1/18

Global solutions to elliptic and parabolic

®* models in Euclidean space

Martina Hofmanova

Bielefeld University

joint work with Massimiliano Gubinelli



Global solutions to ®* models 2/18

Elliptic ®* model

(—A+p)p+>=E£ on R? d=4,5
e £ a space white noise

o >0

Parabolic ®* model

Oy — A+ p)p+@>=¢ on R.xR? d=2,3

e £ a space-time white noise

o nelR
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Connection to ®* Euclidean quantum field theory

e the measure given formally by

1 1
V(dw)NeXp[—/§!V¢!2+%w2+Z Yz |dy

e parabolic on R? — linked to ® via Parisi-Wu '81 stochastic quantization

o v is the invariant measure of the parabolic equation

e elliptic on R? - linked to ®% - via Parisi-Sourlas '79 dimensional reduction

o show that a solution evaluated on a (d — 2)-dimensional hyperplane has the law v
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(—A+pe+ei=¢ d=4,5 (O —A+pe+e’=¢ d=2,3

o ¢ space white noise on R? - a random distribution locally in B__ d/2 "

(d+2)/2—k

e ¢ space-time white noise on IR? - a random distribution locally in B oo

e Schauder estimates - gain of 2 degrees of regularity

Elliptic d =4 / Parabolic d =2 Elliptic d =5 / Parabolic d=3

o £cB " = peBxr, o (B MZTY = peB T

e multiplication: f € B o, h € Bfo,oo - the product fh well defined if o+ 3 >0

e renormalization needed: 3+ 3 — oo
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Parabolic local theory — T

e d=2 — Da Prato—Debussche '03 — local solutions

e d =23 — Hairer '14 — local solutions by regularity structures

e d =23 — Catellier—Chouk 14 — local solutions by paracontrolled distributions

e d=23 — Mourrat-Weber '16 — coming down from infinity

%

0<tSlpoeB 27"

p
sup  sup (\/EHSO(t)HB;lg—H) ] <00
o BY ,spaces; LP-energy estimates (testing by the (p — 1)'" power)

Parabolic global theory — IR¢
e d=72 - Mourrat—-Weber '15 — global well-posedness

o local solutions on T5; = global solutions on T%; = global solutions on R?
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Our main results
Elliptic ®* model on R?, d=4.5

e existence

Parabolic ®* model on R, x RY, d=2,3

e existence, uniqueness, coming down from infinity

Ideas
o the theory is developed within the scale B,
e a new localization technique — splitting of distributions in weighted Besov spaces into
o an irregular part which behaves nicely at the spatial infinity
o a regular part that grows at infinity

e the use of maximum principle
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e a smooth dyadic partition of unity >, ., wr=1on R

Usfi= ) widspf Usf:= )  wibgr,f

k>—1 k>—1

where A~ =>" Ajand Acp, =)

j:3>Lu IR
o let p(z)= () V=(1+|z|*) /2 for some v >0

o define B, (p) by

1f B, (p):= 's>up12meAifHLoo

Let L >0 be given. There exists a (universal) choice of parameters (Ly)j>_1 such
that for all a.,0, x>0 and a,b> 0 it holds

HU>fHB;?o;5(p—a) > 2_5LHfHB;o?OO(p—a+5)7

HU<fHB§o,oo(pb) S 2(a+K>LHfHBJO‘?‘oo(pb_‘”““)'
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Analysis of the elliptic ®* model in d =4



Decomposition 9/18

(—A+pe+¢*—3ap—-£=0 on R*

e « renormalization constant
e ansatz o =X + ¢+ 1 where (A4 p) X =¢

e this gives
0=(-A+ )¢+ (—A+ Y+ [X°]+3(¢+ V) [XZ] +3(d + ) ° X + (¢ + ¢)°

e we want to split

(—A+p)p+P=0, (“A+ )+ 9>+ V=0

where ® contains all the irregular terms; U all the regular terms
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To treat the products:

e decompose in paraproducts and resonant term

(6 + VX7 =(o+ ) < [X?]+ (¢ + ) = [X?]+ (¢ + ) o [X7]

e include the localizers

(0 + 1) < [XZ]= (¢4 ¥) <US[X] + (¢ + ¥) <U[X7]

e leads to

(—A+p)p+2=0, (—A+p)p+ 34+ T =0

with
O :=[X3]+3(¢p+ ) <U=[X?]+3(d+V)*<U-X
U= ¢° +3¢¢” + 3¢%¢

+3(d+ ) <UL[X?]+3(d+ ) = [ X7 +3(p+¢)* <UX +3(p+9Y)* = X
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A bound for ¢ € BS, (p) for some o >0

e the stochastic objects can be constructed such that for o, x > 0
1X N 5=x _(ory ITXZN p=r_ ooy NPTl (o) S 1

e we choose L for the localizers such that |[¢ + || p(p) S 2(2—r—a)L/2

e allows to control
H(I’HBgoj;(p) = I[X°] +3(¢ + ) <US[XZ] +3(¢p +9)? <U>XHBgoj;(p) Sl

e a bound for ¢ € BS, (p) using Schauder estimates
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A bound for ) € Bgo’tfo(p“B) N L>(p) for some >0
Let 1) be a classical solution. Then

3
191l g248 pormy SIClgs, _(orey T 19IZE ),

1/3
191l zee(e) ST+ 1T NE2 .

e Schauder estimate leads to

3+
HszBioffo(pBJrﬁ) S1+ HszLoo[gp)a
e and then coercive estimate gives

191l oe(p) S 1419 11257,)
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1. consider the problem on T4,

2. show existence via Schaefer’s fixed point theorem for the map
K: BE, oo(Tir) x BY, oo(Tily) = BE, o (Thy) x BE, (T#)
where K(¢, ) = (6, 1)) solves

(—A+p)o+P(d,0)=0,  (“A+p)p+¢*+U(d,¢)=0

(includes a variational proof of existence of the second equation)

3. pass to the limit M — oo using the a priori estimates and compactness
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Parabolic ®* model in d=2,3
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e regular initial conditions
e by-product of the elliptic a priori estimates
o space-time polynomial weights
o parabolic localizers: include a partition of unity in time

o modified paracontrolled ansatz

e existence
1. consider the equation driven by a mollified noise &. — solved by a classical theory
2. decomposition + a priori estimates

3. pass to the limit using the a priori estimates and compactness



Uniqueness 16/18

e exponential weight of the form
m(t,z) =t be(0,1/2)

e the equation for the difference of two solutions

e taking the advantage of our L°°-bounds

e energy estimates in the L?-scale: 3 >0 small
o Oy = —m{x)?" gives a good term on the LHS
o the regular component in LOOBQB,Q(W) ﬂL2B%,J56(7T)
o the irregular one in LOOBQ_,QB(W) ﬂLQB%,EB(TF)

o Gronwall
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e repeat the a priori estimates using the weight 7(t)=1—¢"*

e new Schauder and coercive estimates
e modified paracontrolled ansatz

e we show

6 € OB oo(T1/2p) NCOBL2L (12 p)3/ 2+ )
Y e CBI L ((712p)* TPy n L= Leo(r!/?p)

uniformly in the initial condition
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Thank you for your attention!



