spatially homogeneous Boltzmann equation

Elementary properties :

@ Preserves mass:
/ft(v)dv = Constant =1
@ Preserves momentum:

/vft(v)dv = Constant
@ Preserves kinetic energy:

/|v|2ft(v)dv = Constant
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The spatially homogeneous Boltzmann equation

Heuristic (probabilistic) interpretation

@ Two particles with velocities v and v, collide at random times,
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The spatially homogeneous Boltzmann equation

Heuristic (probabilistic) interpretation

@ Two particles with velocities v and v, collide at random times,
with deviation angle 0, at rate B(|Jv — v*|,0) sin 6.

@ Post-collisional velocities v’ and v), chosen at random, uniformly
on the circles:
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The spatially homogeneous Boltzmann equation

Heuristic (probabilistic) interpretation

@ Two particles with velocities v and v, collide at random times,
with deviation angle 0, at rate B(|Jv — v*|,0) sin 6.

@ Post-collisional velocities v’ and v), chosen at random, uniformly
on the circles:

A Exact conservation of
, momentum and energy:

/ /
V+ U, =0+,

: g o + Juuf? = |2 + e 2.
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The spatially homogeneous Boltzmann equation
Collision kernel

o We will work with the Maxwell molecules case:
B(Jv —u.],6) sin = 5(6),

with 3(6) X 073/2, then
w/2
/ B(0)do = oo (prevalence of grazing collisions).
0

@ Sometimes one uses a cutoff version of 3, so fOW/2 B(8)df < 0o
in those cases.
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2. Propagation of chaos



Propagation of chaos

Kac's program ('56)

@ Mathematical validation of the Boltzmann equation from
“molecular chaos” : to obtain its solution as limit of random,
jump N-particles systems as N — oo.
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Propagation of chaos

Kac's program ('56)

@ Mathematical validation of the Boltzmann equation from
“molecular chaos” : to obtain its solution as limit of random,
jump N-particles systems as N — oo.

o If this happens uniformly in time and
@ relaxation rate of the particles as £ — oo is uniform in NV,

@ we get bottom-up derivation of the relaxation as ¢ — oo of the
Boltzmann equation
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...by 2017:

@ relaxation of the equation (Maxwell) “understood” (PDE results)
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Propagation of chaos

Kac's program ('56)

@ Mathematical validation of the Boltzmann equation from
“molecular chaos” : to obtain its solution as limit of random,
jump N-particles systems as N — oo.

o If this happens uniformly in time and
@ relaxation rate of the particles as £ — oo is uniform in NV,

@ we get bottom-up derivation of the relaxation as t — oo of the
Boltzmann equation

...by 2017:

@ relaxation of the equation (Maxwell) “understood” (PDE results)

@ Kac's program in spatially homogeneous case: Mischler &
Mouhot '13 for Maxwell and hard spheres cases by “top-down”

approach. Also,bounds are hard to make explicit.
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Propagation of chaos
Particle system

@ N € IN: number of particles.
e Particle system is a Markov jump process on (R?)?, denoted

Vt:(‘/tlv'”’v;fN)

with (exchangeable) generator A" given by:

AN D (v) SV -1 > | do[®(ay(v,0)) — ®(v)]B(9),
- l#y 82
where a;;(v,0) € (R*)" is vector v = (v',...,0") € (R*)N
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Propagation of chaos
Particle system

@ N € IN: number of particles.
e Particle system is a Markov jump process on (R?)?, denoted

Vt:(‘/tlv'”’v;fN)

with (exchangeable) generator A" given by:

AN D (v) SV -1 > | do[®(ay(v,0)) — ®(v)]B(9),
- l#y 82
where a;;(v,0) € (R*)" is vector v = (v',...,0") € (R*)N

with i-th and j-th components v’ and v/ € R? respectively
replaced by v'(v*, v, o) and v.(v', v7, o).
Notational dependence on N will be omitted!!!
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,

@
I
o @
@
@
)
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,

1) wait exponential time with
© @ rate proportional to NV,
¢ @
*]
]
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,

1) wait exponential time with
@ rate proportional to NV,

e 2) choose (v,v*) = (v;,v;) with
o i # j at random,
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,

