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Aim of talk: Bounds for non-linear SPDEs
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» Control a-Hblder norm of Vu by solution of linear problem
A=1d.

» Joint with F. Otto.

Reaction diffusion equations

(O —D)u=—|u™u+¢  m>1. (RD)J

» Control u over compact set by distributional norm of £ over
larger set.

» Joint with A. Moinat.
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Aim of talk: Bounds for non-linear SPDEs

Common theme: Ignore probability theory

» Think of £ ="dW" or multiplicative ¢ = "odW", but only use
information on regularity of distribution &.
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Quasilinear equation: Setup

Bu—V-AVu) = ¢ (Q)J

The non-linearity
» A: RY — RY uniformly elliptic

¢ DA(g)¢ = A¢* and  |DA(q)¢| < [¢].

» DA globally Lipschitz

IDA(q") — DA(Q)I < Ald" - ql.
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Quasilinear equation: Setup

U —V-A(VU) = ¢ (Q)J

The non-linearity

» A: RY — RY uniformly elliptic
¢-DA(q)¢ > Al and  [DA(q)| < [¢]-

» DA globally Lipschitz
IDA(q") — DA(q)| < Ald" — ql.
The noise
Control in terms of solution to linear equation
oV — Av =¢&.

Assume that Vv is a HOlder (w.r.t. parabolic metric).

p.4



Example

dv=Avdt+dW(t) xeT

» W Wiener process with (spatial) covariance operator Q.
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Example

dv=Avdt+dW(t) xeT

W Wiener process with (spatial) covariance operator Q.

v

The assumption that [Vv], < oo corresponds to Q (slightly
better than) trace class.

v

Assume that noise vanishes for t ¢ [0, 1].

v

Well-known theory of variational solutions for non-linear
equation. Solutions satisfy

v

sup \u(t)Hfﬁ—/ IVu(t)|%dt <co  as.
0

0<t<o0
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Results

oiu—V -AVu) =0v — Av

over R; x RY.
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Results
ou—V-AVu)=dv—Av  overR; x RY.

Lemma 1 - small «
There exists ay € (0, 1) such that for o € (0, aq)

[VUlay < C(d, A, a0)[VV]a,-

» ay = aq(d, A) from application of De Giorgi-Nash Theorem.

Lemma 2 - arbitrary «
Let ag be as in Lemma 1. Let L satisfy

[VUlag,p,, < L0
Then for a € [ag, 1)

[vu]a,PL S C(d7 >‘7 /\7 o, a)(Lia + [VV]Oé:PZL + [/‘]047P2L)'
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Results

Corollary
Let ap be as in Lemma 1. Then for a € (0,1)

[Vul. < C(d, A,/\,a)([w1§ + [vV]a).
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Results

Corollary
Let ap be as in Lemma 1. Then for a € (0,1)

[Vul. < C(d, A,/\,a)([w@ + [vV]a).
Corollary: Stretched exponential bounds

If v is random and both [Vv],, and [V V], have Gaussian tails,
then for C > 1

E(exp (%[Vu]zmi”{“%})) < 0.
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Related works:

Debussche, De Moor, and Hofmanova

ou =V - (A(U)Vu) + H(u)W.

» Subtract v solution of (9; — A)v = H(u)W.

» Remainder w = u — v solves

ow —V - (A(u)Vw) =V - (A(u)Vv).

Apply De Giorgi-Nash Theorem.

» Schauder theory to gives higher regularity.
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Related works:

Otto, W. 2015
One dimensional equation, driven by space-time white noise

lTu+8tu—8)2(7r(u) =¢, (1)

Derive bounds on [u],.

» Argument: L2 bounds using energy arguments. Upgrade to
Hdélder scale using Gaussian concentration inequalities.

» Our deterministic result (essentially) contains (1) by
differentiating (Q) in space once.
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Idea of proof:
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Idea of proof:
Rewrite RHS in divergence form:
31U—V'A(VU) :3[V+V-j

Think of j = —Vv.
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Idea of proof:
Rewrite RHS in divergence form:
ou—V-AVu)=0v+V-j Think of j = —Vv.

