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Introduction

Consider the stochastic heat equation on L2([0, 1]; RY)

ax () = %ADX(t)dt L AW
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Introduction

Consider the stochastic heat equation on L2([0, 1]; RY)

ax () = %ADX(t)dt L AW

space time white noise

The invariant measure u = N(0,(—Ap)~!) = law of Brownian bridge.
When Ap is replaced by Ap y, i.e. Laplacian with boundary condition
h(0) =0, /(1) = 0, the invariant measure = law of Brownian motion.
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|
RY change to manifold M

M: Compact Riemannian manifold with metric g.
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-
RY change to manifold M

M: Compact Riemannian manifold with metric g. The formal Langevin dynamics
associated to the energy

EW) = 5 | B 0., Dru()ek.

for smooth functions v : S' — M is the following:
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-
RY change to manifold M

M: Compact Riemannian manifold with metric g. The formal Langevin dynamics
associated to the energy

EW) = 5 | B 0., Dru()ek.

for smooth functions v : S' — M is the following:

[Funaki92/ Hairer16]: Formally write the equation in the local coordinates:

)

= 9Pu*+ rgy(u)axuﬁaxm + o (u)&;
——
—VE,Eells-Sampson harmonic map  White noise on loop space

which is multi-component version of the KPZ equation. By regularity structure
theory, local well-posedness has been obtained, (see also [Bruned, Hairer,
Zambottil6, Chandra, Hairer16])

Xiangchan Zhu (Bielefeld University) stochastic heat equations 4 /15



-
RY changed to manifold M

The measure formally given by exp(—2E(u))Du leaves the equation invariant.
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RY changed to manifold M

The measure formally given by exp(—2E(u))Du leaves the equation invariant.
For M = R9: exp(—2E(u))Du = N=1M,cs:du(x) exp(—2E(u)) = N(0, (—Ap)~1)

[Andersson, Driver 99]: natural approximations of exp(—2E(u))Du = Wiener
measure on C([0,1]; M).
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-
RY changed to manifold M

The measure formally given by exp(—2E(u))Du leaves the equation invariant.
For M = R9: exp(—2E(u))Du = N=1M,cs:du(x) exp(—2E(u)) = N(0, (—Ap)~1)

[Andersson, Driver 99]: natural approximations of exp(—2E(u))Du = Wiener
measure on C([0,1]; M).

Is it possible to construct stochastic heat equation on Riemannian manifold by
Dirichlet form?
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Drichlet form associated with stochastic heat equation

Drichlet form associated with stochastic heat equation:
E = L?([0,1]; RY), cylinder function, F(v) = f({e1,7)s2, -, (€x,V)12),Y € E

E(F,G) = %/(DE DG) 2 dp.
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Drichlet form associated with stochastic heat equation:
E = L?([0,1]; RY), cylinder function, F(v) = f({e1,7)s2, -, (€x,V)12),Y € E

E(F,G) = %/(DE DG) 2 dp.

DF: L2 derivative = Y D, Fey, {ex} is a basis in L2(]0,1]; R9).
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Drichlet form associated with stochastic heat equation

Dirichlet form

M: Riemannian manifold
p: Riemannian distance
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Dirichlet form

M: Riemannian manifold

p: Riemannian distance

= law of Brownian bridge/ Brownian motion starting from o € M on
C([0,1]; M) (loop case/path case)
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Drichlet form associated with stochastic heat equation

Dirichlet form

M: Riemannian manifold

p: Riemannian distance

= law of Brownian bridge/ Brownian motion starting from o € M on
C([0,1]; M) (loop case/path case)

() = | / plre ms)?ds]V2, 7, € C((0,1]; M),

E := C([0,1]; /\/l)a.
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Drichlet form associated with stochastic heat equation

Dirichlet form

M: Riemannian manifold

p: Riemannian distance

= law of Brownian bridge/ Brownian motion starting from o € M on
C([0,1]; M) (loop case/path case)

() = | / plre ms)?ds]V2, 7, € C((0,1]; M),

E .= C([0, 1], M)".
Cylinder function:

F) _f(fo &1(s,7s)ds fO 82(5,7s)d fo gms’Ys)ds>”Y€E
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Drichlet form associated with stochastic heat equation

Dirichlet form

M: Riemannian manifold

p: Riemannian distance

= law of Brownian bridge/ Brownian motion starting from o € M on
C([0,1]; M) (loop case/path case)

() = | / plre ms)?ds]V2, 7, € C((0,1]; M),

E .= C([0, 1], M)".
Cylinder function:

F) —f<f0gls% )ds ng2S’ys fogms'ys)ds>”}’€E
DF: L? derivative = 3" D, Fey, {ex} C Hg= is a basis in L2([0, 1]; R9).

