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Aim of talk: Bounds for non-linear SPDEs

Quasilinear

∂tu −∇ · A(∇u) = ξ. (Q)

I Control α-Hölder norm of ∇u by solution of linear problem
A = Id.

I Joint with F. Otto.

Reaction diffusion equations

(∂t −∆)u = −|u|m−1u + ξ m > 1. (RD)

I Control u over compact set by distributional norm of ξ over
larger set.

I Joint with A. Moinat.
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Aim of talk: Bounds for non-linear SPDEs

Common theme: Ignore probability theory

I Think of ξ = "dW " or multiplicative ξ = "σdW ",

but only use
information on regularity of distribution ξ.
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Quasilinear equation: Setup

∂tu −∇ · A(∇u) = ξ (Q)

The non-linearity
I A : Rd → Rd uniformly elliptic

ζ · DA(q)ζ ≥ λ|ζ|2 and |DA(q)ζ| ≤ |ζ|.

I DA globally Lipschitz

|DA(q′)− DA(q)| ≤ Λ|q′ − q|.

The noise
Control in terms of solution to linear equation

∂tv −∆v = ξ.

Assume that ∇v is α Hölder (w.r.t. parabolic metric).
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Example

dv = ∆v dt + dW (t) x ∈ Td .

I W Wiener process with (spatial) covariance operator Q.

I The assumption that [∇v ]α <∞ corresponds to Q (slightly
better than) trace class.

I Assume that noise vanishes for t /∈ [0,1].

I Well-known theory of variational solutions for non-linear
equation. Solutions satisfy

sup
0≤t≤∞

‖u(t)‖2L2 +

∫ ∞
0
‖∇u(t)‖2L2dt <∞ a.s.
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Results
∂tu −∇ · A(∇u) = ∂tv −∆v over Rt × Rd

x .

Lemma 1 - small α
There exists α1 ∈ (0,1) such that for α0 ∈ (0, α1)

[∇u]α0 ≤ C(d , λ, α0)[∇v ]α0 .

I α1 = α1(d , λ) from application of De Giorgi-Nash Theorem.

Lemma 2 - arbitrary α

Let α0 be as in Lemma 1. Let L satisfy

[∇u]α0,P2L ≤ L−α0 .

Then for α ∈ [α0,1)

[∇u]α,PL ≤ C(d , λ,Λ, α0, α)
(
L−α + [∇v ]α,P2L + [j]α,P2L

)
.

p.6



Results
∂tu −∇ · A(∇u) = ∂tv −∆v over Rt × Rd

x .

Lemma 1 - small α
There exists α1 ∈ (0,1) such that for α0 ∈ (0, α1)

[∇u]α0 ≤ C(d , λ, α0)[∇v ]α0 .

I α1 = α1(d , λ) from application of De Giorgi-Nash Theorem.

Lemma 2 - arbitrary α

Let α0 be as in Lemma 1. Let L satisfy

[∇u]α0,P2L ≤ L−α0 .

Then for α ∈ [α0,1)

[∇u]α,PL ≤ C(d , λ,Λ, α0, α)
(
L−α + [∇v ]α,P2L + [j]α,P2L

)
.

p.6



Results
∂tu −∇ · A(∇u) = ∂tv −∆v over Rt × Rd

x .

Lemma 1 - small α
There exists α1 ∈ (0,1) such that for α0 ∈ (0, α1)

[∇u]α0 ≤ C(d , λ, α0)[∇v ]α0 .

I α1 = α1(d , λ) from application of De Giorgi-Nash Theorem.

Lemma 2 - arbitrary α

Let α0 be as in Lemma 1. Let L satisfy

[∇u]α0,P2L ≤ L−α0 .

Then for α ∈ [α0,1)

[∇u]α,PL ≤ C(d , λ,Λ, α0, α)
(
L−α + [∇v ]α,P2L + [j]α,P2L

)
.

p.6



Results
∂tu −∇ · A(∇u) = ∂tv −∆v over Rt × Rd

x .

Lemma 1 - small α
There exists α1 ∈ (0,1) such that for α0 ∈ (0, α1)

[∇u]α0 ≤ C(d , λ, α0)[∇v ]α0 .

I α1 = α1(d , λ) from application of De Giorgi-Nash Theorem.

Lemma 2 - arbitrary α

Let α0 be as in Lemma 1. Let L satisfy

[∇u]α0,P2L ≤ L−α0 .