Subtract v:
w = u — v solves

ow—-V-AV(w+v)=V-j
Linearise:

» In more regular situation we would take derivative of w to
make equation more linear. Here too irregular.

» Spatial differences d, w(t, x) = w(t, x + y) — w(t, x) solve

O6yw —V - a,Vé,w = V - (a, V6,V + b))
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Idea of proof:

Rewrite RHS in divergence form:
ou—V-AVu)=0v+V-j Think of j = —Vv.
Subtract v:
w = u — v solves
ow—-V-AV(w+v)=V-j
Linearise:

» In more regular situation we would take derivative of w to
make equation more linear. Here too irregular.

» Spatial differences d, w(t, x) = w(t, x + y) — w(t, x) solve
» "Chain rule"

a,(t,x) — /01 DAOVU(t, X + y) + (1 — O)Vu(t, x))do
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Idea of proof:

» ay, uniformly elliptic.

Idea:

» We do not go to zero in y difference (quotient).
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Idea of proof:

» ay, uniformly elliptic.

Idea:
» We do not go to zero in y difference (quotient).

» In order to bound differences of Vw at scale ¢ we choose y
at scale r = ¢/.
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Proof of Lemma 1
Apply De Giori-Nash

[0y Wy P2y S € i?(f 16y W — K|l pyy(z) + €11 |@y V8,V + Syfll poy (2)-
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Proof of Lemma 1
Apply De Giori-Nash

[0y Wlay Py(z) S €1 i[5y W — Kllpyy(2) + €' 1| @y VyV + 6yl pyy(2)
K

Taking supremum over |y| <r
Elementary manipulation of LHS and RHS lead to
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Proof of Lemma 1
Apply De Giori-Nash

[0y Wlay Py(z) S €1 i[5y W — Kllpyy(2) + €' 1| @y VyV + 6yl pyy(2)
K

Taking supremum over |y| <r
Elementary manipulation of LHS and RHS lead to

e SUP N6, — Kl

< (5" e+ (2) " (19 + Do)

Norm equivalence

<
[VW]ao ~ SzL,Irp ri+ao

sup inf [0, w — kl|p,(z).-
lyl<r K
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Reaction diffusion equations

O —D)u=—u™u+e  m>1.

(RD)J

» ¢ distribution of (negative) regularity o — 2.
» Assume that (RD) holds on Py := [0, 1] x {x: |x| < 1}.
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Reaction diffusion equations

O —Au=—|u™u+é  m>1. (RD)}

» ¢ distribution of (negative) regularity o — 2.
» Assume that (RD) holds on Py := [0, 1] x {x: |x| < 1}.

Theorem: Space-time "Coming down from oc"
2
|ullps < C(e,r, d, m) max{R LR (eS8 }

> |lu||p, = supremum norm over smaller cylinder

[R? 1] x {x: [x| <1—R}
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Discussion

lullen S max{ A1, (TG 27 ).

» Bound does not depend on boundary conditions.
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Discussion

__2
IIUIIPRSmaX{F? mi [C]?Zﬁo }

v

Bound does not depend on boundary conditions.

v

Space-time coming down from oo allows to construct

solutions on full space without having to deal with weights.

v

If £ random with [(],—2 p, Gaussian moments, then for
C>1
(exp <—|yu||2+(m e )) < 0.

» Better than Gaussian integrability.
» Interplay between regularity and integrability.

¢ should not be there.

v
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Optimal integrability

]E(exp (%Hul\fp:(m_”a)) < oo0.

<2)J
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Optimal integrability

]E(exp( HquHm 1)0‘)) < 00.

Special case: £ = space-time white noise (say over T').
(RD) describes reversible Markov process w.r.t. measure

p(du) o exp(— ; 4dx>v(du)

v (essentially) Wiener measure.
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Optimal integrability

E(exp (—Huuz+ ™)) < co. 2)

Special case: £ = space-time white noise (say over T').
(RD) describes reversible Markov process w.r.t. measure

p(du) o exp(— 4dx>v(du)

1
2
v (essentially) Wiener measure.