1) wait exponential time with
rate proportional to NV,

2) choose (v,v*) = (v;,v;) with
i # j at random,

3) choose 6 with density
proportional to 5(6),
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,

1) wait exponential time with
rate proportional to NV,

2) choose (v,v*) = (v;,v;) with
i # j at random,

3) choose 6 with density
proportional to 5(6),

4) choose v’ (and ) unif. on
the circle, update

(vi, vy) = (V',v))
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,
1) wait exponential time with
rate proportional to NV,
[+ 2) choose (v,v*) = (v;,v;) with
i # j at random,

3) choose 6 with density
proportional to 5(6),

Q [+ 4) choose v’ (and ) unif. on

\/ the circle, update

(vi,v5) = (v, 01)
5) Go to 1)
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.

velocities with law f,
1) wait exponential time with

=Y ° rate proportional to NV,
[+ 2) choose (v,v*) = (v;,v;) with
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law fy,

1) wait exponential time with
rate proportional to NV,

2) choose (v,v*) = (v;,v;) with
i # j at random,

3) choose 6 with density
proportional to 5(6),

4) choose v’ (and ) unif. on
the circle, update
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,
1) wait exponential time with
@ ° rate proportional to NV,
[+ 2) choose (v,v*) = (v;,v;) with
P i # j at random,

@ proportional to 5(6),
o [+ 4) choose v’ (and ) unif. on

\/ the circle, update

(vi,v5) = (v, 01)
5) Go to 1)

3) choose 6 with density
[«
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,
1) wait exponential time with
@ ° rate proportional to NV,
[+ 2) choose (v,v*) = (v;,v;) with
P i # j at random,
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Propagation of chaos

Particle system dynamics (cutoff case)

0) At ¢ =0 sample N indep.
velocities with law f,
1) wait exponential time with
@ ° rate proportional to NV,
[+ 2) choose (v,v*) = (v;,v;) with
P i # j at random,
@ 3) choose 6 with density
@ proportional to 5(6),
R ™) 4) choose v’ (and ) unif. on
\/ the circle, update
(vi, v;) = (V' v))
5) Go to 1)
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Propagation of chaos

Propagation of chaos

e Collisions = V!, ... V¥ are not independent.
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Propagation of chaos
Propagation of chaos

e Collisions = V!, ... V¥ are not independent.
@ We say propagation of chaos holds if: for each £ € IN and ¢ > 0,

nggoLaw(vtl,...,W): EF weakly

as N — oo.
e Equivalently (by exchageability) empirical measure satisfies

_ 1 X
V, = N Zévti — fr in law, weakly
i=1
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Propagation of chaos
Propagation of chaos

e Collisions = V!, ... V¥ are not independent.
@ We say propagation of chaos holds if: for each £ € IN and ¢ > 0,

ngr})OLaw(vtl,...,W)z EF weakly

as N — oo.
e Equivalently (by exchageability) empirical measure satisfies

_ 1 X
V, = N Zévti — fr in law, weakly
i=1

Our goal

Quantify this convergence in the Maxwell molecules case, with
explicit rates .
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Propagation of chaos

Known results or approaches (Maxwell case)

Technique Authors Rate
Weak convergence, expan- Kac (1d), McKean, no rate
sions Grinbaum, ~60-70's

Trajectorial coupling Tanaka ~80, Sznitmann %
with  “nonlinear process” ~90, Graham & Méléard

(Mostly cut-off) '97

semigroup, PDE stability Mischler & Mouhot '13 & in W,

Trajectorial coupling, but Fournier & Mischler '16 UNJZZQ in W3
only for Nanbu system
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“Nanbu” case:

@ only one particle updates upon collision (non-physical).
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Propagation of chaos

Known results or approaches (Maxwell case)

Technique

Authors Rate

Weak convergence, expan-
sions

Kac (1d), McKean, no rate
Grinbaum, ~60-70's

Trajectorial coupling
with  “nonlinear process”
(Mostly cut-off)

21

Tanaka ~80, Sznitmann
~90, Graham & Méléard
'97

semigroup, PDE stability

Mischler & Mouhot '13 ]\} in W

Trajectorial coupling, but
only for Nanbu system

Fournier & Mischler '16 -0 in W2

N1/2

“Nanbu” case:

@ only one particle updates upon collision (non-physical).

