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I. The equation

We will discuss a well-posedness theory for porous media and fast
diffusion equations with nonlinear, conservative noise:

∂tu = ∆(|u|m−1u) +∇ · (A(x, u) ◦ dzt) in Td × (0,∞),

for a diffusion exponent m ∈ (0,∞) on the d-dimensional torus.

• The noise is a n-dimensional, α-Hölder continuous, and geometric
rough path z.

• The equations are not a priori well-posed due to the rough driving
signal. The nonlinearity precludes transformation methods.

• The methods are motivated by the theory of stochastic viscosity
solutions of Lions and Souganidis [19, 20, 21, 22, 23], and rely on
the rough path analysis of Lyons [24].
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Hydrodynamic limit of the zero range process

The zero range process is an interacting particle process on Zd/nZd. It
is “zero range” in the sense that the rate of diffusion from a given point
is determined solely by the number of particles occupying that point.

It was shown by Ferrari, Presutti, and Vares [7] that the hydrodynamic
limit of a zero range particle process satisfies a nonlinear diffusion
equation of the type

∂tu = ∆Φ(u) in Td × (0,∞),

where Φ is the mean local jump rate.
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Fluctuating hydrodynamics of the zero range process

The fluctuating hydrodynamics of the zero range process about its
hydrodynamic limit were subsequently studied by Ferrari, Presutti, and
Vares [8], and were informally shown by Dirr, Stamatakis, and Zimmer
[3] to satisfy a stochastic nonlinear diffusion equation of the type

∂tu = ∆ (Φ(u)) +∇ ·
(√

Φ(u)N
)

in Td × (0,∞),

where N is a space-time white noise and σ is a bulk diffusion
coefficient.
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Mean field games (I)

Consider an L-dimensional system of mean field stochastic differential
equations, for i ∈ {0, . . . , L},

dXi
t = AL(Xi

t ,
1

L

∑
j 6=i

δ
Xj
t
) ◦ dBt + ΣL(

1

L

∑
j 6=i

δ
Xj
t
) dW i

t ,

for L ≥ 1 and for {Bi
t}ni=1 and {W i

t }di=1 independent Brownian motions.

The coefficients {AL}L≥1 and {ΣL}L≥1 are defined and continuous on
the space Td × P(Td) and P(Td), for P(Td) the space of probability
measures with the topology of weak convergence.

B. Fehrman (MPI Leipzig) Porous media May 14, 2018 5 / 27



Mean field games (II)

The theory of mean field games, as introduced by Lasry and Lions
[14, 15, 16], informally shows that that the density m of the empirical
law of the solution Xt = (X1

t , . . . , X
L
t ), in the mean field limit L→∞,

evolves according to an equation of the form

∂tm =
1

2
∆
(
σ2(m)m

)
+∇ · (A(x,m)m ◦ dBt),

provided {AL}{L≥1} and {ΣL}{L≥1} converge, as L→∞, to local
functions A and σ.
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Dean-Kawasaki model

The Dean-Kawasaki model is an approximation for the diffusion of
particles subject to thermal advection in a fluctuating fluid. The model
was proposed by Dean [2], Kawasaki [13] and Marconi and Tarazona
[25], and recently studied by Donev, Fai, and Vanden-Eijnden [4].

The density of the particles c evolves according to the stochastic
equation

∂tc = σ∆c+∇ ·
(
cv +

√
2σcN

)
,

where σ > 0 is a diffusion coefficient, v is a smooth and divergence free
velocity field, and N is a space-time white noise.
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The thin film equation

Grün, Mecke, and Rauscher [12] have proposed a stochastic model for
the evolution of a thin film consisting of an incompressible Newtonian
liquid on a flat d-dimensional substrate.

The thickness h of the substrate satisfies

∂th = ∇ ·
(
hn∇

(
1

3
Φ′(h)− γ∆h

))
+∇ ·

(
h

3
2

3
N

)
,

where Φ is the effective interface potential, γ > 0 is the surface tension
coefficient, N is a space-time white noise, and n > 0 describes the
mobility function.
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The entropy formulation

Consider a deterministic scalar conservation law of the form

∂tu = ∆u[m] +∇ · f(x, u).