Dek(/olgj(sms)ds> :/Ol(ng(s,'ys),Usek(s)>T%Mds,

where U. is the stochastic parallel translation along ~.
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Drichlet form associated with stochastic heat equation

Dirichlet form

By Driver's integration by parts formula for u, h € H§’2

/ DiFdp = / FBadu

1
1
L*(E,p) 2 Bp = / (h. + ERicushs, dBs).
0

with:
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Drichlet form associated with stochastic heat equation

Dirichlet form

By Driver's integration by parts formula for u, h € Hé’2

/ DiFdp = / FBadu

1
1
L2(E7u) S By = / (h. + ERI'CUShS, dBs).
0

with:

£(F,G) = % / (DF, DG)2dy,

is closable and its closure (£, D(€)) is a quasi-regular Dirichlet form on L?(E; p).
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Drichlet form associated with stochastic heat equation

Martingale solution

Theorem([Rdckner, Wu, Zhu,Z.17]) There exists a (Markov) diffusion process
M = (Q, F, M, (X(t))e>0, (P?)zc€) on E properly associated with (€, D(E))
having p as an invariant measure.
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Drichlet form associated with stochastic heat equation

Martingale solution

Theorem([Rdckner, Wu, Zhu,Z.17]) There exists a (Markov) diffusion process
M = (Q, F, M, (X(t))e>0, (P?)zc€) on E properly associated with (€, D(E))
having p as an invariant measure.
For u e D(€)

u(Xe) — u(Xo) = M + N/ P? —a.s.,

for gq.e. z,

M*": a martingale with quadratic variation process given by
t
fo |Du(X;)|7.ds
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Martingale solution

Theorem([Rdckner, Wu, Zhu,Z.17]) There exists a (Markov) diffusion process
M = (Q, F, M, (X(t))e>0, (P?)zc€) on E properly associated with (€, D(E))
having p as an invariant measure.

For u e D(€)
u(Xy) — u(Xo) = My + Nf  P? — as.,
for gq.e. z,
M*": a martingale with quadratic variation process given by
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Drichlet form associated with stochastic heat equation

Martingale solution

Theorem([Rdckner, Wu, Zhu,Z.17]) There exists a (Markov) diffusion process
M = (Q, F, M, (X(t))e>0, (P?)zc€) on E properly associated with (€, D(E))
having p as an invariant measure.

For u e D(€)

u(Xy) — u(Xo) = My + Nf  P? — as.,
for gq.e. z,
M*": a martingale with quadratic variation process given by
Jo |Du(X5)[3ds < i (u)&;

white noise on loop space
N{: zero quadratic variation process. In particular, for u € D(L),

NE = [ Lu(X;)ds.
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Drichlet form associated with stochastic heat equation

Martingale solution

Theorem([Rdckner, Wu, Zhu,Z.17]) There exists a (Markov) diffusion process
M = (Q, F, M, (X(t))e>0, (P?)zc€) on E properly associated with (€, D(E))
having p as an invariant measure.

For u e D(€)
u(Xy) — u(Xo) = My + Nf  P? — as.,
for gq.e. z,
M*": a martingale with quadratic variation process given by
o 1Du(Xs)[3.ds < o (u)g;
——

white noise on loop space
N{: zero quadratic variation process. In particular, for u € D(L),

NE = [ Lu(X;)ds.

