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General aim

Solution theory for quasilinear SPDEs:

∂tu = a(u)•∆u+

2∑
j=0

Fj(u)•(∇u)⊗j +G(u)•ξ , (SPDE)

with ξ a generalised Gaussian random field and u(t, ·) : Td → Rm.
Recall ξ ∈ Cα−2 if |Cov(z)| . |z|−β for β < 4− 2α.

Problem: All red products typically ill-defined if ξ ∈ Cα−2 for
α < 1. Blue product ill-defined for j = 2, α < 2

3 and j = 1, α < 1
2 .

Interesting case of space-time white noise in d = 1 corresponds to
α < 1

2 .
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Semilinear case

One can “guess” the local behaviour of solutions:

∂tu = ∆u+ F (u)(∂xu)2 +G(u)ξ .

For (y, s) near (x, t), one would expect

u(y, s) ≈ u(x, t) +G(u(x, t))
(
v(y, s)− v(x, t)

)
,

with v solving ∂tv = ∆v + ξ.

Hope: Maybe defining the various products for v instead of u
already yields enough information? Should be easier since v is
somewhat explicit...
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In our case

Graphical notations for symbols: for noise, for heat kernel,
for derivative of heat kernel. For example (Πz0 )(z) = v(z)− v(z0).
(! Suitable recentering required !) One can guess the expansion

U = u1 +G +GG′ + FG2 + u′X

+ 2FG2G′ + 2F 2G3 +G3F ′

+
1

2
G2G′′ +G(G′)2 + FG2G′

+ u′G′ + 2FGu′ .

Remark: Similar to expansions in Feynman diagrams. However,
coefficients are not constant but depend on the solution itself.
Also, finitely many terms suffice!
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General methodology

Perform following steps, with T space of linear combinations of
symbols.

1. Find suitable T and define spaces Dγ of fcns Rd+1 → T .
Definition depends on “model” Π.

2. Define all operations required to reformulate problem as fixed
point in Dγ with unique solutions.

3. Show that, modulo renormalisation, models for ξε converge to
a limit independent of choice of regularisation procedure.

4. Show that effect of renormalisation is to add finitely many
local counterterms to equation.
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General picture

Pictorial representation of method:

F M

R

×× Cα(Td) Dγ

·

F

R

× ?

ξε

∈

× Cα(Td)

u0

∈
S ′

RΨ

SA

SC

F : Possible right-hand sides for the equation.
SC : Classical solution to the PDE with smooth input.
SA: Abstract fixed point: locally jointly continuous!
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General picture

Pictorial representation of method:
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×× Cα(Td) Dγ
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× ?

ξε
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u0

∈
S ′

RΨ
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Probabilistic step: find Mε ∈ R such that MεΨ(ξε) converges in
probability.



Back to quasilinear case

Consider simplest non-trivial case:

∂tu = a(u)∆u+G(u)ξ .

This time, for (y, s) near (x, t), one would expect to lowest order

u(y, s) ≈ u(x, t) +G(u(x, t))
(
va(u(x,t))(y, s)− va(u(x,t))(x, t)

)
,

with va solving ∂tva = a∆va + ξ.

Natural Idea: Formulate this as U = u1 +G(u) δa(u) ⊗ .
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Augmented model space

In semilinear case, each symbol τ generates a one-dimensional
subspace 〈τ〉 of T . In quasilinear case, we postulate that it
generates a subspace of the form Sk ⊗ 〈τ〉 with Sk a space of
distributions in k variables, where k is the number of ‘edges’ of τ .

Example: for τ = , one has k = 2 and

Π(η ⊗ ) =

∫ (
P ′(a1, ·) ? ξ

)(
P ′(a2, ·) ? ξ

)
η(da1, da2) .

Here, P (a, ·) is heat kernel for ∂t − a∆.
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Fixed point problem

Freezing of coefficients: define operators

I
(k)
` (b, f)(z) =

∫
(D`

1D
k
2P )(b(z), z − z′)f(z′) dz′ .

Lemma: PDE ∂tu = a(u)∆u+ f is equivalent to

u = I(a(u), f̂) ,

f̂ = (1− a′(u)I1(a(u), f̂))f + (aa′′)(u)(∂xu)2I1(a(u), f̂)

+ (a(a′)2)(u)(∂xu)2I2(a(u), f̂) + 2(aa′)(u)∂xu I
(1)
1 (a(u), f̂) .

‘Nice’ fixed point problem for pair (u, f̂).
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Remaining steps

Steps required to build full solution theory:

1. Build ‘abstract version’ of operators I
(k)
` and show that they

map Dγ into Dγ+2−|k|. (Easy)

2. Show that the FP problem admits unique local solutions for
every model. (Straightforward; works for all α > 0!)

3. Show convergence of renormalised ‘augmented’ models.
(Follows from existing result with A. Chandra.)

4. Show that renormalisation generates local counterterms.
(Lengthy calculation, done only in the case α > 1

2 .)

Alternative approach (Otto-Weber): build more ‘direct’ solution
map to ∂tu = a(u)∆u+ f in similar augmented reg. structure
framework.
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Sample ‘classical’ result

Consider

∂tu = a(u)∆u+ F (u) (∂xu)2 +H(u) +G(u)ξε . (?)

with ξε an ε-regularisation of ξ with Cov(z) ∼ |z|2α−4 for
1
2 < α < 1.

Theorem: For every mollifier %, there exists a (essentially unique)
function a 7→ c(a) (depending on %) such that if

H(u) = H0(u) +
c(a)

ε2−2α
(
(aG′G)(u) + (G2F )(u)− (a′G2)(u)

)
then solutions to (?) converge to a limit independent of %.
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Some open questions

• Locality of counterterms in general?

• Itô isometry in white noise case?

• Change of variables formula?

Thank you very much
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