New a priori bounds for non-linear SPDEs

Hendrik Weber

Mathematics Institute University of Warwick

17 May 2018

Stochastic Partial Differential Equations
CIRM

Joint with A. Moinat and F. Otto

Quasilinear

$$\partial_t u - \nabla \cdot A(\nabla u) = \xi. \tag{Q}$$

- ► Control α -Hölder norm of ∇u by solution of linear problem $A = \mathrm{Id}$.
- Joint with F. Otto.

Quasilinear

$$\partial_t u - \nabla \cdot A(\nabla u) = \xi. \tag{Q}$$

- ► Control α -Hölder norm of ∇u by solution of linear problem $A = \operatorname{Id}$.
- Joint with F. Otto.

Reaction diffusion equations

$$(\partial_t - \Delta)u = -|u|^{m-1}u + \xi \qquad m > 1.$$
 (RD)

- Control u over compact set by distributional norm of ξ over larger set.
- Joint with A. Moinat.

Common theme: Ignore probability theory

▶ Think of $\xi = "dW"$ or multiplicative $\xi = "\sigma dW"$,

Common theme: Ignore probability theory

▶ Think of $\xi = "dW"$ or multiplicative $\xi = "\sigma dW"$, but only use information on regularity of distribution ξ .

Quasilinear equation: Setup

$$\partial_t u - \nabla \cdot A(\nabla u) = \xi \tag{Q}$$

The non-linearity

▶ $A: \mathbb{R}^d \to \mathbb{R}^d$ uniformly elliptic

$$\zeta \cdot DA(q)\zeta \ge \lambda |\zeta|^2$$
 and $|DA(q)\zeta| \le |\zeta|$.

▶ DA globally Lipschitz

$$|\mathit{DA}(q') - \mathit{DA}(q)| \le \Lambda |q' - q|.$$

Quasilinear equation: Setup

$$\partial_t u - \nabla \cdot A(\nabla u) = \xi \tag{Q}$$

The non-linearity

▶ $A: \mathbb{R}^d \to \mathbb{R}^d$ uniformly elliptic

$$|\zeta \cdot DA(q)\zeta \ge \lambda |\zeta|^2$$
 and $|DA(q)\zeta| \le |\zeta|$.

► DA globally Lipschitz

$$|\mathit{DA}(q') - \mathit{DA}(q)| \leq \Lambda |q' - q|.$$

The noise

Control in terms of solution to linear equation

$$\partial_t \mathbf{v} - \Delta \mathbf{v} = \xi.$$

Assume that ∇v is α Hölder (w.r.t. parabolic metric).

$$dv = \Delta v dt + dW(t)$$
 $x \in \mathbb{T}^d$.

▶ *W* Wiener process with (spatial) covariance operator *Q*.

$$dv = \Delta v dt + dW(t)$$
 $x \in \mathbb{T}^d$.

- ▶ W Wiener process with (spatial) covariance operator Q.
- ▶ The assumption that $[\nabla v]_{\alpha} < \infty$ corresponds to Q (slightly better than) trace class.

$$dv = \Delta v dt + dW(t)$$
 $x \in \mathbb{T}^d$.

- W Wiener process with (spatial) covariance operator Q.
- ▶ The assumption that $[\nabla v]_{\alpha} < \infty$ corresponds to Q (slightly better than) trace class.
- ▶ Assume that noise vanishes for $t \notin [0, 1]$.

$$dv = \Delta v dt + dW(t)$$
 $x \in \mathbb{T}^d$.

- W Wiener process with (spatial) covariance operator Q.
- ▶ The assumption that $[\nabla v]_{\alpha} < \infty$ corresponds to Q (slightly better than) trace class.
- ▶ Assume that noise vanishes for $t \notin [0, 1]$.
- Well-known theory of variational solutions for non-linear equation. Solutions satisfy

$$\sup_{0 \le t \le \infty} \|u(t)\|_{L^2}^2 + \int_0^\infty \|\nabla u(t)\|_{L^2}^2 dt < \infty \qquad \text{a.s}$$

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v - \Delta v$$
 over $\mathbb{R}_t \times \mathbb{R}_x^d$.

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v - \Delta v$$
 over $\mathbb{R}_t \times \mathbb{R}_x^d$.

Lemma 1 - small α

There exists $\alpha_1 \in (0,1)$ such that for $\alpha_0 \in (0,\alpha_1)$

$$[\nabla u]_{\alpha_0} \leq C(d,\lambda,\alpha_0)[\nabla v]_{\alpha_0}.$$

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v - \Delta v$$
 over $\mathbb{R}_t \times \mathbb{R}_x^d$.

