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Squared Bessel processes

Let δ ≥ 0, y ≥ 0, and (Bt)t≥0 a BM.

By Yamada-Watanabe’s Theorem, there exists a unique (strong)
solution (Yt)t≥0 of

Yt = y +

∫ t

0
2
√
|Ys| dBs + δ t,

and moreover Y ≥ 0 so that |Y| = Y .

The transition semigroup is explicitly known and contains some Bessel
functions and (Yt)t≥0 is called a Squared Bessel Process, see
Pitman-Yor.

We define
Xt :=

√
Yt.

What equation does X satisfy? The function y 7→ √y is not smooth and
the Itô formula can not be applied (too) naively.
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Bessel processes

For δ > 1 we have

Xt = x +
δ − 1

2

∫ t

0

1
Xs

ds + Bt

where x :=
√

y.

More precisely, by the Itô-Tanaka formula

Xt = x +
δ − 1

2

∫ t

0

1
Xs

ds + Bt +
1
2

L0
t

where (La
t )t≥0,a≥0 is defined by the occupation times formula∫ t

0
ϕ(Xs) ds =

∫ ∞
0

ϕ(a) La
t da

for all ϕ ∈ Cb(R). Here L0 ≡ 0 and X is a semimartingale.
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A very interesting SDE

I for δ > 1 the drift x 7→ δ−1
2x is dissipative (i.e. decreasing) on R+,

the SDE has pathwise uniqueness and the solution is Strong Feller
I X is known as the Bessel process.
I As δ ↓ 1 the solution converges to the reflecting BM

Xt = X0 + Lt + Bt

where L is continuous monotone non-decreasing, L0 = 0, X is
continuous non-negative, and

∫∞
0 Xt dLt = 0.

I For δ ≥ 2 a.s. Xt > 0 for all t > 0.
I For δ ∈ ]1, 2[ we have a.s. Xt for some t > 0, but still L0

t = 0.
I We can define diffusion local times (`a

t )t,a≥0 by∫ t

0
ϕ(Xs) ds =

∫ ∞
0

ϕ(a) `a
t aδ−1 da.

Then (`0
t )t≥0 is the inverse of a (1− δ

2)-stable subordinator.
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δ < 1

It turns out that in this situation the process Xt :=
√

Yt solves this SDE

Xt = X0 +
δ − 1

2

∫ ∞
0

`a
t − `0

t

a
aδ−1 da + Bt,

where (`a
t )a,t≥0 is the family of diffusion local times. Formally this is

equal to

Xt = X0 +
δ − 1

2

∫ t

0

1
Xs

ds +∞`0
t + Bt,

This SDE has a very exotic drift: an increasing singular non-linearity
(the opposite of dissipative) and a reflection at 0 but multiplied by an
infinite constant. Indeed X is not a semimartingale and L0

t = +∞.

The two infinite terms compensate each other in a renormalisation
phenomenon.

To my knowledge, there is no pathwise uniqueness result for such SDE.
One can prove the Strong Feller property (see Henri’s recent paper).
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Bessel-like SPDEs with δ ≥ 3

∂u
∂t

=
1
2
∂2u
∂x2 + ξ + η

where u : R+ × [0, 1]→ R+, ξ is a space-time white noise, η is a
measure on R+ × [0, 1] s.t.∫

R+×[0,1]
u dη = 0.

This is the Nualart-Pardoux equation, whose invariant measure is the
3-Bessel bridge.

The equation corresponding to the δ-Bessel bridge for δ > 3 is

∂u
∂t

=
1
2
∂2u
∂x2 +

(δ − 1)(δ − 3)

8u3 + ξ

What about δ < 3? This question has been open since 2001.
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Bessel-like SPDEs with δ < 3

We concentrate on the drift

κ(δ)

∫ t

0

1
u3(s, x)

ds, κ(δ) :=
(δ − 1)(δ − 3)

8
.

We introduce diffusion local times∫ t

0
ϕ(u(s, x)) ds =

∫ ∞
0

ϕ(a) `a
t,x aδ−1 da

and we can write

κ(δ)

∫ t

0

1
u3(s, x)

ds = κ(δ)

∫ ∞
0

1
a3 `

a
t,x aδ−1 da,

which however diverges for δ ≤ 3 if `0
t,x > 0.
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Bessel-like SPDEs with 1 < δ < 3

Then, in analogy with Bessel processes, we write a renormalised
version of the drift

κ(δ)

∫ ∞
0

1
a3 (`a

t,x − `0
t,x) aδ−1 da,

which may work as long as δ > 2.