@ Rate in N corresponds to empirical measure of i.i.d. sample

(Fournier& Guillin '14).

Joaquinn Fontbona (U. of Chile )

Boltzmann equation CIRM Workshop, April 2017 12 /28



3. Main result and outline of the
proof



Main result and outline of the proof
Woasserstein distance and optimal coupling

We need

Definition

Let u, v be probability measures on (R?)*. Define:
Coupling: a random pair (X,Y) = ((Xl, D €N S ,Y’“))
with Law(X) = p and Law(Y) = v.

p-Wasserstein distance: minimal expected LP-distance between
couplings:

1k N\
Wo(p,v) = (gg}glEk ; X" — YZV’)

Optimal coupling: random pair (X,Y) achieving the infimum
(always exists).
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Main result and outline of the proof
Main result

Theorem (Cortez & F. '15 submitted)

If fo has finite moments of all orders, and V¢ ~ (‘?N,

(1 & C.
supE (W, N g 5Vti i ] <
i=1

— 1
t>0 N3~¢

Same bound holds for sup,, W3 (Law(V}!, ..., V}¥), f2%), any k.
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Main result

Theorem (Cortez & F. '15 submitted)

If fo has finite moments of all orders, and V¢ ~ (‘?N,

su]El/VziiV:é-f<Ce
tz%:)) 2 ]\[i:1 Ve o Jt ] = N%_E

Same bound holds for sup,, W3 (Law(V}!, ..., V}¥), f2%), any k.

@ Also valid if V| is only exchangeable (additional term
W (Law(Vo), f§)).
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Main result and outline of the proof
Main result

Theorem (Cortez & F. '15 submitted)

If fo has finite moments of all orders, and V¢ ~ (‘?N,

[ 1 Ce
supE (W, NZ(SW  Ji < 1
i=1

t>0 N3

Same bound holds for sup,, W3 (Law(V}!, ..., V}¥), f2%), any k.

@ Also valid if V| is only exchangeable (additional term
Wi (Law(Vo), f5)).

e Similar result obtained in '15 for Landau equation
through related ideas (but different techniques) by
Fournier&Guillin
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Main result and outline of the proof
Main result

Steps of the proof

1) Extend to Boltzmann setting new coupling argument
(F.&Cortez, AAP '16) for 1d (Kac-type) particles systems with
true binary collisions, rely also on estimates of Fournier&
Mischler'16 for the Nambu case
This will yield (non-uniform) quantitative estimate for W5 :

C(1+1t)?
N3

under finite p-moment assumption for f;, for some p > 4.
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Main result and outline of the proof
Main result

Steps of the proof

1) Extend to Boltzmann setting new coupling argument
(F.&Cortez, AAP '16) for 1d (Kac-type) particles systems with
true binary collisions, rely also on estimates of Fournier&
Mischler'16 for the Nambu case
This will yield (non-uniform) quantitative estimate for W5 :

C(1+1t)?
N3
under finite p-moment assumption for f;, for some p > 4.

2) Combine with recent uniform in N (polynomial) stabilization
result for the N- particle system of M. Rousset ('14).
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4. Coupling construction



Coupling construction
The particle system and coupling construction

Consider (for fixed N):
Poisson point measure N on R, x R, x [0,27) x G

N( dtds . do . dgdC)

rate N/2 X oo, uniform in [0,27), uniformin G
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Coupling construction

The particle system and coupling construction

Consider (for fixed N):
Poisson point measure N on R, x R, x [0,27) x G

N( dt,dz \d?ﬁ/ , d&,dC )

rate N/2 X oo, uniform in [0,27), uniformin G

N

@ t > 0: collision times

@ z > 0: parametrization of 0

@ ¢ € [0,27): angle in circles

o i(¢) = [¢] + 1 for £ € [0, N).

o G={(£¢) €[0,N)*:i(&) #1(C)}-

@ i(£),i(C) : indexes of colliding
particles. 0 N
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Coupling construction