Lemma 1 - small α

There exists $\alpha_1 \in (0,1)$ such that for $\alpha_0 \in (0,\alpha_1)$

$$[\nabla u]_{\alpha_0} \leq C(d, \lambda, \alpha_0)[\nabla v]_{\alpha_0}.$$

 $ho \ \alpha_1 = \alpha_1(d,\lambda)$ from application of De Giorgi-Nash Theorem.

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v - \Delta v$$
 over $\mathbb{R}_t \times \mathbb{R}_x^d$.

Lemma 1 - small α

There exists $\alpha_1 \in (0,1)$ such that for $\alpha_0 \in (0,\alpha_1)$

$$[\nabla u]_{\alpha_0} \leq C(d, \lambda, \alpha_0)[\nabla v]_{\alpha_0}.$$

• $\alpha_1 = \alpha_1(d, \lambda)$ from application of De Giorgi-Nash Theorem.

Lemma 2 - arbitrary α

Let α_0 be as in Lemma 1. Let L satisfy

$$[\nabla u]_{\alpha_0,P_{2L}} \leq L^{-\alpha_0}$$
.

Then for $\alpha \in [\alpha_0, 1)$

$$[\nabla u]_{\alpha,P_L} \leq C(d,\lambda,\Lambda,\alpha_0,\alpha) (L^{-\alpha} + [\nabla v]_{\alpha,P_{2L}} + [j]_{\alpha,P_{2L}}).$$

Corollary

Let α_0 be as in Lemma 1. Then for $\alpha \in (0,1)$

$$[\nabla u]_{\alpha} \leq C(d,\lambda,\Lambda,\alpha) \Big([\nabla v]_{\alpha_0}^{\frac{\alpha}{\alpha_0}} + [\nabla v]_{\alpha} \Big).$$

Corollary

Let α_0 be as in Lemma 1. Then for $\alpha \in (0,1)$

$$[\nabla u]_{\alpha} \leq C(d, \lambda, \Lambda, \alpha) \Big([\nabla v]_{\alpha_0}^{\frac{\alpha}{\alpha_0}} + [\nabla v]_{\alpha} \Big).$$

Corollary: Stretched exponential bounds

If v is random and both $[\nabla v]_{\alpha_0}$ and $[\nabla v]_{\alpha}$ have Gaussian tails, then for $C\gg 1$

$$\mathbb{E}\Big(\exp\Big(\frac{1}{C}[\nabla u]^{2\min\{1,\frac{\alpha_0}{\alpha}\}}\Big)\Big)<\infty.$$

Related works:

Debussche, De Moor, and Hofmanová

$$\partial_t u = \nabla \cdot (A(u)\nabla u) + H(u)\dot{W}.$$

- ▶ Subtract v solution of $(\partial_t \Delta)v = H(u)\dot{W}$.
- ▶ Remainder w = u v solves

$$\partial_t w - \nabla \cdot (A(u)\nabla w) = \nabla \cdot (A(u)\nabla v).$$

Apply De Giorgi-Nash Theorem.

Schauder theory to gives higher regularity.

Related works:

Otto, W. 2015

One dimensional equation, driven by space-time white noise

$$\frac{1}{T}u + \partial_t u - \partial_x^2 \pi(u) = \xi, \tag{1}$$

Derive bounds on $[u]_{\alpha}$.

- ► Argument: L² bounds using energy arguments. Upgrade to Hölder scale using Gaussian concentration inequalities.
- Our deterministic result (essentially) contains (1) by differentiating (Q) in space once.

Rewrite RHS in divergence form:

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v + \nabla \cdot j$$
 Think of $j = -\nabla v$.

Rewrite RHS in divergence form:

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v + \nabla \cdot j$$
 Think of $j = -\nabla v$.

Subtract v:

$$w = u - v$$
 solves

$$\partial_t \mathbf{w} - \nabla \cdot \mathbf{A}(\nabla(\mathbf{w} + \mathbf{v})) = \nabla \cdot \mathbf{j}.$$

Rewrite RHS in divergence form:

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v + \nabla \cdot j$$
 Think of $j = -\nabla v$.

Subtract v:

w = u - v solves

$$\partial_t \mathbf{w} - \nabla \cdot \mathbf{A}(\nabla(\mathbf{w} + \mathbf{v})) = \nabla \cdot \mathbf{j}.$$

Linearise:

▶ In more regular situation we would take derivative of w to make equation more linear. Here too irregular.

