Pathwise mild solutions and optimal regularity estimates for parabolic SPDEs with adapted coefficients

Mark Veraar

Delft University of Technology

May, 2018

Mark Veraar (TU Delft)

Pathwise mild solutions and optimal regularity

May, 2018 1 / 18

Overview

Introduction

Existing results

2 Pathwise mild solutions

- Evolution families
- Adaptedness problem
- New solution formula

3 Main regularity result

- Introduction
- Statement
- Method of proof

Conclusion

Introduction

Let
$$X_0 = L^p(\mathbb{R}^d; \mathbb{C}^N)$$
 and $X_1 = W^{2m,p}(\mathbb{R}^d; \mathbb{C}^N)$. Consider

 $du(t) + A(t)u(t) dt = f(t) dt + (B(t)u(t) + g_n(t)) dW_n(t), \quad u(0) = u_0$

- W space-time white noise
- A(t, ω) 2m-th order differential operator, with measurable and adapted coefficients
- $f(t,\omega)$ is X_0 -valued, $g(t,\omega)$ is $X_{\frac{1}{2}}$ -valued
- $B_n(t, \omega, x)$ *m*-th order differential operator

Goal: To prove existence, uniqueness of an X_1 -valued solution u and estimate its norm by the natural norms in terms of f and g.

- Why *L^p*-theory ? Sobolev embedding, nonlinear eq., numerics.
- Why A only measurable? Coefficients could depend on process.
- A priori estimates can be used for nonlinear equations.

Introduction

Let
$$X_0 = L^p(\mathbb{R}^d; \mathbb{C}^N)$$
 and $X_1 = W^{2m,p}(\mathbb{R}^d; \mathbb{C}^N)$. Consider

 $du(t) + A(t)u(t) dt = f(t) dt + (B(t)u(t) + g_n(t)) dW_n(t), \quad u(0) = u_0$

- W space-time white noise
- A(t, ω) 2m-th order differential operator, with measurable and adapted coefficients
- $f(t,\omega)$ is X_0 -valued, $g(t,\omega)$ is $X_{\frac{1}{2}}$ -valued
- $B_n(t, \omega, x)$ *m*-th order differential operator

Goal: To prove existence, uniqueness of an X_1 -valued solution u and estimate its norm by the natural norms in terms of f and g.

- Why *L^p*-theory ? Sobolev embedding, nonlinear eq., numerics.
- Why A only measurable? Coefficients could depend on process.
- A priori estimates can be used for nonlinear equations.

Introduction

Let
$$X_0 = L^p(\mathbb{R}^d; \mathbb{C}^N)$$
 and $X_1 = W^{2m,p}(\mathbb{R}^d; \mathbb{C}^N)$. Consider

 $du(t) + A(t)u(t) dt = f(t) dt + (B(t)u(t) + g_n(t)) dW_n(t), \quad u(0) = u_0$

- W space-time white noise
- A(t, ω) 2m-th order differential operator, with measurable and adapted coefficients
- $f(t,\omega)$ is X_0 -valued, $g(t,\omega)$ is $X_{\frac{1}{2}}$ -valued
- $B_n(t, \omega, x)$ *m*-th order differential operator

Goal: To prove existence, uniqueness of an X_1 -valued solution u and estimate its norm by the natural norms in terms of f and g.

- Why *L^p*-theory ? Sobolev embedding, nonlinear eq., numerics.
- Why A only measurable? Coefficients could depend on process.
- A priori estimates can be used for nonlinear equations.

Existing results

Monotone operators, Lions method (see Prévôt-Röckner 2007)

- A, B adapted, measurable, monotone, coercive
- X₀ Hilbert space.

L^p-theory of Krylov and collaborators since 1996.

- $A(t,\omega)u(x) = \sum_{i,j=1}^{d} a_{ij}(t,\omega,x)D_iD_ju(x)$ + lower order.
- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t,x)D_ju(x)$ + lower order.

No higher order equations or systems allowed.

Real interpolation spaces Brzezniak 1995, Da Prato–Lunardi 1998. Stochastic maximal regularity theory of van Neerven-V.-Weis (AOP'12, SIAM J. Math. Anal. '12):

- A continuous in time and Ω-independent
- 2m-th order systems allowed.
- Smallness condition on B

No extension to adapted measurable A allowed.

Mark Veraar (TU Delft)

Existing results

Monotone operators, Lions method (see Prévôt-Röckner 2007)

- A, B adapted, measurable, monotone, coercive
- X₀ Hilbert space.

L^p-theory of Krylov and collaborators since 1996.

- $A(t,\omega)u(x) = \sum_{i,j=1}^{d} a_{ij}(t,\omega,x)D_iD_ju(x)$ + lower order.
- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t,x)D_ju(x)$ + lower order.

No higher order equations or systems allowed.

Real interpolation spaces Brzezniak 1995, Da Prato–Lunardi 1998. Stochastic maximal regularity theory of van Neerven-V.-Weis (AOP'12, SIAM J. Math. Anal. '12):

- A continuous in time and Ω-independent
- 2m-th order systems allowed.
- Smallness condition on B

No extension to adapted measurable A allowed.

Littlewood–Paley type estimates

Special cases of the previous slide:

Theorem (van Neerven–V–Weis 2012)

Let $X = L^{p}(\mathcal{O})$ and let A have \blacksquare . For all G adapted one has

$$\left\| t \mapsto \int_0^t \mathcal{A}^{1/2} e^{(t-s)\mathcal{A}} \mathcal{G}(s) \,\mathrm{d} \mathcal{W}(s)
ight\|_{L^p(\Omega imes \mathbb{R}_+ imes \mathcal{O})} \leq \mathcal{C} \| \mathcal{G} \|_{L^p(\Omega imes \mathbb{R}_+ imes \mathcal{O}; \ell^2)}.$$

The above is a singular stochastic integral.