The particle system and coupling construction

o Consider foreachi=1,..., N,

i chooses another particle to interact with
Ni(dt,dz,dp,dE) = N (dt,dz,do,[i — 1,i),dE)
+ N(dt,dz,de,d¢, [i — 1,1))

someone else chooses i to interact with

CM-_/“/Z”r YAV L 6Nt dz, dé, d),
0o Jo )

0
where c(v, vy, 2, ¢) = V' (v,v,,0, ¢) — v.
@ Under N, t_g) is an f—sample from the (random) measure

LTS

J#L -
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Coupling construction

The particle system and coupling construction

Nonlinear processes

o Remark: if V ) above is replaced by an -realization Y/'(£) of
the law f;, the resulting SDE of the form:

21 )
Ui = / / / (UL, Yi(€), 2, )N (dt, dz, do, dE),
corresponds to a nonlinear process (cf. Tanaka).

@ Also known as Boltzmann process, it is a jump process U on
R3, such that Law(U;) = f;.
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Coupling construction

The particle system and coupling construction

Nonlinear processes

o Remark: if V ) above is replaced by an -realization Y/'(£) of
the law f;, the resulting SDE of the form:

Ui = / / 2” / (UL, YiI(€), 2, Q)N (dt, dz, do, dE),

corresponds to a nonlinear process (cf. Tanaka).

@ Also known as Boltzmann process, it is a jump process U on
R3, such that Law(U;) = f;.

@ Heuristic: it represents the trajectory of a fixed particle
immersed in an infinite population of “virtual particles”.

o Classical propagation of chaos argument: to couple particles
with independent nonlinear processes U*, ..., UY
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Coupling construction

The particle system and coupling construction

Define a system of nonlinear processes U; = (U}, ..., UY) in such a
way that Y/ (&) is optimally coupled to V' for each i.
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Coupling construction

The particle system and coupling construction

Define a system of nonlinear processes U; = (U}, ..., UY) in such a
way that Y/ (&) is optimally coupled to V' for each i.

@ Related idea: in F., Guérin & Méléard '09, diffusive Nambu
type particles are “optimally coupled” with given independent
nonlinear processes associated with Landau equation
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Coupling construction

The particle system and coupling construction

Define a system of nonlinear processes U; = (U}, ..., UY) in such a
way that Y/(&) is optimally coupled to V' for each i.

@ Related idea: in F., Guérin & Méléard '09, diffusive Nambu
type particles are “optimally coupled” with given independent
nonlinear processes associated with Landau equation

@ Also in Fournier & Mischler '16 in the Nanbu setting for
Boltzmann equation, using U', ..., U" independent.
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Coupling construction

The particle system and coupling construction

Define a system of nonlinear processes U; = (U}, ..., UY) in such a
way that Y/(&) is optimally coupled to V' for each i.

@ Related idea: in F., Guérin & Méléard '09, diffusive Nambu
type particles are “optimally coupled” with given independent
nonlinear processes associated with Landau equation

@ Also in Fournier & Mischler '16 in the Nanbu setting for
Boltzmann equation, using U', ..., U" independent.

o Effective binary collisions (our case): coupling argument
introduced in Cortez & F. '16 AAP for 1d Kac's model and
variants.
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Coupling construction

The particle system and coupling construction

Define a system of nonlinear processes U; = (U}, ..., UY) in such a
way that Y/(&) is optimally coupled to V' for each i.

@ Related idea: in F., Guérin & Méléard '09, diffusive Nambu
type particles are “optimally coupled” with given independent
nonlinear processes associated with Landau equation

@ Also in Fournier & Mischler '16 in the Nanbu setting for
Boltzmann equation, using U', ..., U" independent.

o Effective binary collisions (our case): coupling argument
introduced in Cortez & F. '16 AAP for 1d Kac's model and
variants. Some measurability issues must be taken care of...
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Coupling construction

The particle system and coupling construction

Lemma (Coupling Lemma (Cortez & F. '16))

There exists a (measurable) mapping (t,x,&) w T1i(x, &) such that
for each x = (z1,...,2V) € (R®)N the pair

(2@, 10}(x, €))

is an optimal coupling (for W3 ) between ﬁ > j4i 0z and f; when §
is chosen uniformly in [0, N)\[i — 1,1).