Rewrite RHS in divergence form:

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v + \nabla \cdot j$$
 Think of $j = -\nabla v$.

Subtract v:

w = u - v solves

$$\partial_t \mathbf{w} - \nabla \cdot \mathbf{A}(\nabla(\mathbf{w} + \mathbf{v})) = \nabla \cdot \mathbf{j}.$$

Linearise:

- ► In more regular situation we would take derivative of w to make equation more linear. Here too irregular.
- ▶ Spatial differences $\delta_y w(t, x) = w(t, x + y) w(t, x)$ solve

$$\partial_t \delta_y \mathbf{w} - \nabla \cdot \mathbf{a}_y \nabla \delta_y \mathbf{w} = \nabla \cdot (\mathbf{a}_y \nabla \delta_y \mathbf{v} + \delta_y \mathbf{j})$$

Rewrite RHS in divergence form:

$$\partial_t u - \nabla \cdot A(\nabla u) = \partial_t v + \nabla \cdot j$$
 Think of $j = -\nabla v$.

Subtract v:

w = u - v solves

$$\partial_t \mathbf{w} - \nabla \cdot \mathbf{A}(\nabla(\mathbf{w} + \mathbf{v})) = \nabla \cdot \mathbf{j}.$$

Linearise:

- ► In more regular situation we would take derivative of w to make equation more linear. Here too irregular.
- ▶ Spatial differences $\delta_v w(t, x) = w(t, x + y) w(t, x)$ solve

$$\partial_t \delta_y w - \nabla \cdot a_y \nabla \delta_y w = \nabla \cdot (a_y \nabla \delta_y v + \delta_y j)$$

"Chain rule"

$$a_{y}(t,x) = \int_{0}^{1} DA(\theta \nabla u(t,x+y) + (1-\theta)\nabla u(t,x))d\theta$$

$$\partial_t \delta_y \mathbf{w} - \nabla \cdot \mathbf{a}_y \nabla \delta_y \mathbf{w} = \nabla \cdot (\mathbf{a}_y \nabla \delta_y \mathbf{v} + \delta_y \mathbf{j}).$$

a_y uniformly elliptic.

Idea:

▶ We do not go to zero in *y* difference (quotient).

$$\partial_t \delta_y \mathbf{w} - \nabla \cdot \mathbf{a}_y \nabla \delta_y \mathbf{w} = \nabla \cdot (\mathbf{a}_y \nabla \delta_y \mathbf{v} + \delta_y \mathbf{j}).$$

a_y uniformly elliptic.

Idea:

- ▶ We do not go to zero in *y* difference (quotient).
- ▶ In order to bound differences of ∇w at scale ℓ we choose y at scale $r = \varepsilon \ell$.

Proof of Lemma 1

Apply De Giori-Nash

$$[\delta_y w]_{\alpha_1, P_{\ell}(z)} \lesssim \ell^{-\alpha_1} \inf_{k} \|\delta_y w - k\|_{P_{2\ell}(z)} + \ell^{1-\alpha_1} \|a_y \nabla \delta_y v + \delta_y j\|_{P_{2\ell}(z)}.$$

Proof of Lemma 1

Apply De Giori-Nash

$$[\delta_y w]_{\alpha_1, P_{\ell}(z)} \lesssim \ell^{-\alpha_1} \inf_k \|\delta_y w - k\|_{P_{2\ell}(z)} + \ell^{1-\alpha_1} \|a_y \nabla \delta_y v + \delta_y j\|_{P_{2\ell}(z)}.$$

Taking supremum over $|y| \le r$

Elementary manipulation of LHS and RHS lead to

$$\frac{1}{r^{1+\alpha_0}} \sup_{|y| \le r} \inf_{k} \|\delta_y w - k\|_{P_r(z)}
\lesssim \left(\frac{r}{\ell}\right)^{\alpha_1 - \alpha_0} [\nabla w]_{\alpha_0} + \left(\frac{\ell}{r}\right)^{1-\alpha_1} ([\nabla v]_{\alpha_0} + [j]_{\alpha_0}).$$

Proof of Lemma 1

Apply De Giori-Nash

$$[\delta_y w]_{\alpha_1, P_{\ell}(z)} \lesssim \ell^{-\alpha_1} \inf_k \|\delta_y w - k\|_{P_{2\ell}(z)} + \ell^{1-\alpha_1} \|a_y \nabla \delta_y v + \delta_y j\|_{P_{2\ell}(z)}.$$