■ means: *A* has a bounded H^{∞} -calculus. A lot of theory developed and it can be used as a black box. In practice: every analytic semigroup generator -A on L^p with reasonable coefficients has this property.

$A = -\Delta$ on \mathbb{R}^d : Krylov 1996. Cornerstone of his theory.

A (1) > A (2) > A

Littlewood–Paley type estimates

Special cases of the previous slide:

Theorem (van Neerven–V–Weis 2012)

Let $X = L^{p}(\mathcal{O})$ and let A have \blacksquare . For all G adapted one has

$$\left\| t \mapsto \int_0^t \mathcal{A}^{1/2} e^{(t-s)\mathcal{A}} \mathcal{G}(s) \,\mathrm{d} \mathcal{W}(s)
ight\|_{L^p(\Omega imes \mathbb{R}_+ imes \mathcal{O})} \leq \mathcal{C} \| \mathcal{G} \|_{L^p(\Omega imes \mathbb{R}_+ imes \mathcal{O}; \ell^2)}.$$

The above is a singular stochastic integral.

I means: A has a bounded H^{∞} -calculus.

A lot of theory developed and it can be used as a black box. In practice: every analytic semigroup generator -A on L^p with

reasonable coefficients has this property.

$A = -\Delta$ on \mathbb{R}^d : Krylov 1996. Cornerstone of his theory.

A (10) A (10) A (10)

Littlewood–Paley type estimates

Special cases of the previous slide:

Theorem (van Neerven–V–Weis 2012)

Let $X = L^{p}(\mathcal{O})$ and let A have \blacksquare . For all G adapted one has

$$\left\| t \mapsto \int_0^t \mathcal{A}^{1/2} e^{(t-s)\mathcal{A}} \mathcal{G}(s) \,\mathrm{d} \mathcal{W}(s)
ight\|_{L^p(\Omega imes \mathbb{R}_+ imes \mathcal{O})} \leq \mathcal{C} \| \mathcal{G} \|_{L^p(\Omega imes \mathbb{R}_+ imes \mathcal{O}; \ell^2)}.$$

The above is a singular stochastic integral.

I means: A has a bounded H^{∞} -calculus.

A lot of theory developed and it can be used as a black box. In practice: every analytic semigroup generator -A on L^p with reasonable coefficients has this property.

 $A = -\Delta$ on \mathbb{R}^d : Krylov 1996. Cornerstone of his theory.

▲ 同 ▶ → 三 ▶

- Evolution families
- Adaptedness problem
- New solution formula

Main regularity result

- Introduction
- Statement
- Method of proof

4 Conclusion

Evolution families

Definition

We say that A(t) generates an evolution family S(t, s) if

- ② $(t, s) \mapsto S(t, s)$ is strongly continuous
- 3 $D_t S(t,s) = A(t)S(t,s)$ and $D_s S(t,s) = S(t,s)A(s)$ on dense set

One-dimensional case: $S(t, s) = \exp(\int_{s}^{t} A(r) dr)$.

Example (Gallarati-V. Pot Analysis 2017, Adv. Diff. Eq. 2017)

A(t) 2*m*-order system on \mathbb{R}^d with *x*-independent coefficients. A(t) generates an evolution family S(t, s) on $L^p(\mathbb{R}^d; \mathbb{C}^N)$ for $p \in (1, \infty)$ and

- boundedness on weighted spaces (Ap-weights)
- maximal L^p-regularity for the associated parabolic problem
- estimates only dependent on *p*, *d* and ellipticity

Evolution families

Definition

We say that A(t) generates an evolution family S(t, s) if

- ② $(t, s) \mapsto S(t, s)$ is strongly continuous
- 3 $D_t S(t,s) = A(t)S(t,s)$ and $D_s S(t,s) = S(t,s)A(s)$ on dense set

One-dimensional case: $S(t, s) = \exp(\int_{s}^{t} A(r) dr)$.

Example (Gallarati-V. Pot Analysis 2017, Adv. Diff. Eq. 2017)

A(t) 2*m*-order system on \mathbb{R}^d with *x*-independent coefficients. A(t) generates an evolution family S(t, s) on $L^p(\mathbb{R}^d; \mathbb{C}^N)$ for $p \in (1, \infty)$ and

- boundedness on weighted spaces (A_p-weights)
- maximal L^p-regularity for the associated parabolic problem
- estimates only dependent on p, d and ellipticity

Evolution families

Definition

We say that A(t) generates an evolution family S(t, s) if

- ② $(t, s) \mapsto S(t, s)$ is strongly continuous
- 3 $D_t S(t,s) = A(t)S(t,s)$ and $D_s S(t,s) = S(t,s)A(s)$ on dense set

One-dimensional case: $S(t, s) = \exp(\int_{s}^{t} A(r) dr)$.

