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with ¢ a generalised Gaussian random field and u(t,-): T¢ — R™.
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Problem: All red products typically ill-defined if £ € C*~2 for

a < 1. Blue product ill-defined for j =2, a < % and j =1, a < %

Interesting case of space-time white noise in d = 1 corresponds to
1
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One can “guess” the local behaviour of solutions:
Opu = Au+ F(u)(0pu)? + G(u)€ .
For (y,s) near (z,t), one would expect
u(y, s) ~ u(z,t) + G(u(z,t)) (v(y, s) — v(z,t)) ,
with v solving O,v = Av 4+ £.

Hope: Maybe defining the various products for v instead of u
already yields enough information? Should be easier since v is
somewhat explicit...



In our case

Graphical notations for symbols: o for noise, — for heat kernel, —
for derivative of heat kernel. For example (IL,,7)(2) = v(z) — v(20).
(! Suitable recentering required !)



In our case

Graphical notations for symbols: o for noise, — for heat kernel, —
for derivative of heat kernel. For example (IL,,7)(2) = v(z) — v(20).
(! Suitable recentering required !) One can guess the expansion

U=ul+GY?



In our case

Graphical notations for symbols: o for noise, — for heat kernel, —
for derivative of heat kernel. For example (IL,,7)(2) = v(z) — v(20).
(! Suitable recentering required !) One can guess the expansion

U=ul+G+ GG <+ FG*Y



In our case

Graphical notations for symbols: o for noise, — for heat kernel, —
for derivative of heat kernel. For example (IL,,7)(2) = v(z) — v(20).
(! Suitable recentering required !) One can guess the expansion

U=ul+Gi+ GG <+ FG*Y +u' X



In our case

Graphical notations for symbols: o for noise, — for heat kernel, —
for derivative of heat kernel. For example (IL,,7)(2) = v(z) — v(20).
(! Suitable recentering required !) One can guess the expansion

U=ul+Gi+ GG <+ FG*Y +u' X
LRGN 1 22PN 4 RV
+ %cﬂa"‘%fo + GG+ FG2G' Y
+ UG8+ 2FGU £ .



In our case

Graphical notations for symbols: o for noise, — for heat kernel, —
for derivative of heat kernel. For example (IL,,7)(2) = v(z) — v(20).
(! Suitable recentering required !) One can guess the expansion

U=ul+Gi+ GG <+ FG*Y +u' X
LRGN 1 22PN 4 RV
+ %cﬂa"‘%fo + GG+ FG2G' Y
+ UG8+ 2FGU £ .

Remark: Similar to expansions in Feynman diagrams. However,
coefficients are not constant but depend on the solution itself.
Also, finitely many terms suffice!
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General methodology

Perform following steps, with 7 space of linear combinations of
symbols.
1. Find suitable 7 ' ‘'sfine spaces D7 of fcns R¥1 — T
L o) " "
Definition depe..us <. “model” II.
2. Define all oper aquired to reformulate problem as fixed
point in DY wi.. &.wqde solutions.
3. Show that, m | / yrmalisation, models for £° converge to
a limit indepe hoice of regularisation procedure.

4. Show that eff
local countert

rmalisation is to add finitely many
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General picture

Pictorial representation of method:

R
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Probabilistic step: find M. € R such that M.U({.) converges in
probability.
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Back to quasilinear case

Consider simplest non-trivial case:
O = a(u)Au + G(u) .
This time, for (y, s) near (x,t), one would expect to lowest order
u(y, s) = u(z,t) + G(u(, 1)) (Va(u(a.t) (Y 8) = Vaqu(e.)(@:1)) |

with v, solving Oyv, = aAwv, + £.

Natural Idea: Formulate this as U = u 1 + G(u) 0q(u) ® |-
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Augmented model space

In semilinear case, each symbol 7 generates a one-dimensional
subspace () of 7. In quasilinear case, we postulate that it
generates a subspace of the form Sy ® (1) with Sy a space of
distributions in k variables, where k is the number of ‘edges’ of 7.

Example: for 7 = &, one has £k = 2 and
(n @) = /(P,(ala ) * &) (P'(az,-) * &) n(da1, das) .

Here, P(a,-) is heat kernel for 9; — aA.
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Fixed point problem

Freezing of coefficients: define operators
I(k)b _ DZDk‘P b ) /d/
W, 1)z) = [(DIDEP)b(z), 2 — ) f() d2'

Lemma: PDE d;u = a(u)Au + f is equivalent to

@g=1(a(u),f), ) }
f=Q-dwh(a(w), )+ (aa”)(w)(Opu)*L1(a(u), f)
+ (a(a)?) () (Bpu)?Lo(a(u), f) + 2(ad’) (w)dpu I (a(u), f) .

‘Nice' fixed point problem for pair (u, f)
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Remaining steps

Steps required to build full solution theory:
1. Build ‘abstract version' of operators Iék) and show that they
map D” into D21k (Easy)
2. Show that the FP problem admits unique local solutions for
every model. (Straightforward; works for all a > 0!)
3. Show convergence of renormalised ‘augmented’ models.
(Follows from existing result with A. Chandra.)
4. Show that renormalisation generates local counterterms.
(Lengthy calculation, done only in the case a > 3.)
Alternative approach (Otto-Weber): build more ‘direct’ solution
map to dyu = a(u)Au + f in similar augmented reg. structure
framework.
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Sample ‘classical’ result
Consider
Oru = a(u)Au + F(u) (9,u)* + H(u) + G(u)é. . (%)

with & an e-regularisation of & with Cov(z) ~ |z]|?*~* for
% <a<l.

Theorem: For every mollifier g, there exists a (essentially unique)
function a — ¢(a) (depending on ) such that if

H(u) = Ho(w) + 2% ((a@'G)(w) + (C2F)(u) — (¢C?)(u)

527204

then solutions to () converge to a limit independent of p.
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Thank you very much

for your attention