Taking supremum over $|y| \le r$

Elementary manipulation of LHS and RHS lead to

$$\frac{1}{r^{1+\alpha_0}} \sup_{|y| \le r} \inf_{k} \|\delta_y w - k\|_{P_r(z)}
\lesssim \left(\frac{r}{\ell}\right)^{\alpha_1 - \alpha_0} [\nabla w]_{\alpha_0} + \left(\frac{\ell}{r}\right)^{1-\alpha_1} ([\nabla v]_{\alpha_0} + [j]_{\alpha_0}).$$

Norm equivalence

$$[\nabla w]_{\alpha_0} \lesssim \sup_{z,r} \frac{1}{r^{1+\alpha_0}} \sup_{|y| \leq r} \inf_k \|\delta_y w - k\|_{P_r(z)}.$$

Reaction diffusion equations

$$(\partial_t - \Delta)u = -|u|^{m-1}u + \xi \qquad m > 1.$$
 (RD)

- ξ distribution of (negative) regularity α 2.
- ▶ Assume that (RD) holds on $P_0 := [0, 1] \times \{x : |x| < 1\}$.

Reaction diffusion equations

$$(\partial_t - \Delta)u = -|u|^{m-1}u + \xi \qquad m > 1.$$
 (RD)

- ξ distribution of (negative) regularity α 2.
- ▶ Assume that (RD) holds on $P_0 := [0, 1] \times \{x : |x| < 1\}$.

Theorem: Space-time "Coming down from ∞ "

$$\|u\|_{P_R} \leq C(\varepsilon, \alpha, d, m) \max \left\{ R^{-\frac{2}{m-1}-\varepsilon}, [\zeta]_{\alpha-2, P_0}^{\frac{2}{2+(m-1)\alpha}} \right\}.$$

▶ $||u||_{P_R}$ = supremum norm over smaller cylinder

$$[R^2,1] \times \{x \colon |x| < 1 - R\}$$

.

$$\|u\|_{P_R} \lesssim \max\left\{R^{-\frac{2}{m-1}-\varepsilon}, [\zeta]_{\alpha-2, P_0}^{\frac{2}{2+(m-1)\alpha}}\right\}.$$

Bound does not depend on boundary conditions.

$$\|u\|_{P_R} \lesssim \max\left\{R^{-\frac{2}{m-1}-\varepsilon}, [\zeta]_{\alpha-2,P_0}^{\frac{2}{2+(m-1)\alpha}}\right\}.$$

- Bound does not depend on boundary conditions.
- Space-time coming down from ∞ allows to construct solutions on full space without having to deal with weights.

$$\|u\|_{P_R} \lesssim \max\left\{R^{-\frac{2}{m-1}-\varepsilon}, \left[\zeta\right]_{\alpha-2,P_0}^{\frac{2}{2+(m-1)\alpha}}\right\}.$$

- Bound does not depend on boundary conditions.
- Space-time coming down from ∞ allows to construct solutions on full space without having to deal with weights.
- ▶ If ξ random with $[\zeta]_{\alpha-2,P_0}$ Gaussian moments, then for $C\gg 1$

$$\mathbb{E}\Big(\exp\Big(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\Big)\Big)<\infty.$$

$$\|u\|_{P_R} \lesssim \max\left\{R^{-\frac{2}{m-1}-\varepsilon}, \left[\zeta\right]_{\alpha-2, P_0}^{\frac{2}{2+(m-1)\alpha}}\right\}.$$

- Bound does not depend on boundary conditions.
- Space-time coming down from ∞ allows to construct solutions on full space without having to deal with weights.
- ▶ If ξ random with $[\zeta]_{\alpha-2,P_0}$ Gaussian moments, then for $C\gg 1$

$$\mathbb{E}\Big(\exp\Big(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\Big)\Big)<\infty.$$

Better than Gaussian integrability.

Discussion

$$\|u\|_{P_R} \lesssim \max\left\{R^{-\frac{2}{m-1}-\varepsilon}, \left[\zeta\right]_{\alpha-2,P_0}^{\frac{2}{2+(m-1)\alpha}}\right\}.$$

- Bound does not depend on boundary conditions.
- Space-time coming down from ∞ allows to construct solutions on full space without having to deal with weights.
- ▶ If ξ random with $[\zeta]_{\alpha-2,P_0}$ Gaussian moments, then for $C\gg 1$

$$\mathbb{E}\Big(\exp\Big(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\Big)\Big)<\infty.$$

- Better than Gaussian integrability.
- Interplay between regularity and integrability.

