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Introduction

Consider the stochastic heat equation on L2([0, 1];Rd)

dX (t) =
1

2
∆DX (t)dt + dW (t)︸ ︷︷ ︸

space time white noise

,

The invariant measure µ = N(0, (−∆D)−1) = law of Brownian bridge.
When ∆D is replaced by ∆D,N , i.e. Laplacian with boundary condition
h(0) = 0, h′(1) = 0, the invariant measure = law of Brownian motion.
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Rd change to manifold M

M: Compact Riemannian manifold with metric g .

The formal Langevin dynamics
associated to the energy

E (u) =
1

2

∫
S1

gu(x)(∂xu(x), ∂xu(x))dx ,

for smooth functions u : S1 → M is the following:

[Funaki92/ Hairer16]: Formally write the equation in the local coordinates:

u̇α = ∂2xu
α + Γαβγ(u)∂xu

β∂xu
γ︸ ︷︷ ︸

−∇E ,Eells-Sampson harmonic map

+ σαi (u)ξi︸ ︷︷ ︸
white noise on loop space

,

which is multi-component version of the KPZ equation. By regularity structure
theory, local well-posedness has been obtained, (see also [Bruned, Hairer,
Zambotti16, Chandra, Hairer16])
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Rd changed to manifold M

The measure formally given by exp(−2E (u))Du leaves the equation invariant.

For M = Rd : exp(−2E (u))Du = N−1Πx∈S1du(x) exp(−2E (u)) = N(0, (−∆D)−1)

[Andersson, Driver 99]: natural approximations of exp(−2E (u))Du ⇒ Wiener
measure on C ([0, 1];M).

Is it possible to construct stochastic heat equation on Riemannian manifold by
Dirichlet form?
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Drichlet form associated with stochastic heat equation

M = Rd

Drichlet form associated with stochastic heat equation:
E = L2([0, 1];Rd), cylinder function, F (γ) = f (〈e1, γ〉L2 , ..., 〈ek , γ〉L2), γ ∈ E

E(F ,G ) =
1

2

∫
〈DF ,DG 〉L2dµ.

DF : L2 derivative =
∑

DekFek , {ek} is a basis in L2([0, 1];Rd).
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Drichlet form associated with stochastic heat equation

Dirichlet form

M: Riemannian manifold
ρ: Riemannian distance

µ := law of Brownian bridge/ Brownian motion starting from o ∈ M on
C ([0, 1];M) (loop case/path case)

d̃(γ, η) := [

∫ 1

0

ρ(γs , ηs)2ds]1/2, γ, η ∈ C ([0, 1];M).

E := C ([0, 1];M)
d̃

.
Cylinder function:

F (γ) = f

(∫ 1

0
g1(s, γs)ds,

∫ 1

0
g2(s, γs)ds, ...,

∫ 1

0
gm(s, γs)ds

)
, γ ∈ E ,

DF : L2 derivative =
∑

DekFek , {ek} ⊂ H1,2
0 is a basis in L2([0, 1];Rd).

Dek

(∫ 1

0

gj(s, γs)ds

)
=

∫ 1

0

〈∇gj(s, γs),Usek(s)〉TγsMds,

where U· is the stochastic parallel translation along γ.
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Drichlet form associated with stochastic heat equation

Dirichlet form

By Driver’s integration by parts formula for µ, h ∈ H1,2
0∫

DhFdµ =

∫
Fβhdµ

with:

L2(E , µ) 3 βh :=

∫ 1

0

〈h′s +
1

2
RicUshs , dBs〉.

E(F ,G ) =
1

2

∫
〈DF ,DG 〉L2dµ,

is closable and its closure (E ,D(E)) is a quasi-regular Dirichlet form on L2(E ;µ).
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Drichlet form associated with stochastic heat equation

Martingale solution

Theorem([Röckner, Wu, Zhu,Z.17])There exists a (Markov) diffusion process
M = (Ω,F ,Mt , (X (t))t≥0, (P

z)z∈E ) on E properly associated with (E ,D(E))
having µ as an invariant measure.

