Global solutions to elliptic and parabolic Φ^4 models in Euclidean space

Martina Hofmanová

Bielefeld University

joint work with Massimiliano Gubinelli

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Elliptic Φ^4 model

$$(-\Delta + \mu)\varphi + \varphi^3 = \xi$$
 on \mathbb{R}^d $d = 4, 5$

- ξ a space white noise
- $\mu > 0$

Parabolic Φ^4 model

$$(\partial_t - \Delta + \mu)\varphi + \varphi^3 = \xi$$
 on $\mathbb{R}_+ \times \mathbb{R}^d$ $d = 2, 3$

- ξ a space-time white noise
- $\mu \in \mathbb{R}$

Connection to Φ^4 Euclidean quantum field theory

• the measure given formally by

$$\nu(d\varphi) \sim \exp\left[-\int \frac{1}{2} |\nabla \varphi|^2 + \frac{\mu}{2} \varphi^2 + \frac{1}{4} \varphi^4 dx\right] d\varphi$$

- ullet parabolic on \mathbb{R}^d linked to Φ^4_d via Parisi–Wu '81 stochastic quantization
 - \circ ν is the invariant measure of the parabolic equation
- elliptic on \mathbb{R}^d linked to Φ^4_{d-2} via Parisi–Sourlas '79 dimensional reduction
 - $\circ~$ show that a solution evaluated on a (d-2)-dimensional hyperplane has the law ν

$$(-\Delta + \mu)\varphi + \varphi^3 = \xi$$
 $d = 4, 5$

$$(\partial_t - \Delta + \mu)\varphi + \varphi^3 = \xi$$
 $d = 2, 3$

- ullet space white noise on \mathbb{R}^d a random distribution locally in $B^{-d/2-\kappa}_{\infty,\infty}$
- ξ space-time white noise on \mathbb{R}^d a random distribution locally in $B_{\infty,\infty}^{-(d+2)/2-\kappa}$
- Schauder estimates gain of 2 degrees of regularity

Elliptic d=4 / Parabolic d=2

$$\bullet \quad \xi \in B_{\infty,\infty}^{-2-\kappa} \qquad \Rightarrow \quad \varphi \in B_{\infty,\infty}^{-\kappa}$$

$$\Rightarrow \varphi \in B_{\infty,\infty}^{-\kappa}$$

Elliptic d=5 / Parabolic d=3

•
$$\xi \in B_{\infty,\infty}^{-5/2-\kappa}$$
 $\Rightarrow \varphi \in B_{\infty,\infty}^{-1/2-\kappa}$

- multiplication: $f \in B^{\alpha}_{\infty,\infty}$, $h \in B^{\beta}_{\infty,\infty}$ the product fh well defined if $\alpha + \beta > 0$
- renormalization needed: $\varphi^3 \mapsto \varphi^3 \infty \varphi$

Parabolic local theory – \mathbb{T}^d

- d=2 Da Prato-Debussche '03 local solutions
- d=3 Hairer '14 local solutions by regularity structures
- d=3 Catellier-Chouk '14 local solutions by paracontrolled distributions
- d=3 Mourrat–Weber '16 coming down from infinity

$$\mathbb{E}\left[\sup_{0< t\leqslant 1}\sup_{\varphi_0\in B_{\infty,\infty}^{-1/2-\kappa}}\left(\sqrt{t}\|\varphi(t)\|_{B_{\infty,\infty}^{-1/2-\kappa}}\right)^p\right]<\infty$$

 \circ $B_{p,q}^{\alpha}$ -spaces; L^{p} -energy estimates (testing by the $(p-1)^{\text{th}}$ power)

Parabolic global theory – \mathbb{R}^d

- d = 2 Mourrat-Weber '15 global well-posedness
 - o local solutions on $\mathbb{T}_M^2 \Rightarrow$ global solutions on $\mathbb{T}_M^2 \Rightarrow$ global solutions on \mathbb{R}^2

Our main results

Elliptic Φ^4 model on \mathbb{R}^d , d=4,5

existence

Parabolic Φ^4 model on $\mathbb{R}_+ \times \mathbb{R}^d$, d = 2, 3

• existence, uniqueness, coming down from infinity

Ideas

- the theory is developed within the scale $B^{\alpha}_{\infty,\infty}$
- a new localization technique splitting of distributions in weighted Besov spaces into
 - o an irregular part which behaves nicely at the spatial infinity
 - a regular part that grows at infinity
- the use of maximum principle