Discussion

$$\|u\|_{P_R} \lesssim \max\left\{R^{-\frac{2}{m-1}-\varepsilon}, \left[\zeta\right]_{\alpha-2,P_0}^{\frac{2}{2+(m-1)\alpha}}\right\}.$$

- Bound does not depend on boundary conditions.
- Space-time coming down from ∞ allows to construct solutions on full space without having to deal with weights.
- ▶ If ξ random with $[\zeta]_{\alpha-2,P_0}$ Gaussian moments, then for $C\gg 1$

$$\mathbb{E}\Big(\exp\Big(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\Big)\Big)<\infty.$$

- Better than Gaussian integrability.
- Interplay between regularity and integrability.
- \triangleright ε should not be there.

$$\mathbb{E}\left(\exp\left(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\right)\right)<\infty. \tag{2}$$

$$\mathbb{E}\Big(\exp\Big(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\Big)\Big)<\infty. \tag{2}$$

Special case: $\xi = \text{space-time}$ white noise (say over \mathbb{T}^1). (RD) describes reversible Markov process w.r.t. measure

$$\mu(du) \propto \exp(-rac{1}{2}\int_{\mathbb{T}^1} u^4 dx\Big)
u(du)$$

 ν (essentially) Wiener measure.

$$\mathbb{E}\left(\exp\left(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\right)\right) < \infty.$$
 (2)

Special case: $\xi = \text{space-time}$ white noise (say over \mathbb{T}^1). (RD) describes reversible Markov process w.r.t. measure

$$\mu(du) \propto \exp(-rac{1}{2}\int_{\mathbb{T}^1} u^4 dx\Big)
u(du)$$

 ν (essentially) Wiener measure.

Under μ

$$\mathbb{E} \exp \left(\frac{1}{C}\|u\|_{L^4}^4\right) < \infty \qquad \text{and} \qquad \mathbb{E} \exp \left(\frac{1}{C}[u]_\alpha^2\right) < \infty \quad \alpha < \frac{1}{2}.$$

$$\mathbb{E}\left(\exp\left(\frac{1}{C}\|u\|_{P_R}^{2+(m-1)\alpha}\right)\right) < \infty.$$
 (2)

Special case: ξ = space-time white noise (say over \mathbb{T}^1). (RD) describes reversible Markov process w.r.t. measure

$$\mu(du) \propto \exp(-rac{1}{2}\int_{\mathbb{T}^1} u^4 dx\Big)
u(du)$$

 ν (essentially) Wiener measure.

Under μ

$$\mathbb{E} \exp \left(\frac{1}{C}\|u\|_{L^4}^4\right) < \infty \qquad \text{and} \qquad \mathbb{E} \exp \left(\frac{1}{C}[u]_\alpha^2\right) < \infty \quad \alpha < \frac{1}{2}.$$

Interpolating $||u||_{L^4}$ and $[u]_{\alpha}$ leads to (2).

$$(\partial_t - \Delta)u(z) = -|u|^{m-1}u + g \qquad g \in L^{\infty}.$$

$$(\partial_t - \Delta)u(z) = -|u|^{m-1}u + g \qquad g \in L^{\infty}.$$

Lemma

For all $p < \infty$

$$\|u\|_{p,P_R}\lesssim \max\left\{\left(rac{C_p^2}{R^2}
ight)^{rac{1}{m-1}},\|g\|_{\infty,P_0}^{rac{1}{m}}
ight\}.$$

$$(\partial_t - \Delta)u(z) = -|u|^{m-1}u + g \qquad g \in L^{\infty}.$$

Lemma

For all $p < \infty$

$$\|u\|_{
ho,P_R}\lesssim \max\left\{\left(rac{C_
ho^2}{R^2}
ight)^{rac{1}{m-1}},\|g\|_{\infty,P_0}^{rac{1}{m}}
ight\}.$$

▶ Proof by iterated testing against localised version of $|u|^{p-1}$.

$$(\partial_t - \Delta)u(z) = -|u|^{m-1}u + g \qquad g \in L^{\infty}.$$

Lemma

For all $p < \infty$

$$\|u\|_{
ho,P_R}\lesssim \max\left\{\left(rac{C_
ho^2}{R^2}
ight)^{rac{1}{m-1}},\|g\|_{\infty,P_0}^{rac{1}{m}}
ight\}.$$

- ▶ Proof by iterated testing against localised version of $|u|^{p-1}$.
- Relies heavily on damping non-linearity. Regularity improvement of heat operator not (really) used.