Remark: All these results also hold in the free loop and free path case.
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Drichlet form associated with stochastic heat equation

Infinite volume case

e 1 = law of Brownian motion on C([0, 00); M) (space variable: half line)

o 1 = law of two sided Brownian motion on C(R; M) (space variable: the whole
line)
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Drichlet form associated with stochastic heat equation

Infinite volume case

e 1 = law of Brownian motion on C([0, 00); M) (space variable: half line)

o 1 = law of two sided Brownian motion on C(R; M) (space variable: the whole
line)

o state space E: some weighted [2-space

o Cylinder functions: F(v) = (le gi(s,7s)ds, . )
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Drichlet form associated with stochastic heat equation

Infinite volume case

e 1 = law of Brownian motion on C([0, 00); M) (space variable: half line)

o 1 = law of two sided Brownian motion on C(R; M) (space variable: the whole
line)

o state space E: some weighted [2-space
o Cylinder functions: F(v) = f(fTTf g1(s,vs)ds, >

Consider 1
§(F.6) = / (DF, DG)2dy,

is closable and its closure (£, D(€)) is a quasi-regular Dirichlet form on L?(E; p).
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Drichlet form associated with stochastic heat equation

Infinite volume case

e 1 = law of Brownian motion on C([0, 00); M) (space variable: half line)

o 1 = law of two sided Brownian motion on C(R; M) (space variable: the whole
line)
o state space E: some weighted [2-space

o Cylinder functions: F(v) = f(fTTf g1(s,vs)ds, >

Consider 1
§(F.6) = / (DF, DG)2dy,

is closable and its closure (£, D(€)) is a quasi-regular Dirichlet form on L?(E; p).

Theorem([Chen, Wu, Zhu,Z.18+]) There exists a (Markov) diffusion process M
on E associated with (€, D(€)) having 1 as an invariant measure.
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Drichlet form associated with stochastic heat equation

Infinite volume case

e 1 = law of Brownian motion on C([0, 00); M) (space variable: half line)

o 1 = law of two sided Brownian motion on C(R; M) (space variable: the whole
line)
o state space E: some weighted [2-space

o Cylinder functions: F(v) = f(fTTf g1(s,vs)ds, >
Consider 1
§(F.6) = / (DF, DG)2dy,
is closable and its closure (£, D(€)) is a quasi-regular Dirichlet form on L?(E; p).

Theorem([Chen, Wu, Zhu,Z.18+]) There exists a (Markov) diffusion process M
on E associated with (€, D(€)) having 1 as an invariant measure.
= Existence of Martingale solution

Xiangchan Zhu (Bielefeld University) stochastic heat equations 10 / 15



Ergodicity/ Non-ergodicity

Ergodicity in the Finite volume case

Theorem([Rockner, Wu, Zhu,Z.17])
Ric > —K with K € R. Log-Sobolev inequality holds for any G € D(£)

/G2 log G2du < 2C(K)E(G, G)+/szulog/62du.
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Ergodicity/ Non-ergodicity

Ergodicity in the Finite volume case

Theorem([Rockner, Wu, Zhu,Z.17])
Ric > —K with K € R. Log-Sobolev inequality holds for any G € D(£)

/G2 log G2du < 2C(K)E(G, G)+/G2dplog/62du.

(see also [Gourcy, Wu06]). In particular, for Ric = K, limk_o C(K) = .

s
= Poincaré inequality

/szu < C(K)E(G, G)+(/ Gdu)?.
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Ergodicity/ Non-ergodicity

Ergodicity in the Finite volume case

Theorem([Rockner, Wu, Zhu,Z.17])
Ric > —K with K € R. Log-Sobolev inequality holds for any G € D(£)

/G2 log G2du < 2C(K)E(G, G)+/szplog/62du.

(see also [Gourcy, Wu06]). In particular, for Ric = K, limk_o C(K) = .

s
= Poincaré inequality

/G%m < C(K)E(G, G)+(/ Gdu)?.

< Exponential ergodicity || Pef — [ fdu||?, < e~ /€K £]2,.
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Ergodicity/ Non-ergodicity

Ergodicity /Non-ergodicity in the Infinite volume case

p = law of BM on C([0, c0); M):
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Ergodicity /Non-ergodicity in the Infinite volume case

p = law of BM on C([0, c0); M):

Theorem([Chen, Wu, Zhu, Z.18+])

e Ric > K with K > 0 = log-Sobolev ineq.= L? exponential ergodicity
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p = law of BM on C([0, c0); M):

