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Notations

1. (ω, t, x) ∈ Ω× [0,T ]×O, O ⊆ R3,

2. density : % = %(ω, t, x) ∈ [0,∞),

3. velocity : u = u(ω, t, x) ∈ R3,

4. momentum : (%u) = (%u)(ω, t, x) ∈ R3.
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Stochastic compressible Navier–Stokes system (SCNSS)

Mass balance equation (Continuity equation)

d%+ div(%u)dt = 0

Momentum balance equation (Newton’s 2nd Law)

d(%u) + div(%u⊗ u)dt =
[
ν ∆u−∇p(%)

]
dt + Φ(%, %u)dW ,

Φ(%, %u)dW ≈ % dW1 + %udW2 ,

p(%) = a%γ , a > 0, γ >
3

2
.
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Finite energy weak martingale solution
We consider a weak martingale solution

[(Ω,F , (Ft),P); %,u,W ]

with prescribe initial law Λ that is

I weak in the sense of PDEs;

I weak in the sense of probability;

I for any t ∈ [0,T ], the energy inequality∫ t

0

∫
O

[
%|u|2

2
+

a%γ

γ − 1

]
dxds + ν

∫ t

0

∫
O
|∇u|2dxds

≤
∫
O

[
|(%u)|2

2%
+

a%γ

γ − 1

]
(0)dx +

1

2

∫ t

0

∫
O

∑
k∈N

|gk(%, %u)|2

%
dxds

+ M(t)

holds a.s. for a martingale M(t) and gk = Φek .
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Existence of finite energy weak martingale solutions

Theorem (Breit, Hofmanová(2016) )

Let O = T3. Assume that the noise is smooth in its arguments and
is of at least linear growth. If the initial energy is bounded, then
there exists a FEWMS to the SCNSS.

Theorem (Smith(2017))

Let O ⊂ R3 bounded. Assume that the noise is smooth in its
arguments and is of at least linear growth. If the initial energy is
bounded, then there exists a FEWMS to the SCNSS under
prescribed Dirichlet boundary condition.

Theorem (M. (2017))

Let O = R3. Assume that the noise is smooth and compactly
supported in space and is of at least linear growth. If the initial
energy is bounded, then there exists a FEWMS to the SCNSS
under the far field condition %→ %, u→ 0, as |x | → ∞, %
constant.
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Rotating fluids

d%+ div(%u)dt = 0,

d(%u) +
[
div(%u⊗ u) + %(e3 × u) +∇p(%)

]
dt

= ν ∆u dt + %∇G + Φ(%, %u)dW

where e3 = (0, 0, 1) and G = G (x) ∈W 1,∞(R3).

Remark

I %(e3 × u) ⊥ u;

I %∇G · u =
√
%∇G · √%u.

Thus existence of solution follows as in non-rotating fluid.
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Rotating fluids
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The Incompressible Navier-Stokes

div(u) = 0,

d(u) + [div(u⊗ u) +∇π]dt = ν ∆u dt + Ψ(u)dW .

Definition
We say [(Ω,F , (Ft),P),u,W ] is a weak martingale solution with
initial law Λ if

I it is weak in the sense of PDEs;

I it is weak in the sense of probability.

where π is the associated pressure.
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Singular limit for rotating fluids

d%+ div(%u)dt = 0

d(%u) +
[
div(%u⊗ u) +

1

Ro
%(e3 × u) +

1

Ma2
∇p(%)

]
dt

= ν ∆udt +
1

Fr2
%∇G + Φ(%, %u)dW

I Low Rossby : Ro→ 0 (from 3D to 2D);
I Low Mach : Ma→ 0 (from compressible to incompressible);
I Low Froude : Fr→ 0 (from inhomogeneous to homogeneous).

Theorem (M. (2018))

Let O = R2 × (0, 1), Fr = Ro = ε and Ma = εm, m� 1 then any
family of finite energy weak martingale solution
[Ω,F, (Ft)t≥0,P, %ε,uε,W ]ε>0 converges in probability to the
2D incompressible Navier–Stokes system.
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Idea of proof
I By symmetrization, we can recast the problem on a

boundaryless domain R2 × T;
I write %εuε = Q(%εuε) +

〈
P(%εuε)

〉
x3

+R
where I = Q+ P and

〈
f
〉
x3

:= 1
|T|
∫
T f dx3 ;

I using dispersive estimates, we gain a.s., Q(%εuε)→ 0;
I
〈
P(%εuε)

〉
x3

is regular and converges strongly to u;

I R is irregular (no control);

Remark

1. thus analysis can only be applied to

Φ(%, %u)dW ≈ F1(%)dW1 + F2(%u)dW2.

if F2 is linear;

2. dispersion/oscillations of acoustic wave is determined by the
‘horizontal boundary condition’.
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Idea of proof (cont)

I Set Yε := P(%εuε). Then by taking vertical averages and
using spatial regularization, we gain that the limits of

div
(
Yε ⊗ uε

)
and

〈
Yε
〉
x3
× curl

〈
Yε
〉
x3

coincide a.s. when tested against divergence-free test
functions.

Remark

1. div
(
Yε ⊗ uε

)
is irregular because of R;

2.
〈
Yε,κ

〉
x3
× curl

〈
Yε,κ

〉
x3

is regular and converges strongly since
curl is linear;

3. in summary, the special geometry which allows the taking of
vertical averages helps to pass to the limit in the convective
term.
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Idea of proof (cont)

weak convergence + pathwise uniqueness = strong convergence.

I On Polish space : Gyöngy–Krylov characterization of
convergence in probability,

I on non-metrizable space : Breit–Feireisl–Hofmanová (2018)
convergence in probability.

Summary:

1. compactness by Jakubowski-Skorokhod theorem ⇒ recall fast
rotations ⇒ 2D problem ⇒ known uniqueness,

2. combine with B-F-M characterization and gain convergence in
probability.
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