For δ ∈ ]1, 2] one expects

κ(δ)

∫ ∞
0

1
a3

(
`a

t,x − `0
t,x − a

∂

∂a
`a

t,x

∣∣∣∣
a=0

)
aδ−1 da,

however it turns out that

∂

∂a
`a

t,x

∣∣∣∣
a=0

= 0

so that the same expression is valid for δ ∈ ]1, 3[.
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Bessel-like SPDEs with δ = 1

The most important and interesting case is δ = 1, which, together with
δ = 3, is a critical case.

As δ ↓ 1, the previous expression can be seen to converge to

−1
8
∂2

∂a2 `
a
t,x

∣∣∣∣
a=0

.

We write therefore the SPDE for δ = 1:

∂u
∂t

=
1
2
∂2u
∂x2 −

1
8
∂

∂t
∂2

∂a2 `
a
t,x

∣∣∣∣
a=0

+ ξ.

Motivated by scaling limits of dynamical critical pinning models.
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Bessel-like SPDEs with 0 < δ < 1

For δ ∈ ]0, 1[ one expects

κ(δ)

∫ ∞
0

1
a3

(
`a

t,x − `0
t,x −

a2

2
∂2

∂a2 `
a
t,x

∣∣∣∣
a=0

)
aδ−1 da

with a Taylor expansion of order 2 of a 7→ `a
t,x.
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A general formula

For α > 0 we define the measure on R+

µα(dx) :=
xα−1

Γ(α)
1(x>0) dx.

For α ≤ 0 we define the Schwartz distribution on R+

µα(ϕ) := (−1)−αϕ(−α)(0)

if −α ∈ N, and

µα(ϕ) :=
1

Γ(α)

∫ ∞
0

xα−1

ϕ(x)−
∑

0≤i≤−α

xi

i!
ϕ(i)(0)

 dx

otherwise.
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A general formula

Then we can write the above family of SPDEs in a unified way for all
δ > 0

∂u
∂t

=
1
2
∂2u
∂x2 + Γ(δ − 3)κ(δ)µδ−3(`

(·)
t,x) + ξ
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Results

Most of the above is conjectural.

We do have integration by parts formulae on the law of δ-Bessel
processes for δ < 3, see Henri’s talk, which give the form of the
equation.

By Dirichlet forms methods, at least in the cases δ = 1, 2 we can
construct (stationary) solutions to the SPDE.

Major open questions

I pathwise uniqueness ????
I local times for SPDEs ???
I the Strong Feller property ??

(Henri proved it for Bessel processes uniformly in δ)
I the associated Dirichlet forms ? (for δ 6= 1, 2)

Lorenzo Zambotti 15th May 2018, Luminy



Pathwise uniqueness

Recall that for Bessel processes and δ < 1, we have pathwise
uniqueness by setting Yt := X2

t and applying
I the Itô formula in order to compute the SDE solved by Y ,
I the Yamada-Watanabe theorem, since the diffusion coefficient of

this SDE is only 1
2 -Hölder.

For space-time white noise driven SPDEs, Itô calculus is notoriously
difficult. Carlo Bellingeri is investigating this with regularity structures.
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Pathwise uniqueness

Since the drift is proportional to u−3, it seems reasonable to set v := u4

and study pathwise uniqueness for v. The equation is

∂v
∂t

=
1
2
∂2v
∂x2 −

3
2

:

(
∂
√

v
∂x

)2

: +
(δ − 1)(δ − 3)

2
+ 4v

3
4 ξ

This equation is impossible to solve today, but the exponent 3
4 has been

shown by Mueller-Mytnik-Perkins to be critical for pathwise
uniqueness, as for Yamada-Watanabe in one-dimensional diffusions.
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Hitting

Theorem (Dalang, Mueller, Z. (2006))
Let δ ≥ 3 and k ∈ N such that

k >
4

δ − 2
.

Then P(∃t > 0, x1, . . . , xk ∈ ]0, 1[: u(t, xi) = 0) = 0.

Now we can conjecture that the same formula holds for all δ ≥ 2 !!!

Correctly, δ = 2 is the critical case for hitting infinitely many times in
space.

What about δ < 2, in particular δ = 1 ?
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