Example (Gallarati-V. Pot Analysis 2017, Adv. Diff. Eq. 2017)

A(t) 2*m*-order system on \mathbb{R}^d with *x*-independent coefficients. A(t) generates an evolution family S(t, s) on $L^p(\mathbb{R}^d; \mathbb{C}^N)$ for $p \in (1, \infty)$ and

- boundedness on weighted spaces (A_p-weights)
- maximal L^p-regularity for the associated parabolic problem
- estimates only dependent on *p*, *d* and ellipticity

Fix $s \in \mathbb{R}$. Then the Fourier multiplier $m(t) = \mathcal{FS}(t, s)$ satisfies

$$\partial_t m(t,\xi) + p(\xi,t)m(t,\xi) = 0, \qquad m(s) = I,$$

where $p(\xi, t) = \sum_{|\alpha|, |\beta|=m} a_{\alpha,\beta}(t)\xi^{\alpha}\xi^{\beta}$. Using the implicit function theorem and ellipticity of A(t) one can check that for all $\gamma \in \mathbb{N}^d$

 $|\xi^{\gamma} D^{\gamma} m(t,\xi)| \leq C_{\gamma}.$

Thus S(t, s) is bounded on L^p by the Mihlin multiplier theorem.

Fix $s \in \mathbb{R}$. Then the Fourier multiplier $m(t) = \mathcal{FS}(t, s)$ satisfies

$$\partial_t m(t,\xi) + p(\xi,t)m(t,\xi) = 0, \qquad m(s) = I,$$

where $p(\xi, t) = \sum_{|\alpha|, |\beta|=m} a_{\alpha,\beta}(t)\xi^{\alpha}\xi^{\beta}$. Using the implicit function theorem and ellipticity of A(t) one can check that for all $\gamma \in \mathbb{N}^d$

$$|\xi^{\gamma} D^{\gamma} m(t,\xi)| \leq C_{\gamma}.$$

Thus S(t, s) is bounded on L^p by the Mihlin multiplier theorem.

• $A: \mathbb{R}_+ imes \Omega o \mathcal{L}(X_1, X_0)$ adapted

• $A(t, \omega)$ generates evolution family $S(t, s, \omega)$ for $\omega \in \Omega$. Consider:

 $du(t) + A(t)u(t) dt = g(t) dW(t), \ u(0) = 0.$

Mild solution is given by

$$u(t) = \int_0^t S(t,s)g(s) \,\mathrm{d} W(s)$$
?????

Adaptedness problem: S(t, s) is only \mathcal{F}_t -measurable. Recall 1-dim case: $S(t, s) = \exp(\int_s^t A(r) dr)$.

This difficulty has limited the semigroup approach to SPDEs

Possible approaches based on Malliavin calculus considered by: Alòs, León, Viens, Nualart (1999).

Mark Veraar (TU Delft)

Pathwise mild solutions and optimal regularity

• $A: \mathbb{R}_+ imes \Omega o \mathcal{L}(X_1, X_0)$ adapted

• $A(t, \omega)$ generates evolution family $S(t, s, \omega)$ for $\omega \in \Omega$. Consider:

$$du(t) + A(t)u(t) dt = g(t) dW(t), \ u(0) = 0.$$

Mild solution is given by

$$u(t) = \int_0^t S(t,s)g(s) \,\mathrm{d}W(s)?????$$

Adaptedness problem: S(t, s) is only \mathcal{F}_t -measurable. Recall 1-dim case: $S(t, s) = \exp(\int_s^t A(r) dr)$.

This difficulty has limited the semigroup approach to SPDEs

Possible approaches based on Malliavin calculus considered by: Alòs, León, Viens, Nualart (1999).

Mark Veraar (TU Delft)

Pathwise mild solutions and optimal regularity

• $A: \mathbb{R}_+ imes \Omega o \mathcal{L}(X_1, X_0)$ adapted

• $A(t, \omega)$ generates evolution family $S(t, s, \omega)$ for $\omega \in \Omega$. Consider:

$$du(t) + A(t)u(t) dt = g(t) dW(t), \ u(0) = 0.$$

Mild solution is given by

$$u(t) = \int_0^t S(t,s)g(s) \,\mathrm{d}W(s)?????$$

Adaptedness problem: S(t, s) is only \mathcal{F}_t -measurable. Recall 1-dim case: $S(t, s) = \exp(\int_s^t A(r) dr)$.

This difficulty has limited the semigroup approach to SPDEs

Possible approaches based on Malliavin calculus considered by: Alòs, León, Viens, Nualart (1999).

Mark Veraar (TU Delft)

• $A: \mathbb{R}_+ imes \Omega o \mathcal{L}(X_1, X_0)$ adapted

• $A(t, \omega)$ generates evolution family $S(t, s, \omega)$ for $\omega \in \Omega$. Consider:

$$du(t) + A(t)u(t) dt = g(t) dW(t), \ u(0) = 0.$$

Mild solution is given by

$$u(t) = \int_0^t S(t,s)g(s) \,\mathrm{d}W(s)?????$$

Adaptedness problem: S(t, s) is only \mathcal{F}_t -measurable. Recall 1-dim case: $S(t, s) = \exp(\int_s^t A(r) dr)$.

This difficulty has limited the semigroup approach to SPDEs

Possible approaches based on Malliavin calculus considered by: Alòs, León, Viens, Nualart (1999).

Mark Veraar (TU Delft)

New solution formula: pathwise mild solution

Let
$$M(t) = \int_0^t g(r) dW(r)$$
. Then formally:

$$u(t) = \int_0^t S(t, r) \, dM(r)$$

= $\int_0^t S(t, 0) \, dM(r) + \int_0^t \int_0^r S(t, s) A(s) \, ds \, dM(r) \, (D_r S(t, r) = S(t, r) A(r))$
= $\int_0^t S(t, 0) \, dM(r) + \int_0^t S(t, s) A(s) \int_s^t \, dM(r) \, ds$ (stochastic Fubini)
= $S(t, 0) M(t) + \int_0^t S(t, s) A(s) (M(t) - M(s)) \, ds$

The last formula is called the pathwise mild solution (Pronk-V. JDE'14).

