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Notations

L (w,t,x) €Qx[0, T] x O, OCRS,
2. density : o = o(w, t,x) € [0,00),

3. velocity : u = u(w, t,x) € R3,

4. momentum : (ou) = (ou)(w, t,x) € R3.
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Stochastic compressible Navier—Stokes system (SCNSS)

Mass balance equation (Continuity equation)
do + div(pu)dt =0

Momentum balance equation (Newton's 2nd Law)

d(ou) + div(ou @ u)dt = [v Au — Vp(o)]dt + ®(g, ou)dW,
\q>(g, ou)dW ~ odW; + oudWs \

3
plo) =ac’,a>0,7> 7|
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Finite energy weak martingale solution

We consider a weak martingale solution
[(Q, #, (%), P); 0,u, W]

with prescribe initial law A that is
» weak in the sense of PDEs;
» weak in the sense of probability;
» for any t € [0, T], the energy inequality

2 o1 t
//[QM 39 ]dxds+u//|Vu|2dxds

< [ [les >|2+ 7] @y //ng,gu .
@) - @)

2Q keN
+ M(t)

holds a.s. for a martingale M(t) and gy = ®e.
412



Existence of finite energy weak martingale solutions
Theorem (Breit, Hofmanova(2016) )

Let O = T3. Assume that the noise is smooth in its arguments and
is of at least linear growth. If the initial energy is bounded, then
there exists a FEWMS to the SCNSS.

Theorem (Smith(2017))

Let © C R3? bounded. Assume that the noise is smooth in its
arguments and is of at least linear growth. If the initial energy is
bounded, then there exists a FEWMS to the SCNSS under
prescribed Dirichlet boundary condition.

Theorem (M. (2017))

Let © = R3. Assume that the noise is smooth and compactly
supported in space and is of at least linear growth. If the initial
energy is bounded, then there exists a FEWMS to the SCNSS
under the far field condition o — 3, u— 0, as |x| = oo, ©
constant.
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Rotating fluids

do + div(pu)dt =0,
d(ou) + [div(gu R u) + M + VP(Q)} dt
= v Audt + + ®(o, ou)dW

where e3 = (0,0,1) and G = G(x) € Wh(R3).
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Rotating fluids

do + div(pu)dt = 0,
d(ou) + [div(gu ®@u) + M + Vp(g)} dt
= v Audt + + ®(o, pu)dW
where e3 = (0,0,1) and G = G(x) € Wh(R3).
Remark

> o(es xu) Lu;
» oVG-u=,/oVG -, /ou.

Thus existence of solution follows as in non-rotating fluid.

6/ 12



The Incompressible Navier-Stokes

div(u) =0,
d(u) 4 [div(u ® u) + Vr]dt = v Audt + V(u)dW.

Definition
We say [(Q2,.7,(.%:),P),u, W] is a weak martingale solution with
initial law A if

> it is weak in the sense of PDEs;
> it is weak in the sense of probability.

where 7 is the associated pressure.
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Singular limit for rotating fluids

do + div(pu)dt =0

1 1
d(ou) + [div(gu @ u) +| g fees x u) +| =5 V(o) d
1
=vAudt + " oV G + ®(p, ou)dW
r

» Low Rossby : Ro — 0 (from 3D to 2D);
» Low Mach : Ma — 0 (from compressible to incompressible);
» Low Froude : Fr — 0 (from inhomogeneous to homogeneous).
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Singular limit for rotating fluids

do + div(pu)dt =0

1 1

d(ou) + [div(gu @ u) +| g fees x u) +| =5 V(o) d
1

=vAudt + " oV G + ®(p, ou)dW
r

» Low Rossby : Ro — 0 (from 3D to 2D);
» Low Mach : Ma — 0 (from compressible to incompressible);

» Low Froude : Fr — 0 (from inhomogeneous to homogeneous).

Theorem (M. (2018))
Let O =R? x (0,1), Fr = Ro = ¢ and Ma = €™, m > 1 then any
family of finite energy weak martingale solution

[Q,F, (3¢)t>0, P, 0, us, W].~0 converges in probability to the
2D incompressible Navier-Stokes system.
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|dea of proof
» By symmetrization, we can recast the problem on a
boundaryless domain R? x T;
> write gcu. = Q(p:-u;) + <77(qug)>x3 +R
where [ = Q + P and <f>X3 = ‘T%‘IT fdxs;
using dispersive estimates, we gain a.s., Q(geua) — 0;
<73(Qeu€)>x3 is regular and converges strongly to u;

v

v

v

R is irregular (no control);
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|dea of proof
» By symmetrization, we can recast the problem on a
boundaryless domain R? x T;
> write gcu. = Q(p:-u;) + <77(Q£ug)>x3 +R
where [ = Q + P and <f>X3 = ﬁf’ﬂ‘ fdxs;
using dispersive estimates, we gain a.s., Q(geua) — 0;
<73(Qeu€)>x3 is regular and converges strongly to u;

v

v

v

R is irregular (no control);

Remark

1. thus analysis can only be applied to
®(0, ou)dW ~ F1(0)dWi + F2(ou)dWs.

if F» is linear;

2. dispersion/oscillations of acoustic wave is determined by the
‘horizontal boundary condition’.
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|dea of proof (cont)

» Set Y. := P(0cu:). Then by taking vertical averages and
using spatial regularization, we gain that the limits of

diV(Y8 ® ug) and <Y5>X3 X cur1<Y5>

X3

coincide a.s. when tested against divergence-free test
functions.

Remark

1. div (YE ® ug) is irregular because of R;

2. <Y57,€>X3 X curl<Yay,{>X3 is regular and converges strongly since
curl is linear;

3. in summary, the special geometry which allows the taking of
vertical averages helps to pass to the limit in the convective
term.
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|dea of proof (cont)

weak convergence + pathwise uniqueness = strong convergence.

» On Polish space : Gyongy—Krylov characterization of
convergence in probability,

» on non-metrizable space : Breit—Feireis-Hofmanova (2018)
convergence in probability.
Summary:

1. compactness by Jakubowski-Skorokhod theorem = recall fast
rotations = 2D problem = known uniqueness,

2. combine with B-F-M characterization and gain convergence in
probability.
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