v
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Coupling construction

The particle system and coupling construction

Lemma (Coupling Lemma (Cortez & F. '16))

There exists a (measurable) mapping (t,x,&) w T1i(x, &) such that
for each x = (z1,...,2V) € (R®)N the pair

(', T (x, €))

is an optimal coupling (for W3 ) between ﬁ > j4i 0z and f; when §
is chosen uniformly in [0, N)\[i — 1,1).

v

In addition to choosing “virtual velocities” to interact with, here we
also need to choose “circles” and couple their choices too...
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Coupling construction

The particle system and coupling construction

Lemma (Optimal coupling of circles, Cortez &F. '16)

3 measurable function ¢ : R? x R3 x [0,27) — [0, 27) such that
Vv, vy, u, us € R3, V0,9 € [0,27), the angle ¢ = o(v — vy, u — U, @)
is such that

(V' (v, 04,0, @), 4 (u, ux, 9, )

is an optimal (quadratic) coupling between the uniform laws in the
circles C(v,v., 8) and C(u, u, ).
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Coupling construction

The particle system and coupling construction

Lemma (Optimal coupling of circles, Cortez &F. '16)

3 measurable function ¢ : R? x R3 x [0,27) — [0, 27) such that
Vv, vy, u, us € R3, V0,9 € [0,27), the angle ¢ = o(v — vy, u — U, @)
is such that

(V' (v, 04,0, @), 4 (u, ux, 9, )

is an optimal (quadratic) coupling between the uniform laws in the
circles C(v,v., 8) and C(u, u, V).

Moreover, if b,b € R? denote their centers, v, > 0 their radii, and
d,d € S? their orthogonal unitary vectors, the optimal cost is

b— b+ (r —#)? +ri(l —|d-d|)
_— Y Y——

traslation dilation inclination
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Coupling construction

The particle system and coupling construction

Lemma (Optimal coupling of circles, Cortez &F. '16)

3 measurable function ¢ : R? x R3 x [0,27) — [0, 27) such that
Vv, vy, u, us € R3, V0,9 € [0,27), the angle ¢ = o(v — vy, u — U, @)
is such that

(V' (v, 04,0, @), 4 (u, ux, 9, )

is an optimal (quadratic) coupling between the uniform laws in the
circles C(v,v., 8) and C(u, u, V).

Moreover, if b,b € R? denote their centers, v, > 0 their radii, and
d,d € S? their orthogonal unitary vectors, the optimal cost is

b— b+ (r —#)? +ri(l —|d-d|)
_— Y Y——

traslation dilation inclination

("Tanaka trick”, sharp version)
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Coupling construction

The particle system and coupling construction

SDEs for V= (V! ... V¥)and U= (U',...,UY) become:

/ /%/ Vi, VYO g, 9)N(dt, dz, dop, dE),
U = /0 /027r /0 (UL TE (V- €),0, 0N (dt, dz, do, dE).

with
o II(V,-,&) as in Coupling Lemma above and

o pl:=p(VL — th_(f), UL —1I{(V-,€), ¢) couples the angles “¢"
“optimally”.
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Coupling construction

The particle system and coupling construction

SDEs for V= (V! ... V¥)and U= (U',...,UY) become:

/ /%/ Vi, Vi© 0, )Ni(dt, dz, do, dE),
U = / /%/ (UL TI (V- €), 6, )N (dt, dz, d, dE).

with
o II(V,-,&) as in Coupling Lemma above and

o pl:=p(VL — th_(f), UL —1I{(V-,€), ¢) couples the angles “¢"
“optimally”.