• a smooth dyadic partition of unity $\sum_{k \geqslant -1} w_k = 1$ on \mathbb{R}^d

$$\mathcal{U}_{>}f := \sum_{k \geqslant -1} w_k \Delta_{>L_k} f \qquad \qquad \mathcal{U}_{\leqslant} f := \sum_{k \geqslant -1} w_k \Delta_{\leqslant L_k} f$$

where
$$\Delta_{>L_k} = \sum_{j:j>L_k} \Delta_j$$
 and $\Delta_{\leqslant L_k} = \sum_{j:j\leqslant L_k} \Delta_j$

- let $\rho(x) = \langle x \rangle^{-\nu} = (1 + |x|^2)^{-\nu/2}$ for some $\nu \geqslant 0$
- define $B^{\alpha}_{\infty,\infty}(\rho)$ by

$$||f||_{B^{\alpha}_{\infty,\infty}(\rho)} := \sup_{i \ge -1} 2^{i\alpha} ||\rho \Delta_i f||_{L^{\infty}}$$

Lemma Let L>0 be given. There exists a (universal) choice of parameters $(L_k)_{k\geqslant -1}$ such that for all $\alpha, \delta, \kappa > 0$ and $a, b\geqslant 0$ it holds

$$\|\mathcal{U}_{>}f\|_{B^{-\alpha-\delta}_{\infty,\infty}(\rho^{-a})} \lesssim 2^{-\delta L} \|f\|_{B^{-\alpha}_{\infty,\infty}(\rho^{-a+\delta})},$$

$$\|\mathcal{U}_{\leqslant} f\|_{B_{\infty,\infty}^{\kappa}(\rho^b)} \lesssim 2^{(\alpha+\kappa)L} \|f\|_{B_{\infty,\infty}^{-\alpha}(\rho^{b-\alpha-\kappa})}.$$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Analysis of the elliptic Φ^4 model in $d\!=\!4$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

$$(-\Delta + \mu)\varphi + \varphi^3 - 3a\varphi - \xi = 0$$
 on \mathbb{R}^4

- a renormalization constant
- ansatz $\varphi = X + \phi + \psi$ where $(-\Delta + \mu)X = \xi$
- this gives

$$0 = (-\Delta + \mu)\phi + (-\Delta + \mu)\psi + [X^3] + 3(\phi + \psi)[X^2] + 3(\phi + \psi)^2X + (\phi + \psi)^3$$

we want to split

$$(-\Delta + \mu)\phi + \Phi = 0, \qquad (-\Delta + \mu)\psi + \psi^3 + \Psi = 0$$

where Φ contains all the irregular terms; Ψ all the regular terms

To treat the products:

decompose in paraproducts and resonant term

$$(\phi + \psi)[\![X^2]\!] = (\phi + \psi) \prec [\![X^2]\!] + (\phi + \psi) \succ [\![X^2]\!] + (\phi + \psi) \circ [\![X^2]\!]$$

include the localizers

$$(\phi + \psi) \prec \llbracket X^2 \rrbracket = (\phi + \psi) \prec \mathcal{U}_{>} \llbracket X^2 \rrbracket + (\phi + \psi) \prec \mathcal{U}_{\leqslant} \llbracket X^2 \rrbracket$$

leads to

$$(-\Delta + \mu)\phi + \Phi = 0, \qquad (-\Delta + \mu)\psi + \psi^3 + \Psi = 0$$

with

$$\Phi := [X^3] + 3(\phi + \psi) \prec \mathcal{U}_{>}[X^2] + 3(\phi + \psi)^2 \prec \mathcal{U}_{>}X$$

$$\Psi := \phi^3 + 3\psi\phi^2 + 3\psi^2\phi$$

$$+3(\phi+\psi) \prec \mathcal{U}_{\leqslant}[X^2] + 3(\phi+\psi) \succcurlyeq [X^2] + 3(\phi+\psi)^2 \prec \mathcal{U}_{\leqslant}X + 3(\phi+\psi)^2 \succcurlyeq X$$

A bound for $\phi \in B^{\alpha}_{\infty,\infty}(\rho)$ for some $\alpha > 0$

• the stochastic objects can be constructed such that for $\sigma, \kappa > 0$

$$||X||_{B^{-\kappa}_{\infty,\infty}(\rho^{\sigma})}, ||[X^2]||_{B^{-\kappa}_{\infty,\infty}(\rho^{\sigma})}, ||[X^3]||_{B^{-\kappa}_{\infty,\infty}(\rho^{\sigma})} \lesssim 1$$