- No adaptedness problems for the stochastic integral
- S(t, s)A(s) is singular at s = t
- *M*(*t*) *M*(*s*) is Hölder continuous

New solution formula: pathwise mild solution

Let
$$M(t) = \int_0^t g(r) dW(r)$$
. Then formally:

$$u(t) = \int_0^t S(t, r) \, dM(r)$$

= $\int_0^t S(t, 0) \, dM(r) + \int_0^t \int_0^r S(t, s) A(s) \, ds \, dM(r) \, (D_r S(t, r) = S(t, r) A(r))$
= $\int_0^t S(t, 0) \, dM(r) + \int_0^t S(t, s) A(s) \int_s^t \, dM(r) \, ds$ (stochastic Fubini)
= $S(t, 0) M(t) + \int_0^t S(t, s) A(s) (M(t) - M(s)) \, ds$

The last formula is called the pathwise mild solution (Pronk-V. JDE'14).

- No adaptedness problems for the stochastic integral
- S(t, s)A(s) is singular at s = t
- M(t) M(s) is Hölder continuous

New solution formula: pathwise mild solution

Let
$$M(t) = \int_0^t g(r) dW(r)$$
. Then formally:

$$u(t) = \int_0^t S(t, r) \, dM(r)$$

= $\int_0^t S(t, 0) \, dM(r) + \int_0^t \int_0^r S(t, s) A(s) \, ds \, dM(r) \, (D_r S(t, r) = S(t, r) A(r))$
= $\int_0^t S(t, 0) \, dM(r) + \int_0^t S(t, s) A(s) \int_s^t \, dM(r) \, ds$ (stochastic Fubini)
= $S(t, 0)M(t) + \int_0^t S(t, s) A(s)(M(t) - M(s)) \, ds$

The last formula is called the pathwise mild solution (Pronk-V. JDE'14).

- No adaptedness problems for the stochastic integral
- S(t, s)A(s) is singular at s = t
- M(t) M(s) is Hölder continuous

Definition

Let $M(t) = \int_0^t g dW$. The function *u* defined by

$$u(t) = S(t,0)M(t) + \int_0^t S(t,s)A(s)(M(t) - M(s)) ds$$

is called the pathwise mild solution to

 $du(t) + A(t)u(t) dt = g(t) dW(t), \ u(0) = 0.$

Content of the paper Pronk-V. 2014:

- The pathwise mild solution is a weak solution in PDE sense
- Semigroup approach to stoch. evol. eq. with adapted A

In the paper: A is Hölder continuous in time. Less is needed:

- \bigcirc S(t, s) exists
- ② $||S(t,s)A(s)|| \le C(t-s)^{-1}$ (parabolic).

Can be weakened if g takes values in an intermediate space.

Mark Veraar (TU Delft)

May, 2018 10 / 18

Definition

Let $M(t) = \int_0^t g dW$. The function *u* defined by

$$u(t) = S(t,0)M(t) + \int_0^t S(t,s)A(s)(M(t) - M(s)) ds$$

is called the pathwise mild solution to

$$du(t) + A(t)u(t) dt = g(t) dW(t), u(0) = 0.$$

Content of the paper Pronk-V. 2014:

- The pathwise mild solution is a weak solution in PDE sense
- Semigroup approach to stoch. evol. eq. with adapted A

In the paper: A is Hölder continuous in time. Less is needed:

- S(t, s) exists
- ② $||S(t,s)A(s)|| \le C(t-s)^{-1}$ (parabolic).

Can be weakened if g takes values in an intermediate space.

Mark Veraar (TU Delft)

May, 2018 10 / 18

Definition

Let $M(t) = \int_0^t g dW$. The function *u* defined by

$$u(t) = S(t,0)M(t) + \int_0^t S(t,s)A(s)(M(t) - M(s)) ds$$

is called the pathwise mild solution to

$$du(t) + A(t)u(t) dt = g(t) dW(t), u(0) = 0.$$

Content of the paper Pronk-V. 2014:

- The pathwise mild solution is a weak solution in PDE sense
- Semigroup approach to stoch. evol. eq. with adapted A

In the paper: A is Hölder continuous in time. Less is needed:

- S(t, s) exists
- 2 $||S(t,s)A(s)|| \le C(t-s)^{-1}$ (parabolic).

Can be weakened if g takes values in an intermediate space.

Concept is used in several papers already:

• ω -dependent transformations in (t, x), Krüger–Stannat '14

Quasi-linear SPDE:

 $du + A(u)u\,\mathrm{d}t = f(u)\,\mathrm{d}t + g(u)\,\mathrm{d}W.$

Replace A(u)u by A(v)u, fixed point argument with L(v) := u.

- Fernando–Sritharan'15, Mohan–Sritharan '17
- Lizzy–Balachandran–Kim '16
- Lu-Neamtu-Schmalfuss '18, Kühn–Neamtu '18

Difficulty:

• How to control the evolution family generated by A(v)

Classical theories: Kato, Tanabe, Acquistapace–Terreni usually give bad dependencies.