Under p

E exp (lCHuH@) <oco and Eexp (%[u]i) <00 a< %
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Optimal integrability

]E(exp( HquHm 1)0‘)) < 00. (2)

Special case: £ = space-time white noise (say over T').
(RD) describes reversible Markov process w.r.t. measure

p(du) o exp(— 4dx>v(du)

1
2
v (essentially) Wiener measure.

Under p

E exp (lCHuH@) <oco and Eexp (%[u]i) <00 a< %

Interpolating ||lul|;« and [u], leads to (2).
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Idea of proof 1: The smooth case

(0 — D)u(z) = —|ul""u+g

geL=.
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Idea of proof 1: The smooth case

(8 — A)u(z) = —|u"Tu+g

ge L=

Lemma
Forall p < oo

CZ ﬁ
[Ullp,ps < max (R’§> gl

.
m
o00,Py (-
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Idea of proof 1: The smooth case

(0 — A)u(z) = —|u" 'lu+g geL™. J

Lemma
Forall p < oo

|
2 m—1

lul <max{<c”> gl }

p7PRN RZ ’ OO,P() .

» Proof by iterated testing against localised version of |u[P~".
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Idea of proof 1: The smooth case

(0 — A)u(z) = —|u" 'lu+g geL™. J

Lemma
Forall p < oo

|
2 m—1

lul <max{<c"> gl }

p7PHN RZ ’ OO,P() .

» Proof by iterated testing against localised version of |u[P~".

» Relies heavily on damping non-linearity. Regularity
improvement of heat operator not (really) used.
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Idea of proof 2: Reducing to the smooth case
Regularise (RD)

()7 = smoothing at scale T.
(0r — D)ur = —|ur|™ ur + &7 + Error(T),

where Error(T) = [lur|™ "ur — (lu/™"u)7] commutator.
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Idea of proof 2: Reducing to the smooth case
Regularise (RD)

(-)7 = smoothing at scale T.
(0r — D)ur = —|ur|™ ur + &7 + Error(T),

where Error(T) = [lur|™ "ur — (Ju|™ "u)7] commutator.
Apply smooth case

cs L 1
1@ 7llops £ max{ (5 =) ™ (1) lpy)”

()P~ U™l )™
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Idea of proof 2: Reducing to the smooth case
Regularise (RD)

(-)7 = smoothing at scale T.
(0r — D)ur = —|ur|™ ur + &7 + Error(T),

where Error(T) = [lur|” "ur — (lu|"u)7] commutator.

Apply smooth case
2

C 1 1
I@7lopn < mex{ (7=F2) " (1)l )™
()P~ U™l )™ 3)

Commutator
I(WT = (W) 7 lloc,Pr
» Bound in terms of ||u|| and [u],.

» which in turn can be bounded, using the (unregularized)
equation once more and local Schauder estimates.
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Discussion

» Argument is heavily inspired by Hairer’s notion of
sub-criticality:
» Use heat operator on small scales.

» Use non-linearity on large scales.

» Motivation: Find a method to derive a priori bounds within
the framework of regularity structures. Then local
Schauder estimate should be replaced by version of
Hairer’s Integration Theorem.

» For now ¢3™ also looks promising, higher dimensions...?
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Summary

Quasi-linear equation:

» Study an equation which can be solved in the variational
framework and derive optimal Holder regularity.
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Summary

Quasi-linear equation:
» Study an equation which can be solved in the variational
framework and derive optimal Holder regularity.

» Argument based on linearisation by finite differences, De
Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:
» Show "space-time coming down from oo".

» Argument based on scale-separation via regularisation.
Small scales bounded by Schauder theory (heat operator)
large scales using the non-linearity.

Common theme:
» Treat SPDE with deterministic techniques.
» Careful use of regularisation at various scales.
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