- we choose L for the localizers such that $\|\phi+\psi\|_{L^{\infty}(\rho)} \lesssim 2^{(2-\kappa-\alpha)L/2}$
- allows to control

$$\|\Phi\|_{B^{\alpha-2}_{\infty,\infty}(\rho)} = \|[X^3] + 3(\phi + \psi) \prec \mathcal{U}_{>}[X^2] + 3(\phi + \psi)^2 \prec \mathcal{U}_{>}X\|_{B^{\alpha-2}_{\infty,\infty}(\rho)} \lesssim 1$$

• a bound for $\phi \in B^{\alpha}_{\infty,\infty}(\rho)$ using Schauder estimates

A bound for $\psi \in B^{2+\beta}_{\infty,\infty}(\rho^{3+\beta}) \cap L^{\infty}(\rho)$ for some $\beta > 0$

Lemma Let ψ be a classical solution. Then

$$\|\psi\|_{B^{2+\beta}_{\infty,\infty}(\rho^{3+\beta})} \lesssim \|\Psi\|_{B^{\beta}_{\infty,\infty}(\rho^{3+\beta})} + \|\psi\|_{L^{\infty}(\rho)}^{3+\beta},$$

$$\|\psi\|_{L^{\infty}(\rho)} \lesssim 1 + \|\Psi\|_{L^{\infty}(\rho^3)}^{1/3}.$$

Schauder estimate leads to

$$\|\psi\|_{B^{2+\beta}_{\infty,\infty}(\rho^{3+\beta})} \lesssim 1 + \|\psi\|_{L^{\infty}(\rho)}^{3+\beta},$$

and then coercive estimate gives

$$\|\psi\|_{L^{\infty}(\rho)} \lesssim 1 + \|\psi\|_{L^{\infty}(\rho)}^{1-\varepsilon}$$

- 1. consider the problem on \mathbb{T}_M^4
- 2. show existence via Schaefer's fixed point theorem for the map

$$\mathcal{K}: B^{\beta}_{\infty,\infty}(\mathbb{T}^4_M) \times B^{\beta}_{\infty,\infty}(\mathbb{T}^4_M) \to B^{\beta}_{\infty,\infty}(\mathbb{T}^4_M) \times B^{\beta}_{\infty,\infty}(\mathbb{T}^4_M)$$

where $\mathcal{K}(\tilde{\phi},\tilde{\psi}) = (\phi,\psi)$ solves

$$(-\Delta + \mu)\phi + \Phi(\tilde{\phi}, \tilde{\psi}) = 0, \qquad (-\Delta + \mu)\psi + \psi^3 + \Psi(\tilde{\phi}, \tilde{\psi}) = 0$$

(includes a variational proof of existence of the second equation)

3. pass to the limit $M \to \infty$ using the a priori estimates and compactness

Parabolic Φ^4 model in d=2,3

- regular initial conditions
- by-product of the elliptic a priori estimates
 - space-time polynomial weights
 - o parabolic localizers: include a partition of unity in time
 - modified paracontrolled ansatz
- existence
 - 1. consider the equation driven by a mollified noise ξ_{ε} solved by a classical theory
 - 2. decomposition + a priori estimates
 - 3. pass to the limit using the a priori estimates and compactness

exponential weight of the form

$$\pi(t,x) = e^{-t\langle x \rangle^{2b}} \qquad b \in (0,1/2)$$

- the equation for the difference of two solutions
- taking the advantage of our L^{∞} -bounds
- energy estimates in the L^2 -scale: $\beta>0$ small
 - \circ $\partial_t \pi = -\pi \langle x \rangle^{2b}$ gives a good term on the LHS
 - \circ the regular component in $L^{\infty}B_{2,2}^{\beta}(\pi)\cap L^2B_{2,2}^{1+\beta}(\pi)$
 - o the irregular one in $L^{\infty}B_{2,2}^{-\beta}(\pi)\cap L^2B_{2,2}^{1-\beta}(\pi)$
 - Gronwall

- repeat the a priori estimates using the weight $\tau(t) = 1 e^{-t}$
- new Schauder and coercive estimates
- modified paracontrolled ansatz
- we show

$$\phi \in CB^{\alpha}_{\infty,\infty}(\tau^{1/2}\rho) \cap CB^{1/2+\alpha}_{\infty,\infty}((\tau^{1/2}\rho)^{3/2+\alpha})$$

$$\psi \in CB_{\infty,\infty}^{2+\beta}((\tau^{1/2}\rho)^{3+\beta}) \cap L^{\infty}L^{\infty}(\tau^{1/2}\rho)$$

uniformly in the initial condition

Thank you for your attention!