Theorem([Chen, Wu, Zhu, Z.18+])

e Ric > K with K > 0 = log-Sobolev ineq.= L? exponential ergodicity
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o M =R no exponential ergodicity (spectral gap= 0), but [Funaki, Xie09]:
ergodicity
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Ergodicity /Non-ergodicity in the Infinite volume case

p = law of BM on C([0, c0); M):

Theorem([Chen, Wu, Zhu, Z.18+])

e Ric > K with K > 0 = log-Sobolev ineq.= L? exponential ergodicity
Ex: sphere

o M =R no exponential ergodicity (spectral gap= 0), but [Funaki, Xie09]:
ergodicity
o —Kj < Sec Cur < —K, with Ky, K; > 0 = non-ergodicity

Xiangchan Zhu (Bielefeld University) stochastic heat equations 12 / 15



Ergodicity/ Non-ergodicity

Ergodicity /Non-ergodicity in the Infinite volume case

p = law of BM on C([0, c0); M):

Theorem([Chen, Wu, Zhu, Z.18+])

e Ric > K with K > 0 = log-Sobolev ineq.= L? exponential ergodicity
Ex: sphere

o M =R no exponential ergodicity (spectral gap= 0), but [Funaki, Xie09]:
ergodicity

o —Kj < Sec Cur < —K, with Ky, K; > 0 = non-ergodicity
Ex: hyperbolic space
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Approximation
Consider the piecewise geodesics space from [0,1] to M and the measure

1 1
e 1= Z exp(fEE)VolGE.

with E(7) = L [1(+/(s),7'(s))ds.
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Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0,1] to M and the measure

1 1
e 1= Z exp(fEE)VolGE.

with E 'Y) 2 fo Y (5 )>
[Andersson, Driver99]: u. = pu
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Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0,1] to M and the measure

1 1
e 1= Z exp(fEE)VolGE.

with E 'Y) 2 fo Y (5 )>
[Andersson, Driver99]: u. = pu

Diffusion process constructed by Dirichlet form w.r.t. . and with L2 — /2.

£ —
dxt,s =

1
ﬁa(xf) o dW; + BZ(x;)dt

where W is a d/e-dim Brownian motions, o means the Stratonovich integral
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Stochastic heat equations

Approximation

Consider the piecewise geodesics space from [0,1] to M and the measure

1 1
e 1= Z exp(fEE)VolGS.

with E 'Y) 2 fo Y (5 )>
[Andersson, Driver99]: u. = pu

Diffusion process constructed by Dirichlet form w.r.t. . and with L2 — /2.

£ —
dxt,S =

1
ﬁa(xf) o dW; + BZ(x;)dt
where W is a d/e-dim Brownian motions, o means the Stratonovich integral

50) = s /5 ()(B(si2) + blsji1) — 2b(sy)) — yRic(3/(s)) + Eu,

VE VOIGE

with b being anti-development of ~.
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Stochastic heat equations

Stochastic heat equation

Since
1V

5 1..
85 — Egaﬂ — ZRlc(as'y),

where ¥ = /4 /-1,
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Stochastic heat equations

Stochastic heat equation

Since v )
Bc — E@as')’ - ZRIC(as'Y)y

where ¥ = /4 /-1,

dX;, = (X)) o dW, + BE(XF)dt

1
%//s
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Stochastic heat equation

Since v )
Bc — E@as')’ - ZRIC(as'Y)y

where ¥ = /4 /-1,

dX;, = (X)) o dW, + BE(XF)dt

1
%// s
Formally |
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Stochastic heat equations

Stochastic heat equation

Since v )
Bc — E@as')’ - ZRIC(as'Y)y

where ¥ = /4 /-1,

1
dXEs = %//S(th) o dW; + B (X7 )dt
Formally |

1 \Y 1_.
8tXt,s = 5 Easxt,s + Ut,s(X) 0 — ZRlc(ath,s)
—_——

Hairer’s drift term
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Stochastic heat equations

Stochastic heat equation

Since v )
Bc — E@as')’ - ZRIC(as'Y)y

where ¥ = /4 /-1,

1
dXEs = %//S(th) o dW; + B (X7 )dt
Formally |

1 \Y 1_.
8tXt,s = 5 Easxt,s + Ut,s(X) 0 — ZRlc(ath,s) ,

Hairer’s drift term Corresponds to o(X)o§
which formally leaves p invariant.
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Stochastic heat equations

Thank you
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