The entropy formulation of this equation is based upon studying the
ensemble equations satisfies by compositions S(u), for smooth and
convex entropies S satisfying S(0) = S′(0) = 0:

∂tS(u) =∇ ·
(
m |u|m−1∇S(u)

)
− S′′(u)

4m

(m+ 1)2

∣∣∣∇u[m+1
2 ]
∣∣∣2

+ ∂ξf(x, u)∇S(u) +∇xf(x, u)S′(u).
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The kinetic function

In the kinetic formulation, the ensemble of equations defined by the
collection of entropies {S} is replaced by a single equation in
(d+ 1)-variables.

Define the kinetic function χ : R2 → R by

χ(s, ξ) :=


1 if 0 < ξ < s,
−1 if s < ξ < 0,
0 else.

The kinetic function χ of an arbitrary scalar function u is then

χ(x, ξ, t) := χ(u(x, t), ξ) =


1 if 0 < ξ < u(x, t),
−1 if u(x, t) < ξ < 0,
0 else.
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The kinetic formulation

For the d-dimensional torus Td, for the solution u of

∂tu = ∆u[m] +∇ · f(x, u) in Td × (0,∞),

an informal computation proves that the kinetic function χ of u
satisfies

∂tχ =m |ξ|m−1 ∆xχ+ ∂ξq

+ ∂ξf(x, ξ)∇xχ−∇xf(x, ξ)∂ξχ,

for the parabolic defect measure

q(x, ξ, t) := δ0(u(x, t)− ξ) 4m

(m+ 1)2

∣∣∣∇u[m+1
2 ]
∣∣∣2 .
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The derivation of the kinetic formulation

The kinetic formulation was introduced by Perthame [26] and Chen
and Perthame [1].

The kinetic formulation:

• Strictly generalizes the notion of an entropy solution.

• Characterizes solutions with initial data in L1.

• Is informally derived by multiplying the equation with S′(ξ),
integrating in ξ, and using the distributional equalities

∇xχ = δ0(u− ξ)∇u and ∂ξχ = δ0(ξ)− δ0(u− ξ).
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The kinetic formulation of the stochastic equation

For a smooth path z, the kinetic formulation is

∂tχ =m |ξ|m−1 ∆xχ+ ∂ξq

+ ∂ξA(x, ξ)żt · ∇xχ− (∇x · (A(x, ξ) · żt)) ∂ξχ,

for the parabolic defect measure

q(x, ξ, t) := δ0(u(x, t)− ξ) 4m

(m+ 1)2

∣∣∣∇u[m+1
2 ](x, t)

∣∣∣2 .
• Regularity is encoded by the measure.

• Nonlinear due to the nonlinearity of the kinetic function and the
nonlinear dependence of the measure.

B. Fehrman (MPI Leipzig) Porous media May 14, 2018 13 / 27



Transport by noise

An essential feature of the corresponding kinetic formulation

∂tχ =m |ξ|m−1 ∆xχ+ ∂ξq

+ ∂ξA(x, ξ)żt · ∇xχ− (∇x · (A(x, ξ) · żt)) ∂ξχ,

is that the noise enters as a linear transport.

Furthermore:

• The transport is well-defined for rough paths z.

• Due to the conservative structure, the corresponding stochastic
characteristics preserve the underlying Lebesgue measure.
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The stochastic characteristics

The associated system of stochastic characteristics are understood as a
system of rough differential equations:

dXx,ξ
t0,t

= −∂ξA(Xx,ξ
t0,t
,Ξx,ξt0,t) ◦ dzt in (t0,∞),

dΞx,ξt0,t = ∇x ·A(Xx,ξ
t0,t
,Ξx,ξt0,t) ◦ dzt in (t0,∞),

(Xx,ξ
t0,t0

,Ξx,ξt0,t0) = (x, ξ).

• Stability of solutions up to their second derivatives requires that
∂ξA and (∇x ·A) are in C( 1

α
+2)+.

• Therefore, we essentially require A(x, ξ) ∈ C( 1
α
+3)+ and allow for

linear growth in the ξ-variable.
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The transported kinetic function

The transport of the kinetic function χ by the characteristics
(Xx,ξ

t0,t
,Ξx,ξt0,t) beginning from t0 ≥ 0 and (x, ξ) ∈ Td × R, is defined by

χ̃t0,t(x, ξ) := χ(Xx,ξ
t0,t
,Ξx,ξt0,t, t).