For u ∈ D(E)
u(Xt)− u(X0) = Mu

t + Nu
t Pz − a.s.,

for q.e. z ,
Mu: a martingale with quadratic variation process given by∫ t

0
|Du(Xs)|2L2ds ↔ σαi (u)ξi︸ ︷︷ ︸

white noise on loop space

Nu
t : zero quadratic variation process. In particular, for u ∈ D(L),

Nu
t =

∫ t

0
Lu(Xs)ds.

Remark: All these results also hold in the free loop and free path case.
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Drichlet form associated with stochastic heat equation

Infinite volume case

µ = law of Brownian motion on C ([0,∞);M) (space variable: half line)

µ = law of two sided Brownian motion on C (R;M) (space variable: the whole
line)

state space E : some weighted L2-space

Cylinder functions: F (γ) = f

(∫ T2

T1
g1(s, γs)ds, ...

)
,

Consider

E(F ,G ) =
1

2

∫
〈DF ,DG 〉L2dµ,

is closable and its closure (E ,D(E)) is a quasi-regular Dirichlet form on L2(E ;µ).

Theorem([Chen, Wu, Zhu,Z.18+]) There exists a (Markov) diffusion process M
on E associated with (E ,D(E)) having µ as an invariant measure.
⇒ Existence of Martingale solution
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Ergodicity/ Non-ergodicity

Ergodicity in the Finite volume case

Theorem([Röckner, Wu, Zhu,Z.17])
Ric ≥ −K with K ∈ R. Log-Sobolev inequality holds for any G ∈ D(E)∫

G 2 logG 2dµ ≤ 2C (K )E(G ,G ) +

∫
G 2dµ log

∫
G 2dµ.

(see also [Gourcy, Wu06]). In particular, for Ric = K , limK→0 C (K ) = 4
π2 .

⇒ Poincaré inequality∫
G 2dµ ≤ C (K )E(G ,G ) + (

∫
Gdµ)2.

⇔ Exponential ergodicity ‖Pt f −
∫
fdµ‖2L2 ≤ e−t/C(K)‖f ‖2L2 .
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π2 .

⇒ Poincaré inequality∫
G 2dµ ≤ C (K )E(G ,G ) + (

∫
Gdµ)2.

⇔ Exponential ergodicity ‖Pt f −
∫
fdµ‖2L2 ≤ e−t/C(K)‖f ‖2L2 .
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Theorem([Röckner, Wu, Zhu,Z.17])
Ric ≥ −K with K ∈ R. Log-Sobolev inequality holds for any G ∈ D(E)∫

G 2 logG 2dµ ≤ 2C (K )E(G ,G ) +

∫
G 2dµ log

∫
G 2dµ.

(see also [Gourcy, Wu06]). In particular, for Ric = K , limK→0 C (K ) = 4
π2 .
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Ergodicity/ Non-ergodicity

Ergodicity/Non-ergodicity in the Infinite volume case

µ = law of BM on C ([0,∞);M):

Theorem([Chen, Wu, Zhu, Z.18+])

Ric ≥ K with K > 0 ⇒ log-Sobolev ineq.⇒ L2 exponential ergodicity
Ex: sphere

M = Rd , no exponential ergodicity (spectral gap= 0), but [Funaki, Xie09]:
ergodicity

−K1 ≤ Sec Cur ≤ −K2 with K1,K2 > 0 ⇒ non-ergodicity
Ex: hyperbolic space
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Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0, 1] to M and the measure

µε :=
1

Zε
exp(−1

2
E )VolGε .

with E (γ) = 1
2

∫ 1

0
〈γ′(s), γ′(s)〉ds.

[Andersson, Driver99]: µε ⇒ µ
Diffusion process constructed by Dirichlet form w.r.t. µε and with L2 → l2.

dxεt,s =
1√
ε
σ(xεt ) ◦ dWt + βεs (xεt )dt,

where W is a d/ε-dim Brownian motions, ◦ means the Stratonovich integral

βεsj (γ) =
1

2ε2
//sj (γ)(b(sj−1) + b(sj+1)− 2b(sj))︸ ︷︷ ︸

∇E

− 1

4
Ric(γ′(sj)) + Err︸ ︷︷ ︸

VolGε

,

with b being anti-development of γ.

Xiangchan Zhu (Bielefeld University) stochastic heat equations 13 / 15



Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0, 1] to M and the measure

µε :=
1

Zε
exp(−1

2
E )VolGε .

with E (γ) = 1
2

∫ 1

0
〈γ′(s), γ′(s)〉ds.