Special cases Gallarati-V .: only dependence on d, p and ellipticity

Concept is used in several papers already:

• ω -dependent transformations in (t, x), Krüger–Stannat '14

Quasi-linear SPDE:

$$du + A(u)u \,\mathrm{d}t = f(u) \,\mathrm{d}t + g(u) \,\mathrm{d}W.$$

Replace A(u)u by A(v)u, fixed point argument with L(v) := u.

- Fernando–Sritharan'15, Mohan–Sritharan '17
- Lizzy–Balachandran–Kim '16
- Lu-Neamtu-Schmalfuss '18, Kühn-Neamtu '18

Difficulty:

• How to control the evolution family generated by A(v)

Classical theories: Kato, Tanabe, Acquistapace–Terreni usually give bad dependencies.

Special cases Gallarati-V .: only dependence on d, p and ellipticity

Concept is used in several papers already:

• ω -dependent transformations in (t, x), Krüger–Stannat '14

Quasi-linear SPDE:

$$du + A(u)u \,\mathrm{d}t = f(u) \,\mathrm{d}t + g(u) \,\mathrm{d}W.$$

Replace A(u)u by A(v)u, fixed point argument with L(v) := u.

- Fernando–Sritharan'15, Mohan–Sritharan '17
- Lizzy–Balachandran–Kim '16
- Lu-Neamtu-Schmalfuss '18, Kühn–Neamtu '18

Difficulty:

• How to control the evolution family generated by A(v)

Classical theories: Kato, Tanabe, Acquistapace–Terreni usually give bad dependencies.

Special cases Gallarati-V.: only dependence on d, p and ellipticity.

- Existing results
- Pathwise mild solutions
 - Evolution families
 - Adaptedness problem
 - New solution formula

Main regularity result

- Introduction
- Statement
- Method of proof

4 Conclusion

Consider

 $\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$ (SE)

• $A(t,\omega) = -\sum_{i,j=1}^{d} a_{ij}(t,\omega,x) D_i D_j$ + lower order (complex a_{ij})

- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t,x)D_ju(x)$ + lower order (real-valued b_j)
- a_{ij} and b_{nj} unif. cont. in x, only measurable and adapted in (t, ω)
- $a_{ij} \frac{1}{2} \sum_{n>1} b_{in} b_{jn}$ is uniformly elliptic
- $f \in L^p(\Omega \times \mathbb{R}_+ \times \mathbb{R}^d), g \in L^p(\Omega \times \mathbb{R}_+; W^{1,p}(\mathbb{R}^d; \ell^2))$ adapted

In case f = 0 and $u_0 = 0$ one needs L^p -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r)dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral, ...,

Consider

- $\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$ (SE)
- $A(t,\omega) = -\sum_{i,j=1}^{d} a_{ij}(t,\omega,x) D_i D_j$ + lower order (complex a_{ij})
- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t,x)D_ju(x)$ + lower order (real-valued b_j) • a_{ij} and b_{nj} unif. cont. in x, only measurable and adapted in (t,ω) • $a_{ij} - \frac{1}{2}\sum_{n\geq 1} b_{in}b_{jn}$ is uniformly elliptic
- $f \in L^p(\Omega \times \mathbb{R}_+ \times \mathbb{R}^d), g \in L^p(\Omega \times \mathbb{R}_+; W^{1,p}(\mathbb{R}^d; \ell^2))$ adapted

In case f = 0 and $u_0 = 0$ one needs L^p -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r) dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral, =,

Consider

$$\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$$
(SE)

• $A(t,\omega) = -\sum_{\substack{i,j=1\\\sigma}}^{d} a_{ij}(t,\omega,x) D_i D_j$ + lower order (complex a_{ij})

- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t,x)D_ju(x)$ + lower order (real-valued b_j)
- a_{ij} and b_{nj} unif. cont. in x, only measurable and adapted in (t, ω)
- $a_{ij} \frac{1}{2} \sum_{n>1} b_{in} b_{jn}$ is uniformly elliptic
- $f \in L^p(\Omega \times \mathbb{R}_+ \times \mathbb{R}^d), g \in L^p(\Omega \times \mathbb{R}_+; W^{1,p}(\mathbb{R}^d; \ell^2))$ adapted

In case f = 0 and $u_0 = 0$ one needs L^p -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r)dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral,

Consider

$$\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$$
(SE)

• $A(t,\omega) = -\sum_{i,j=1}^{d} a_{ij}(t,\omega,x) D_i D_j$ + lower order (complex a_{ij})

- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t, x)D_ju(x)$ + lower order (real-valued b_j)
- a_{ij} and b_{nj} unif. cont. in x, only measurable and adapted in (t,ω)
 a_{ij} ½ Σ_{n≥1} b_{in}b_{jn} is uniformly elliptic
 f ∈ L^p(Ω × ℝ₊ × ℝ^d), g ∈ L^p(Ω × ℝ₊; W^{1,p}(ℝ^d; ℓ²)) adapted

In case f = 0 and $u_0 = 0$ one needs L^p -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r)dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral,

Consider

$$\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$$
(SE)

• $A(t,\omega) = -\sum_{i,j=1}^{d} a_{ij}(t,\omega,x) D_i D_j$ + lower order (complex a_{ij})

- $B_n(t)u(x) = \sum_{j=1}^d b_{jn}(t,x)D_ju(x)$ + lower order (real-valued b_j)
- *a_{ij}* and *b_{nj}* unif. cont. in *x*, only measurable and adapted in (*t*, ω)
 a_{ij} ½ ∑_{n>1} *b_{in}b_{jn}* is uniformly elliptic