By construction, processes (U*, ..., U") are exchangeable
but not independent (they have some simultaneous jumps).
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5. Time-dependent estimate



Time-dependent estimate

Proof of the time-dependent bound

1) It6 calculus and Gronwall's Lemma yield

E|V’ UZ|2 < C(]. +t) EW2 (NZ(SUJ’ft)
J#i

and

EW? ( Zéw,ft) <CO(1 +t)’EW? (NZ(SUJ,ft)

Jj#i
1
+ CEW% (N Z 5Ug'7 ft)
J

2) Need to bound two expectations on the left by CN~s
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Time-dependent estimate

Proof of the time-dependent bound

3) As in F.& Cortez AAP'16, we prove : for each k < N,
Lpwe i25 5 | <W3 (Lawli(Uy), £2)
9 2\ . Ui SWVy » Jt

+ex(fe) + /!UI fo(dv)

where

ex(fr) == BEW; (;Z‘Sﬁzvft) < C;(IJ/“S)
J

for U},...UF i.id. ~ f, (Fournier& Guillin '14).
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Time-dependent estimate

Proof of the time-dependent bound

3) As in F.& Cortez AAP'16, we prove : for each k < N,
Lpwe i25 5 | <W3 (Lawli(Uy), £2)
9 2\ . Ui SWVy » Jt

+ex(fe) + /!UI fo(dv)

where

ex(fi) == EW; ( ZéUa,ft) < kg]/?

for U},...UF i.id. ~ f, (Fournier& Guillin '14).
t

4) Prove Decoupling Lemma: W2 (Law\ (Uy), 2 ) CE.
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Time-dependent estimate

Proof of the time-dependent bound

3) As in F.& Cortez AAP'16, we prove : for each k < N,
Lpwe i25 5 | <W3 (Lawli(Uy), £2)
9 2\ . Ui SWVy » Jt

+ex(fe) + /!UI fo(dv)

where

ex(fr) == BEW; (;Z‘Sﬁzvft) < C;(IJ/“S)
J

for U},...UF i.id. ~ f, (Fournier& Guillin '14).
4) Prove Decoupling Lemma: W2 (Law\k(Ut), t®k) < CE.
(Change jumps of particles j > k with particle i by indep. ones)
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Time-dependent estimate

Proof of the time-dependent bound

Hence, for each £k < N,
1. (1 e

Choosing k = | N?/3] yields the required order N=1/3 .
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6. Uniform relaxation and time
independent bound



Uniform relaxation and time independent bound

Uniform in NV relaxation of particles

Call 4N the uniform distribution on the Boltzmann sphere
N 5 1 N 1 N
S (R)™Y : — —
{V RS PIL P } |

which are invariant for the N —particles dynamics.

Theorem ( M.Rousset '14)

Let V|, be exchangeable, concentrated in S™. Then, V6 > 0,q > 1
0 Waaym(Law(V.),UN) < ~Ci (1) Waaym (LawW(V) U)H17%

where c;.4(t) = ks JB(|V;}[22(+0)) =124 for some ks, > 0 not
depending on N and
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Uniform relaxation and time independent bound

Uniform in NV relaxation of particles

Call 4N the uniform distribution on the Boltzmann sphere
N 5 1 N 1 N
S (R)™Y : — —
{V RS PIL P } |

which are invariant for the N —particles dynamics.

Theorem ( M.Rousset '14)
Let V|, be exchangeable, concentrated in S™. Then, V6 > 0,q > 1

O W aym(Law(V)UN) < —54(6) W aym(Law(V) UN Y172,

where c;.4(t) = ks JB(|V;}[22(+0)) =124 for some ks, > 0 not
depending on N and
W22,sym<:ua V) = ian,Y EW22 (% Zj 5Xja % Zj 6YJ')) .
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Uniform relaxation and time independent bound

Proof of the uniform in time bound

1) Prove preservation of p—moments for arbitrary p > 4 by particle
the system (follows from a “Povzner lemma")
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Uniform relaxation and time independent bound

Proof of the uniform in time bound

1) Prove preservation of p—moments for arbitrary p > 4 by particle
the system (follows from a “Povzner lemma")

2) This improves Rousset’'s Thm. to : forall 0 < § < p — 2,
W3 sy (Law (V). UN) < Cps(1+1)7",

where C), s depends only on p, § and supy E|V '[P
3) For V|, exchangeable, concentrated in SN this and
W3 UM, (N(0, 13))®N) < CN~'/2 yield
EWZ(Vy, f,) < Cps(1+1)° + CN"V2 < ON/3

for t > t(N,€). For t <t(N,e¢), use our first bound.

4) General exchangeable V: reduce to previous case by
“standarizing” the particle system.
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Thank you!
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