[Andersson, Driver99]: µε ⇒ µ

Diffusion process constructed by Dirichlet form w.r.t. µε and with L2 → l2.

dxεt,s =
1√
ε
σ(xεt ) ◦ dWt + βεs (xεt )dt,

where W is a d/ε-dim Brownian motions, ◦ means the Stratonovich integral

βεsj (γ) =
1

2ε2
//sj (γ)(b(sj−1) + b(sj+1)− 2b(sj))︸ ︷︷ ︸

∇E

− 1

4
Ric(γ′(sj)) + Err︸ ︷︷ ︸

VolGε

,

with b being anti-development of γ.

Xiangchan Zhu (Bielefeld University) stochastic heat equations 13 / 15



Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0, 1] to M and the measure

µε :=
1

Zε
exp(−1

2
E )VolGε .

with E (γ) = 1
2

∫ 1

0
〈γ′(s), γ′(s)〉ds.

[Andersson, Driver99]: µε ⇒ µ
Diffusion process constructed by Dirichlet form w.r.t. µε and with L2 → l2.

dxεt,s =
1√
ε
σ(xεt ) ◦ dWt + βεs (xεt )dt,

where W is a d/ε-dim Brownian motions, ◦ means the Stratonovich integral

βεsj (γ) =
1

2ε2
//sj (γ)(b(sj−1) + b(sj+1)− 2b(sj))︸ ︷︷ ︸

∇E

− 1

4
Ric(γ′(sj)) + Err︸ ︷︷ ︸

VolGε

,

with b being anti-development of γ.

Xiangchan Zhu (Bielefeld University) stochastic heat equations 13 / 15



Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0, 1] to M and the measure

µε :=
1

Zε
exp(−1

2
E )VolGε .

with E (γ) = 1
2

∫ 1

0
〈γ′(s), γ′(s)〉ds.

[Andersson, Driver99]: µε ⇒ µ
Diffusion process constructed by Dirichlet form w.r.t. µε and with L2 → l2.

dxεt,s =
1√
ε
σ(xεt ) ◦ dWt + βεs (xεt )dt,

where W is a d/ε-dim Brownian motions, ◦ means the Stratonovich integral

βεsj (γ) =
1

2ε2
//sj (γ)(b(sj−1) + b(sj+1)− 2b(sj))︸ ︷︷ ︸

∇E

− 1

4
Ric(γ′(sj)) + Err︸ ︷︷ ︸

VolGε

,

with b being anti-development of γ.

Xiangchan Zhu (Bielefeld University) stochastic heat equations 13 / 15



Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0, 1] to M and the measure

µε :=
1

Zε
exp(−1

2
E )VolGε .

with E (γ) = 1
2

∫ 1

0
〈γ′(s), γ′(s)〉ds.

[Andersson, Driver99]: µε ⇒ µ
Diffusion process constructed by Dirichlet form w.r.t. µε and with L2 → l2.

dxεt,s =
1√
ε
σ(xεt ) ◦ dWt + βεs (xεt )dt,

where W is a d/ε-dim Brownian motions, ◦ means the Stratonovich integral

βεsj (γ) =
1

2ε2
//sj (γ)(b(sj−1) + b(sj+1)− 2b(sj))︸ ︷︷ ︸

∇E

− 1

4
Ric(γ′(sj)) + Err︸ ︷︷ ︸

VolGε

,

with b being anti-development of γ.

Xiangchan Zhu (Bielefeld University) stochastic heat equations 13 / 15



Stochastic heat equations

Stochastic heat equation

Since

βε → 1

2

∇
ds
∂sγ −

1

4
Ric(∂sγ),

where ∇ds = //s
d
ds //

−1
s .

dX ε
t,s =

1√
ε
//s(X ε

t ) ◦ dWt + βεs (X ε
t )dt

Formally ⇓

∂tXt,s =
1

2

∇
ds
∂sXt,s︸ ︷︷ ︸

Hairer’s drift term

+Ut,s(X ) ◦ ξ − 1

4
Ric(∂sXt,s)︸ ︷︷ ︸

Corresponds to σ(X )◦ξ

,

which formally leaves µ invariant.
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Stochastic heat equations

Thank you
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