
Pathwise mild solutions and optimal regularity
estimates for parabolic SPDEs with adapted

coefficients

Mark Veraar

Delft University of Technology

May, 2018

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 1 / 18



Overview

1 Introduction
Existing results

2 Pathwise mild solutions
Evolution families
Adaptedness problem
New solution formula

3 Main regularity result
Introduction
Statement
Method of proof

4 Conclusion

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 2 / 18



Introduction

Let X0 = Lp(Rd ;CN) and X1 = W 2m,p(Rd ;CN). Consider

du(t) + A(t)u(t) dt = f (t) dt +
(
B(t)u(t) + gn(t)

)
dWn(t), u(0) = u0

W space-time white noise
A(t , ω) 2m-th order differential operator, with measurable and
adapted coefficients
f (t , ω) is X0-valued, g(t , ω) is X 1

2
-valued

Bn(t , ω, x) m-th order differential operator

Goal: To prove existence, uniqueness of an X1-valued solution u and
estimate its norm by the natural norms in terms of f and g.

Why Lp-theory ? Sobolev embedding, nonlinear eq., numerics.
Why A only measurable? Coefficients could depend on process.
A priori estimates can be used for nonlinear equations.
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Existing results

Monotone operators, Lions method (see Prévôt–Röckner 2007)
A,B adapted, measurable, monotone, coercive
X0 Hilbert space.

Lp-theory of Krylov and collaborators since 1996.
A(t , ω)u(x) =

∑d
i,j=1 aij(t , ω, x)DiDju(x) + lower order.

Bn(t)u(x) =
∑d

j=1 bjn(t , x)Dju(x) + lower order.
No higher order equations or systems allowed.

Real interpolation spaces Brzezniak 1995, Da Prato–Lunardi 1998.
Stochastic maximal regularity theory of van Neerven-V.-Weis
(AOP’12, SIAM J. Math. Anal. ’12):

A continuous in time and Ω-independent
2m-th order systems allowed.
Smallness condition on B

No extension to adapted measurable A allowed.
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Littlewood–Paley type estimates

Special cases of the previous slide:

Theorem (van Neerven–V–Weis 2012)
Let X = Lp(O) and let A have �. For all G adapted one has∥∥∥t 7→

∫ t

0
A1/2e(t−s)AG(s) dW (s)

∥∥∥
Lp(Ω×R+×O)

≤ C‖G‖Lp(Ω×R+×O;`2).

The above is a singular stochastic integral.
� means: A has a bounded H∞-calculus.
A lot of theory developed and it can be used as a black box.
In practice: every analytic semigroup generator −A on Lp with
reasonable coefficients has this property.

A = −∆ on Rd : Krylov 1996. Cornerstone of his theory.

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 5 / 18



Littlewood–Paley type estimates

Special cases of the previous slide:

Theorem (van Neerven–V–Weis 2012)
Let X = Lp(O) and let A have �. For all G adapted one has∥∥∥t 7→

∫ t

0
A1/2e(t−s)AG(s) dW (s)

∥∥∥
Lp(Ω×R+×O)

≤ C‖G‖Lp(Ω×R+×O;`2).

The above is a singular stochastic integral.
� means: A has a bounded H∞-calculus.
A lot of theory developed and it can be used as a black box.
In practice: every analytic semigroup generator −A on Lp with
reasonable coefficients has this property.

A = −∆ on Rd : Krylov 1996. Cornerstone of his theory.

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 5 / 18



Littlewood–Paley type estimates

Special cases of the previous slide:

Theorem (van Neerven–V–Weis 2012)
Let X = Lp(O) and let A have �. For all G adapted one has∥∥∥t 7→

∫ t

0
A1/2e(t−s)AG(s) dW (s)

∥∥∥
Lp(Ω×R+×O)

≤ C‖G‖Lp(Ω×R+×O;`2).

The above is a singular stochastic integral.
� means: A has a bounded H∞-calculus.
A lot of theory developed and it can be used as a black box.
In practice: every analytic semigroup generator −A on Lp with
reasonable coefficients has this property.

A = −∆ on Rd : Krylov 1996. Cornerstone of his theory.

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 5 / 18



1 Introduction
Existing results

2 Pathwise mild solutions
Evolution families
Adaptedness problem
New solution formula

3 Main regularity result
Introduction
Statement
Method of proof

4 Conclusion

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 6 / 18



Evolution families

Definition
We say that A(t) generates an evolution family S(t , s) if

1 S(t , t) = I, S(t , s)S(s, r) = S(t , r)

2 (t , s) 7→ S(t , s) is strongly continuous
3 DtS(t , s) = A(t)S(t , s) and DsS(t , s) = S(t , s)A(s) on dense set

One-dimensional case: S(t , s) = exp(
∫ t

s A(r) dr).