• $f \in L^p(\Omega \times \mathbb{R}_+ \times \mathbb{R}^d), g \in L^p(\Omega \times \mathbb{R}_+; W^{1,p}(\mathbb{R}^d; \ell^2))$ adapted

In case f = 0 and $u_0 = 0$ one needs L^p -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r)dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral,

Consider

$$\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$$
(SE)

•
$$A(t, \omega) = -\sum_{i,j=1}^{d} a_{ij}(t, \omega, x) D_i D_j$$
 + lower order (complex a_{ij})
• $B_n(t)u(x) = \sum_{j=1}^{d} b_{jn}(t, x) D_j u(x)$ + lower order (real-valued b_j)
• a_{ij} and b_{nj} unif. cont. in x , only measurable and adapted in (t, ω)
• $a_{ij} - \frac{1}{2} \sum_{n \ge 1} b_{in} b_{jn}$ is uniformly elliptic
• $f \in L^p(\Omega \times \mathbb{R}_+ \times \mathbb{R}^d), g \in L^p(\Omega \times \mathbb{R}_+; W^{1,p}(\mathbb{R}^d; \ell^2))$ adapted

In case f = 0 and $u_0 = 0$ one needs L^p -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r)dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral, =,

Consider

$$\begin{cases} du(t) + A(t)u(t) dt = f(t) dt + \sum_{n \ge 1} (B_n(t)u(t) + g_n(t)) dW_n(t), \\ u(0) = u_0. \end{cases}$$
(SE)

•
$$A(t, \omega) = -\sum_{i,j=1}^{d} a_{ij}(t, \omega, x) D_i D_j$$
 + lower order (complex a_{ij})
• $B_n(t)u(x) = \sum_{j=1}^{d} b_{jn}(t, x) D_j u(x)$ + lower order (real-valued b_j)
• a_{ij} and b_{nj} unif. cont. in x , only measurable and adapted in (t, ω)
• $a_{ij} - \frac{1}{2} \sum_{n>1} b_{in} b_{jn}$ is uniformly elliptic

•
$$f \in L^{p}(\Omega \times \mathbb{R}_{+} \times \mathbb{R}^{d}), g \in L^{p}(\Omega \times \mathbb{R}_{+}; W^{1,p}(\mathbb{R}^{d}; \ell^{2}))$$
 adapted

In case f = 0 and $u_0 = 0$ one needs L^{ρ} -estimates for:

$$A(t)u(t) = \text{Term}_{1} + \int_{0}^{t} \underbrace{A(t)S(t,s)A(s)^{\frac{1}{2}}}_{\sim (t-s)^{-\frac{3}{2}}} A(s)^{\frac{1}{2}} \sum_{n \ge 1} \int_{s}^{t} g_{n}(r) dW_{n}(r) \, \mathrm{d}s$$

Combination of singular deterministic/stochastic integral.

Let $\Omega_T = \Omega \times (0, T)$

Theorem (Portal-V. 2018)

Under the above conditions and $p \in [2, \infty)$, for every T > 0 there exists a unique $u \in L^p(\Omega \times (0, T); W^{2,p}(\mathbb{R}^d))$ of (SE). Moreover, the following estimate holds:

$$\begin{split} \|u\|_{L^{p}(\Omega_{T}; W^{2,p}(\mathbb{R}^{d}))} &\leq C \|f\|_{L^{p}(\Omega_{T} \times \mathbb{R}^{d})} \\ &+ C \|g\|_{L^{p}(\Omega_{T}; W^{1,p}(\mathbb{R}^{d}; \ell^{2}))} + C \|u_{0}\|_{L^{p}(\Omega; B^{2(1-1/p)}_{p,p}(\mathbb{R}^{d}))}. \end{split}$$

Maximal *L^p*-regularity Special case of abstract setting. Also allowed: 2m-th order systems. Improvement of Krylov's results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\Omega_T = \Omega \times (0, T)$

Theorem (Portal-V. 2018)

Under the above conditions and $p \in [2, \infty)$, for every T > 0 there exists a unique $u \in L^p(\Omega \times (0, T); W^{2,p}(\mathbb{R}^d))$ of (SE). Moreover, the following estimate holds:

$$\begin{split} \|u\|_{L^{p}(\Omega_{\mathcal{T}}; W^{2,p}(\mathbb{R}^{d}))} &\leq C \|f\|_{L^{p}(\Omega_{\mathcal{T}} \times \mathbb{R}^{d})} \\ &+ C \|g\|_{L^{p}(\Omega_{\mathcal{T}}; W^{1,p}(\mathbb{R}^{d}; \ell^{2}))} + C \|u_{0}\|_{L^{p}(\Omega; \mathcal{B}^{2(1-1/p)}_{p,p}(\mathbb{R}^{d}))}. \end{split}$$

Maximal L^{p} -regularity Special case of abstract setting. Also allowed: 2m-th order systems. Improvement of Krylov's results

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

13/18

• $B(t) = \sum_{j=1}^{J} b_j(t)C_j$, C_j generate commuting C_0 -group

• $A(t) + \frac{1}{2} \sum_{j,k=1}^{J} b_j(t) b_k(t) C_j C_k$ generates an evolution family Step 2: Reduction to B = 0

 Ito formula in L^p × L^{p'} Brźezniak–Neerven–V.–Weis, JDE'08. Based on transformation:

$$\widetilde{u}(t) = \prod_{j=1}^{J} \exp(C_j \zeta_j) u(t), \text{ with } \zeta_j = \int_0^t b_j(s) \, \mathrm{d} W(s).$$

Step 3: Deterministic term Gallarati–V. Pot. Analysis 2017 Step 4: Initial value: classical.