Idea of proof 2: Reducing to the smooth case Regularise (RD)

$$(\cdot)_T=$$
 smoothing at scale T .
$$(\partial_t-\Delta)u_T=-|u_T|^{m-1}u_T+\xi_T+{\sf Error}(T),$$
 where ${\sf Error}(T)=[|u_T|^{m-1}u_T-(|u|^{m-1}u)_T]$ commutator.

Idea of proof 2: Reducing to the smooth case Regularise (RD)

$$(\cdot)_T = \text{smoothing at scale } T.$$

$$(\partial_t - \Delta)u_T = -|u_T|^{m-1}u_T + \xi_T + \text{Error}(T),$$
 where $\text{Error}(T) = [|u_T|^{m-1}u_T - (|u|^{m-1}u)_T]$ commutator.

Apply smooth case

$$\|(u)_{T}\|_{\rho,P_{R}} \lesssim \max\left\{\left(\frac{C_{\rho}^{2}}{(R-R')^{2}}\right)^{\frac{1}{m-1}}, \left(\|(\zeta)_{T}\|_{\infty,P_{R'}}\right)^{\frac{1}{m}},\right.$$

$$\left(\|(u)_{T}^{m} - (u^{m})_{T}\|_{\infty,P_{R'}}\right)^{\frac{1}{m}}\right\}. \tag{3}$$

Idea of proof 2: Reducing to the smooth case

Regularise (RD)

 $(\cdot)_T$ = smoothing at scale T.

$$(\partial_t - \Delta)u_T = -|u_T|^{m-1}u_T + \xi_T + \operatorname{Error}(T),$$

where $\text{Error}(T) = [|u_T|^{m-1}u_T - (|u|^{m-1}u)_T]$ commutator.

Apply smooth case

$$\|(u)_T\|_{\rho,P_R} \lesssim \max \Big\{ \Big(\frac{C_\rho^2}{(R-R')^2} \Big)^{\frac{1}{m-1}}, \Big(\|(\zeta)_T\|_{\infty,P_{R'}} \Big)^{\frac{1}{m}},$$
 $\Big(\|(u)_T^m - (u^m)_T\|_{\infty,P_{R'}} \Big)^{\frac{1}{m}} \Big\}.$

$$(\|(u)_T^m - (u^m)_T\|_{\infty, P_{R'}})^{\frac{1}{m}}$$
 \right\}. (3)

Commutator

$$\|(u)_T^m - (u^m)_T\|_{\infty, P_R}$$

- ▶ Bound in terms of ||u|| and $[u]_{\alpha}$.
- which in turn can be bounded, using the (unregularized) equation once more and local Schauder estimates.

Discussion

- Argument is heavily inspired by Hairer's notion of sub-criticality:
 - Use heat operator on small scales.
 - Use non-linearity on large scales.
- Motivation: Find a method to derive a priori bounds within the framework of regularity structures. Then local Schauder estimate should be replaced by version of Hairer's Integration Theorem.
- For now ϕ_2^{2m} also looks promising, higher dimensions...?

Quasi-linear equation:

Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.

Quasi-linear equation:

- Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.
- Argument based on linearisation by finite differences, De Giorgi-Nash and bookkeeping of various scales involved.

Quasi-linear equation:

- Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.
- Argument based on linearisation by finite differences, De Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:

Quasi-linear equation:

- Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.
- Argument based on linearisation by finite differences, De Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:

▶ Show "space-time coming down from ∞ ".

Quasi-linear equation:

- Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.
- Argument based on linearisation by finite differences, De Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:

- ▶ Show "space-time coming down from ∞ ".
- Argument based on scale-separation via regularisation. Small scales bounded by Schauder theory (heat operator) large scales using the non-linearity.

Quasi-linear equation:

- Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.
- Argument based on linearisation by finite differences, De Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:

- ▶ Show "space-time coming down from ∞ ".
- Argument based on scale-separation via regularisation. Small scales bounded by Schauder theory (heat operator) large scales using the non-linearity.

Common theme:

Treat SPDE with deterministic techniques.

Quasi-linear equation:

- Study an equation which can be solved in the variational framework and derive optimal Hölder regularity.
- Argument based on linearisation by finite differences, De Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:

- ▶ Show "space-time coming down from ∞ ".
- Argument based on scale-separation via regularisation. Small scales bounded by Schauder theory (heat operator) large scales using the non-linearity.

Common theme:

- Treat SPDE with deterministic techniques.
- Careful use of regularisation at various scales.