Then for α ∈ [α0,1)

[∇u]α,PL ≤ C(d , λ,Λ, α0, α)
(
L−α + [∇v ]α,P2L + [j]α,P2L

)
.

p.6



Results

Corollary
Let α0 be as in Lemma 1. Then for α ∈ (0,1)

[∇u]α ≤ C(d , λ,Λ, α)
(

[∇v ]
α
α0
α0 + [∇v ]α

)
.

Corollary: Stretched exponential bounds
If v is random and both [∇v ]α0 and [∇v ]α have Gaussian tails,
then for C � 1

E
(

exp
( 1

C
[∇u]2 min{1,α0

α
}
))

<∞.
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Related works:

Debussche, De Moor, and Hofmanová

∂tu = ∇ · (A(u)∇u) + H(u)Ẇ .

I Subtract v solution of (∂t −∆)v = H(u)Ẇ .

I Remainder w = u − v solves

∂tw −∇ · (A(u)∇w) = ∇ · (A(u)∇v).

Apply De Giorgi-Nash Theorem.

I Schauder theory to gives higher regularity.
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Related works:

Otto, W. 2015
One dimensional equation, driven by space-time white noise

1
T

u + ∂tu − ∂2
xπ(u) = ξ, (1)

Derive bounds on [u]α.

I Argument: L2 bounds using energy arguments. Upgrade to
Hölder scale using Gaussian concentration inequalities.

I Our deterministic result (essentially) contains (1) by
differentiating (Q) in space once.

p.9



Idea of proof:

Rewrite RHS in divergence form:
∂tu −∇ · A(∇u) = ∂tv +∇ · j Think of j = −∇v .

Subtract v :
w = u − v solves

∂tw −∇ · A(∇(w + v)) = ∇ · j .
Linearise:

I In more regular situation we would take derivative of w to
make equation more linear. Here too irregular.

I Spatial differences δyw(t , x) = w(t , x + y)− w(t , x) solve

∂tδyw −∇ · ay∇δyw = ∇ · (ay∇δyv + δy j)

I "Chain rule"

ay (t , x) =

∫ 1

0
DA(θ∇u(t , x + y) + (1− θ)∇u(t , x))dθ

p.10
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Idea of proof:

∂tδyw −∇ · ay∇δyw = ∇ · (ay∇δyv + δy j).

I ay uniformly elliptic.

Idea:
I We do not go to zero in y difference (quotient).

I In order to bound differences of ∇w at scale ` we choose y
at scale r = ε`.
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Proof of Lemma 1
Apply De Giori-Nash

[δyw ]α1,P`(z) . `−α1 inf
k
‖δyw − k‖P2`(z) + `1−α1‖ay∇δyv + δy j‖P2`(z).

Taking supremum over |y | ≤ r
Elementary manipulation of LHS and RHS lead to

1
r1+α0

sup
|y |≤r

inf
k
‖δyw − k‖Pr (z)

.
( r
`

)α1−α0
[∇w ]α0 +

(`
r

)1−α1
([∇v ]α0 + [j]α0).

Norm equivalence

[∇w ]α0 . sup
z,r

1
r1+α0

sup
|y |≤r

inf
k
‖δyw − k‖Pr (z).
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Reaction diffusion equations

(∂t −∆)u = −|u|m−1u + ξ m > 1. (RD)

I ξ distribution of (negative) regularity α− 2.
I Assume that (RD) holds on P0 := [0,1]× {x : |x | < 1}.

Theorem: Space-time "Coming down from∞"

‖u‖PR ≤ C(ε, α, d ,m) max
{

R−
2

m−1−ε, [ζ]
2

2+(m−1)α
α−2,P0

}
.

I ‖u‖PR = supremum norm over smaller cylinder

[R2,1]× {x : |x | < 1− R}

.

p.13
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Discussion

‖u‖PR . max
{

R−
2

m−1−ε, [ζ]
2

2+(m−1)α
α−2,P0

}
.

I Bound does not depend on boundary conditions.

I Space-time coming down from∞ allows to construct
solutions on full space without having to deal with weights.

I If ξ random with [ζ]α−2,P0 Gaussian moments, then for
C � 1

E
(

exp
( 1

C
‖u‖2+(m−1)α

PR

))
<∞.

I Better than Gaussian integrability.
I Interplay between regularity and integrability.