A (10) A (10) A (10)

- $B(t) = \sum_{j=1}^{J} b_j(t)C_j$, C_j generate commuting C_0 -group
- $A(t) + \frac{1}{2} \sum_{j,k=1}^{J} b_j(t) b_k(t) C_j C_k$ generates an evolution family Step 2: Reduction to B = 0
 - Ito formula in L^p × L^{p'} Brźezniak–Neerven–V.–Weis, JDE'08. Based on transformation:

$$\widetilde{u}(t) = \prod_{j=1}^{J} \exp(C_j \zeta_j) u(t), \text{ with } \zeta_j = \int_0^t b_j(s) \, \mathrm{d}W(s).$$

Step 3: Deterministic term Gallarati–V. Pot. Analysis 2017 Step 4: Initial value: classical.

A (1) > A (2) > A

- $B(t) = \sum_{j=1}^{J} b_j(t)C_j$, C_j generate commuting C_0 -group
- $A(t) + \frac{1}{2} \sum_{j,k=1}^{J} b_j(t) b_k(t) C_j C_k$ generates an evolution family Step 2: Reduction to B = 0
 - Ito formula in L^p × L^{p'} Brźezniak–Neerven–V.–Weis, JDE'08. Based on transformation:

$$\widetilde{u}(t) = \prod_{j=1}^{J} \exp(C_j \zeta_j) u(t), \text{ with } \zeta_j = \int_0^t b_j(s) \, \mathrm{d}W(s).$$

Step 3: Deterministic term Gallarati–V. Pot. Analysis 2017 Step 4: Initial value: classical.

A (1) > A (2) > A

- $B(t) = \sum_{j=1}^{J} b_j(t)C_j$, C_j generate commuting C_0 -group
- $A(t) + \frac{1}{2} \sum_{j,k=1}^{J} b_j(t) b_k(t) C_j C_k$ generates an evolution family Step 2: Reduction to B = 0
 - Ito formula in L^p × L^{p'} Brźezniak–Neerven–V.–Weis, JDE'08. Based on transformation:

$$\widetilde{u}(t) = \prod_{j=1}^{J} \exp(C_j \zeta_j) u(t), \text{ with } \zeta_j = \int_0^t b_j(s) \, \mathrm{d}W(s).$$

Step 3: Deterministic term Gallarati–V. Pot. Analysis 2017 Step 4: Initial value: classical.

Method of proof

Step 5: Estimate of g part by functional calculus argument. Let $A_0 = -\varepsilon \Delta$ with ε so small that $A(t) - A_0$ still generates an evolution family $S_0(t, s)$. Then $S(t, s) = e^{(t-s)A_0}S_0(t, s)$.

$$\begin{split} \|A(t)u(t)\|_{L^{p}(\mathbb{R}^{d})} &\sim \|A_{0}u(t)\|_{L^{p}(\mathbb{R}^{d})} \\ &\leq \ldots + \Big\|\int_{0}^{t} A_{0}^{3/2} e^{(t-s)A_{0}} \widetilde{S_{0}}(t,s) \int_{s}^{t} A(s)^{\frac{1}{2}}g(r)dW(r) \,\mathrm{d}s\Big\|_{L^{p}(\mathbb{R}^{d})} \\ & \text{where } \widetilde{S_{0}}(t,s) = S_{0}(t,s)A(s)^{\frac{1}{2}}A_{0}^{-1/2}. \\ & \text{The latter can be estimates by proving boundedness of } I(A_{0}) \text{ where } \end{split}$$

$$I(z)g = \int_{0}^{t} z^{3/2} e^{(t-s)z} \widetilde{S_{0}}(t,s) \int_{s}^{t} A(s)^{\frac{1}{2}} g(r) dW(r) \, \mathrm{d}s$$

Method of proof

Step 5: Estimate of *g* part by functional calculus argument. Let $A_0 = -\varepsilon \Delta$ with ε so small that $A(t) - A_0$ still generates an evolution family $S_0(t, s)$. Then $S(t, s) = e^{(t-s)A_0}S_0(t, s)$.

$$\begin{split} \|A(t)u(t)\|_{L^{p}(\mathbb{R}^{d})} &\sim \|A_{0}u(t)\|_{L^{p}(\mathbb{R}^{d})} \\ &\leq \ldots + \left\| \int_{0}^{t} A_{0}^{3/2} e^{(t-s)A_{0}} \widetilde{S_{0}}(t,s) \int_{s}^{t} A(s)^{\frac{1}{2}} g(r) dW(r) \, \mathrm{d}s \right\|_{L^{p}(\mathbb{R}^{d})} \\ \end{split}$$
where $\widetilde{S_{0}}(t,s) = S_{0}(t,s)A(s)^{\frac{1}{2}} A_{0}^{-1/2}.$
The latter can be estimates by proving boundedness of $I(A_{0})$ where

$$I(z)g = \int_0^t z^{3/2} e^{(t-s)z} \widetilde{S_0}(t,s) \int_s^t A(s)^{\frac{1}{2}} g(r) dW(r) \, \mathrm{d}s$$

Mark Veraar (TU Delft)

Method of proof

Step 5: Estimate of *g* part by functional calculus argument. Let $A_0 = -\varepsilon \Delta$ with ε so small that $A(t) - A_0$ still generates an evolution family $S_0(t, s)$. Then $S(t, s) = e^{(t-s)A_0}S_0(t, s)$.