Example (Gallarati-V. Pot Analysis 2017, Adv. Diff. Eq. 2017)

A(t) 2m-order system on Rd with x-independent coefficients. A(t)
generates an evolution family S(t , s) on Lp(Rd ;CN)) for p ∈ (1,∞) and

boundedness on weighted spaces (Ap-weights)
maximal Lp-regularity for the associated parabolic problem
estimates only dependent on p,d and ellipticity
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Proof of boundedness of S(t , s)

Fix s ∈ R. Then the Fourier multiplier m(t) = FS(t , s) satisfies

∂tm(t , ξ) + p(ξ, t)m(t , ξ) = 0, m(s) = I,

where p(ξ, t) =
∑
|α|,|β|=m aα,β(t)ξαξβ.

Using the implicit function theorem and ellipticity of A(t) one can check
that for all γ ∈ Nd

|ξγDγm(t , ξ)| ≤ Cγ .

Thus S(t , s) is bounded on Lp by the Mihlin multiplier theorem.
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Adaptedness problem

A : R+ × Ω→ L(X1,X0) adapted
A(t , ω) generates evolution family S(t , s, ω) for ω ∈ Ω.

Consider:

du(t) + A(t)u(t) dt = g(t) dW (t), u(0) = 0.

Mild solution is given by

u(t) =

∫ t

0
S(t , s)g(s) dW (s)??????

Adaptedness problem: S(t , s) is only Ft -measurable.
Recall 1-dim case: S(t , s) = exp(

∫ t
s A(r) dr).

This difficulty has limited the semigroup approach to SPDEs

Possible approaches based on Malliavin calculus considered by:
Alòs, León, Viens, Nualart (1999).
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New solution formula: pathwise mild solution

Let M(t) =
∫ t

0 g(r) dW (r). Then formally:

u(t) =

∫ t

0
S(t , r) dM(r)

=

∫ t

0
S(t ,0) dM(r) +

∫ t

0

∫ r

0
S(t , s)A(s) ds dM(r) (Dr S(t , r) = S(t , r)A(r))

=

∫ t

0
S(t ,0) dM(r) +

∫ t

0
S(t , s)A(s)

∫ t

s
dM(r) ds (stochastic Fubini)

= S(t ,0)M(t) +

∫ t

0
S(t , s)A(s)(M(t)−M(s)) ds

The last formula is called the pathwise mild solution (Pronk-V. JDE’14).

No adaptedness problems for the stochastic integral
S(t , s)A(s) is singular at s = t
M(t)−M(s) is Hölder continuous
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Definition

Let M(t) =
∫ t

0 gdW . The function u defined by

u(t) = S(t ,0)M(t) +

∫ t

0
S(t , s)A(s)(M(t)−M(s)) ds

is called the pathwise mild solution to

du(t) + A(t)u(t) dt = g(t) dW (t), u(0) = 0.

Content of the paper Pronk-V. 2014:
The pathwise mild solution is a weak solution in PDE sense
Semigroup approach to stoch. evol. eq. with adapted A

In the paper: A is Hölder continuous in time. Less is needed:
1 S(t , s) exists
2 ‖S(t , s)A(s)‖ ≤ C(t − s)−1 (parabolic).

Can be weakened if g takes values in an intermediate space.
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Pathwise mild solutions

Concept is used in several papers already:
ω-dependent transformations in (t , x), Krüger–Stannat ’14

Quasi-linear SPDE:

du + A(u)u dt = f (u) dt + g(u) dW .

Replace A(u)u by A(v)u, fixed point argument with L(v) := u.
Fernando–Sritharan’15, Mohan–Sritharan ’17
Lizzy–Balachandran–Kim ’16
Lu-Neamtu-Schmalfuss ’18, Kühn–Neamtu ’18

Difficulty:
How to control the evolution family generated by A(v)

Classical theories: Kato, Tanabe, Acquistapace–Terreni usually give
bad dependencies.
Special cases Gallarati-V.: only dependence on d ,p and ellipticity.
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Optimal regularity for pathwise mild solutions?

Consider{
du(t) + A(t)u(t) dt = f (t) dt +

∑
n≥1

(
Bn(t)u(t) + gn(t)

)
dWn(t),

u(0) = u0.
(SE)

A(t , ω) = −
∑d

i,j=1 aij(t , ω, x)DiDj + lower order (complex aij )

Bn(t)u(x) =
∑d

j=1 bjn(t , x)Dju(x) + lower order (real-valued bj )
aij and bnj unif. cont. in x , only measurable and adapted in (t , ω)

aij − 1
2
∑

n≥1 binbjn is uniformly elliptic
f ∈ Lp(Ω× R+ × Rd ), g ∈ Lp(Ω× R+; W 1,p(Rd ; `2)) adapted

In case f = 0 and u0 = 0 one needs Lp-estimates for:

A(t)u(t) = Term1 +

∫ t

0
A(t)S(t , s)A(s)

1
2︸ ︷︷ ︸

∼(t−s)
− 3

2

A(s)
1
2
∑
n≥1

∫ t

s
gn(r)dWn(r) ds

Combination of singular deterministic/stochastic integral.
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Main regularity result for second order operators

Let ΩT = Ω× (0,T )

Theorem (Portal-V. 2018)
Under the above conditions and p ∈ [2,∞), for every T > 0 there
exists a unique u ∈ Lp(Ω× (0,T ); W 2,p(Rd )) of (SE). Moreover, the
following estimate holds:

‖u‖Lp(ΩT ;W 2,p(Rd )) ≤ C‖f‖Lp(ΩT×Rd )

+ C‖g‖Lp(ΩT ;W 1,p(Rd ;`2)) + C‖u0‖Lp(Ω;B2(1−1/p)
p,p (Rd ))

.

Maximal Lp-regularity
Special case of abstract setting. Also allowed: 2m-th order systems.
Improvement of Krylov’s results
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Method of proof

Step 1: reduction to x-independent coeff: perturbation argument.
After that the main structural conditions are:

B(t) =
∑J

j=1 bj(t)Cj , Cj generate commuting C0-group

A(t) + 1
2
∑J

j,k=1 bj(t)bk (t)CjCk generates an evolution family
Step 2: Reduction to B = 0

Ito formula in Lp × Lp′ Brźezniak–Neerven–V.–Weis, JDE’08.
Based on transformation:

ũ(t) =
J∏

j=1

exp(Cjζj)u(t), with ζj =

∫ t

0
bj(s) dW (s).

Step 3: Deterministic term Gallarati–V. Pot. Analysis 2017
Step 4: Initial value: classical.
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ũ(t) =
J∏

j=1

exp(Cjζj)u(t), with ζj =

∫ t

0
bj(s) dW (s).

Step 3: Deterministic term Gallarati–V. Pot. Analysis 2017
Step 4: Initial value: classical.

Mark Veraar (TU Delft) Pathwise mild solutions and optimal regularity May, 2018 14 / 18



Method of proof

Step 1: reduction to x-independent coeff: perturbation argument.
After that the main structural conditions are:

B(t) =
∑J

j=1 bj(t)Cj , Cj generate commuting C0-group

A(t) + 1
2
∑J

j,k=1 bj(t)bk (t)CjCk generates an evolution family
Step 2: Reduction to B = 0
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Method of proof

Step 5: Estimate of g part by functional calculus argument.
Let A0 = −ε∆ with ε so small that A(t)− A0 still generates an evolution
family S0(t , s). Then S(t , s) = e(t−s)A0S0(t , s).

‖A(t)u(t)‖Lp(Rd ) ∼ ‖A0u(t)‖Lp(Rd )

≤ ...+
∥∥∥∫ t

0
A3/2

0 e(t−s)A0S̃0(t , s)

∫ t

s
A(s)

1
2 g(r)dW (r) ds

∥∥∥
Lp(Rd )

where S̃0(t , s) = S0(t , s)A(s)
1
2 A−1/2

0 .
The latter can be estimates by proving boundedness of I(A0) where

I(z)g =

∫ t

0
z3/2e(t−s)zS̃0(t , s)

∫ t

s
A(s)

1
2 g(r)dW (r) ds
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Method of proof

By the H∞-calculus of A0 and Kalton–Weis 2001 it remains to check
R-boundedness of

{I(z) :∈ Σσ} on Lp
F := Lp

F (Ω× R+ × Rd ), p ≥ 2

Σσ is a sector and σ ∈ (0, π/2) is fixed.∥∥∥(∑
j

|I(zj)g j |2
)1/2∥∥∥

Lp
F

≤ C
∥∥∥(∑

j

|g j |2
)1/2∥∥∥

Lp
F

BDG type estimates in spaces such as Lp(`2)

Boundedness of the Hardy–Littlewood maximal function on
iterated Lp(Lq)-spaces
Rubio de Francia’s factorization technique
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Conclusion

Pathwise mild solution:
There is a semigroup approach to equations with random A
Quasi-linear SPDEs
The usual parabolic regularity results can be obtained
Some results also hold in the case D(A(t , ω)) depends on (t , ω)
(e.g. 2nd order A, Neumann conditions)

Maximal regularity:
Krylov’s theory can be obtained for higher order system
the results of van Neerven-V.-Weis can be extended to the
adapted setting in certain situations
Weights in time allow for rough initial values
Results with three integrability exponents p,q, r

Future:
Maximal estimates with time-dependent A
Results on domains
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Advertisement

Analysis in Banach spaces
I: Martingales and Littlewood-
Paley theory, 2016
II: Probabilistic Techniques
and Operator Theory, 2017

Workshop in Delft July 2018:
Harmonic analysis for SPDEs
Information:
http://fa.its.tudelft.nl/spde/
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