I ε should not be there.

p.14
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Optimal integrability

E
(

exp
( 1

C
‖u‖2+(m−1)α

PR

))
<∞. (2)

Special case: ξ = space-time white noise (say over T1).
(RD) describes reversible Markov process w.r.t. measure

µ(du) ∝ exp(−1
2

∫
T1

u4dx
)
ν(du)

ν (essentially) Wiener measure.

Under µ

Eexp
( 1

C
‖u‖4L4

)
<∞ and Eexp

( 1
C

[u]2α

)
<∞ α <

1
2
.

Interpolating ‖u‖L4 and [u]α leads to (2).
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Idea of proof 1: The smooth case

(∂t −∆)u(z) = −|u|m−1u + g g ∈ L∞.

Lemma
For all p <∞

‖u‖p,PR . max


(

C2
p

R2

) 1
m−1

, ‖g‖
1
m
∞,P0

 .

I Proof by iterated testing against localised version of |u|p−1.
I Relies heavily on damping non-linearity. Regularity

improvement of heat operator not (really) used.

p.16
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improvement of heat operator not (really) used.
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Idea of proof 2: Reducing to the smooth case
Regularise (RD)

(·)T = smoothing at scale T .

(∂t −∆)uT = −|uT |m−1uT + ξT + Error(T ),

where Error(T ) = [|uT |m−1uT − (|u|m−1u)T ] commutator.

Apply smooth case

‖(u)T‖p,PR . max
{( C2

p

(R − R′)2

) 1
m−1

,
(
‖(ζ)T‖∞,PR′

) 1
m ,(

‖(u)m
T − (um)T‖∞,PR′

) 1
m
}
. (3)

Commutator
‖(u)m

T − (um)T‖∞,PR

I Bound in terms of ‖u‖ and [u]α.
I which in turn can be bounded, using the (unregularized)

equation once more and local Schauder estimates.

p.17



Idea of proof 2: Reducing to the smooth case
Regularise (RD)

(·)T = smoothing at scale T .

(∂t −∆)uT = −|uT |m−1uT + ξT + Error(T ),

where Error(T ) = [|uT |m−1uT − (|u|m−1u)T ] commutator.

Apply smooth case

‖(u)T‖p,PR . max
{( C2

p

(R − R′)2

) 1
m−1

,
(
‖(ζ)T‖∞,PR′

) 1
m ,(

‖(u)m
T − (um)T‖∞,PR′

) 1
m
}
. (3)

Commutator
‖(u)m

T − (um)T‖∞,PR

I Bound in terms of ‖u‖ and [u]α.
I which in turn can be bounded, using the (unregularized)

equation once more and local Schauder estimates.

p.17



Idea of proof 2: Reducing to the smooth case
Regularise (RD)

(·)T = smoothing at scale T .

(∂t −∆)uT = −|uT |m−1uT + ξT + Error(T ),

where Error(T ) = [|uT |m−1uT − (|u|m−1u)T ] commutator.

Apply smooth case

‖(u)T‖p,PR . max
{( C2

p

(R − R′)2

) 1
m−1

,
(
‖(ζ)T‖∞,PR′

) 1
m ,(

‖(u)m
T − (um)T‖∞,PR′

) 1
m
}
. (3)

Commutator
‖(u)m

T − (um)T‖∞,PR

I Bound in terms of ‖u‖ and [u]α.
I which in turn can be bounded, using the (unregularized)

equation once more and local Schauder estimates.
p.17



Discussion

I Argument is heavily inspired by Hairer’s notion of
sub-criticality:

I Use heat operator on small scales.

I Use non-linearity on large scales.

I Motivation: Find a method to derive a priori bounds within
the framework of regularity structures. Then local
Schauder estimate should be replaced by version of
Hairer’s Integration Theorem.

I For now φ2m
2 also looks promising, higher dimensions...?

p.18



Summary
Quasi-linear equation:

I Study an equation which can be solved in the variational
framework and derive optimal Hölder regularity.

I Argument based on linearisation by finite differences, De
Giorgi-Nash and bookkeeping of various scales involved.

Reaction diffusion equation:
I Show "space-time coming down from∞".
I Argument based on scale-separation via regularisation.

Small scales bounded by Schauder theory (heat operator)
large scales using the non-linearity.

Common theme:
I Treat SPDE with deterministic techniques.
I Careful use of regularisation at various scales.
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