$$\begin{split} \|A(t)u(t)\|_{L^{p}(\mathbb{R}^{d})} &\sim \|A_{0}u(t)\|_{L^{p}(\mathbb{R}^{d})} \\ &\leq \ldots + \Big\|\int_{0}^{t}A_{0}^{3/2}e^{(t-s)A_{0}}\widetilde{S_{0}}(t,s)\int_{s}^{t}A(s)^{\frac{1}{2}}g(r)dW(r)\,\mathrm{d}s\Big\|_{L^{p}(\mathbb{R}^{d})} \end{split}$$

where $\widetilde{S_0}(t, s) = S_0(t, s)A(s)^{\frac{1}{2}}A_0^{-1/2}$. The latter can be estimates by proving boundedness of $I(A_0)$ where

$$I(z)g = \int_0^t z^{3/2} e^{(t-s)z} \widetilde{S_0}(t,s) \int_s^t A(s)^{\frac{1}{2}} g(r) dW(r) \,\mathrm{d}s$$

By the H^{∞} -calculus of A_0 and Kalton–Weis 2001 it remains to check *R*-boundedness of

$$\{I(z):\in \Sigma_{\sigma}\}$$
 on $L^{p}_{\mathcal{F}}:=L^{p}_{\mathcal{F}}(\Omega imes \mathbb{R}_{+} imes \mathbb{R}^{d}), \ p \geq 2$

 Σ_{σ} is a sector and $\sigma \in (0, \pi/2)$ is fixed.

$$\left\|\left(\sum_{j}|I(z_{j})g^{j}|^{2}\right)^{1/2}\right\|_{L^{\rho}_{\mathcal{F}}} \leq C \left\|\left(\sum_{j}|g^{j}|^{2}\right)^{1/2}\right\|_{L^{\rho}_{\mathcal{F}}}$$

- BDG type estimates in spaces such as $L^{p}(\ell^{2})$
- Boundedness of the Hardy–Littlewood maximal function on iterated L^p(L^q)-spaces
- Rubio de Francia's factorization technique

By the H^{∞} -calculus of A_0 and Kalton–Weis 2001 it remains to check *R*-boundedness of

$$\{I(z):\in \Sigma_{\sigma}\}$$
 on $L^{p}_{\mathcal{F}}:=L^{p}_{\mathcal{F}}(\Omega imes \mathbb{R}_{+} imes \mathbb{R}^{d}), \ p \geq 2$

 Σ_{σ} is a sector and $\sigma \in (0, \pi/2)$ is fixed.

$$\left\|\left(\sum_{j}|I(z_{j})g^{j}|^{2}\right)^{1/2}\right\|_{L^{p}_{\mathcal{F}}}\leq C\left\|\left(\sum_{j}|g^{j}|^{2}\right)^{1/2}\right\|_{L^{p}_{\mathcal{F}}}$$

- BDG type estimates in spaces such as $L^p(\ell^2)$
- Boundedness of the Hardy–Littlewood maximal function on iterated L^p(L^q)-spaces
- Rubio de Francia's factorization technique

Conclusion

Pathwise mild solution:

- There is a semigroup approach to equations with random A
- Quasi-linear SPDEs
- The usual parabolic regularity results can be obtained
- Some results also hold in the case D(A(t, ω)) depends on (t, ω) (e.g. 2nd order A, Neumann conditions)

Maximal regularity:

- Krylov's theory can be obtained for higher order system
- the results of van Neerven-V.-Weis can be extended to the adapted setting in certain situations
- Weights in time allow for rough initial values
- Results with three integrability exponents p, q, r

Future:

- Maximal estimates with time-dependent A
- Results on domains

Mark Veraar (TU Delft)

May, 2018 17 / 18

Conclusion

Pathwise mild solution:

- There is a semigroup approach to equations with random A
- Quasi-linear SPDEs
- The usual parabolic regularity results can be obtained
- Some results also hold in the case D(A(t, ω)) depends on (t, ω) (e.g. 2nd order A, Neumann conditions)

Maximal regularity:

- Krylov's theory can be obtained for higher order system
- the results of van Neerven-V.-Weis can be extended to the adapted setting in certain situations
- Weights in time allow for rough initial values
- Results with three integrability exponents *p*, *q*, *r*

Future:

- Maximal estimates with time-dependent A
- Results on domains

Mark Veraar (TU Delft)

Conclusion

Pathwise mild solution:

- There is a semigroup approach to equations with random A
- Quasi-linear SPDEs
- The usual parabolic regularity results can be obtained
- Some results also hold in the case D(A(t, ω)) depends on (t, ω) (e.g. 2nd order A, Neumann conditions)

Maximal regularity:

- Krylov's theory can be obtained for higher order system
- the results of van Neerven-V.-Weis can be extended to the adapted setting in certain situations
- Weights in time allow for rough initial values
- Results with three integrability exponents *p*, *q*, *r*

Future:

- Maximal estimates with time-dependent A
- Results on domains

Mark Veraar (TU Delft)

Advertisement

Lutz Weis

Ergehnisse der Mathematik und Ihrer Greezgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 63 Tuomas Hytönen Jan van Neerven Mark Veraar

Analysis in Banach Spaces

Volume I: Martingales and Littlewood-Paley Theory

🕙 Springer

Analysis in Banach spaces I: Martingales and Littlewood-Paley theory, 2016 II: Probabilistic Techniques and Operator Theory, 2017

Workshop in Delft July 2018: Harmonic analysis for SPDEs Information:

```
http://fa.its.tudelft.nl/spde/
```