Informally, this function satisfies

∂tχ̃t0,t = m
∣∣∣Ξx,ξt0,t∣∣∣m−1 ∆̃xχ̃+ ∂̃ξ q̃t0,t,

where q̃ is the translated parabolic defect measure

q̃(x, ξ)t0,t := q(Xx,ξ
t0,t
,Ξx,ξt0,t, t),

and where ∆̃x and ∂̃ξ are not full derivatives.
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The weak formulation

For the d-dimensinal unit torus Td, the corresponding weak formulation
of the equation is then, for each ρ ∈ C∞(Td × R), for each s < t,

ˆ
R

ˆ
Td
χ · ρ(Y x,ξ

s,r−s,Π
x,ξ
s,r−s) dx dξ

∣∣∣∣r=t
r=s

=

ˆ t

s

ˆ
R

ˆ
Td
m |ξ|m−1 χ ·∆xρ(Y x,ξ

s,r−s,Π
x,ξ
s,r−s) dx dξ dr

−
ˆ t

s

ˆ
R

ˆ
Td
q · ∂ξρ(Y x,ξ

s,r−s,Π
x,ξ
s,r−s) dx dξ dr,

where (Y x,ξ
s,r−s,Π

x,ξ
s,r−s) denote the characteristics inverse to (Xx,ξ

s,r ,Ξ
x,ξ
s,r ).

• The derivation relies crucially on the conservative property of the
characteristics.
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Pathwise kinetic solutions (I)

Definition

For u0 ∈ L2(Td), a pathwise kinetic solution is a function

u ∈ L∞([0,∞);L2(Td)),

that satisfies the following three properties:
(i) For each T > 0,

u[m+1
2 ] ∈ L2([0, T ];H1(Td)).

In particular, for each T > 0, the parabolic defect measure

q(x, ξ, t) :=
4m

(m+ 1)2
δ0(ξ − u(x, t))

∣∣∣∇u[m+1
2 ]
∣∣∣2 ,

is finite on Td × R× (0, T ).
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Pathwise kinetic solutions (II)

Definition

(ii) There exists a nonnegative entropy defect measure p on
Td ×R× (0,∞), which is finite on Td ×R× (0, T ), for each T > 0, such
that, for a set of Lebesgue measure zero N ⊂ (0,∞), for every
s ≤ t ∈ [0,∞) \ N , the kinetic function χ of u satisfies, for every
ρ ∈ C∞c (Td × R),

ˆ
R

ˆ
Td
χ(x, ξ, r) · ρ(Y x,ξ

r,r−s,Π
x,ξ
r,r−s) dx dξ

∣∣∣∣r=t
r=s

=

ˆ t

s

ˆ
R

ˆ
Td
m |ξ|m−1 χ ·∆ρ(Y x,ξ

r,r−s,Π
x,ξ
r,r−s) dx dξ dr

−
ˆ t

s

ˆ
R

ˆ
Td

(p+ q) · ∂ξρ(Y x,ξ
r,r−s,Π

x,ξ
r,r−s) dx dξ dr.

The initial condition is imposed at s = 0.
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Pathwise kinetic solutions (III)

Definition

(iii) The following integration by parts formula is satisfied. For each
ψ ∈ C∞c (Td × R× [0,∞)), for each t ∈ [0,∞) \ N ,

ˆ t

0

ˆ
R

ˆ
Td

m+ 1

2
|ξ|

m−1
2 χ(x, ξ, r)∇ψ(x, ξ, r) dx dξ dr

= −
ˆ t

0

ˆ
R

ˆ
Td
∇u[m+1

2 ]ψ(x, u(x, r), r) dx dr.

• The degeneracy of the diffusion makes it necessary to postulate
the integration by parts formula.

• In particular, it is unnecessary if m = 1.
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Existence of pathwise kinetic solutions

Theorem [6] (F., Gess)

Let m ∈ (0,∞). Suppose the z is an α-Hölder geometric rough path,
for α ∈ (0, 12), and, for γ > 1

α ,

∇x ·A(x, ξ) ∈ Cγ+2
b and ∂ξA(x, ξ) ∈ Cγ+2

b .

For every u0 ∈ L2(Td), there exists a pathwise kinetic solution of{
∂tu = ∆u[m] +∇ · (A(x, u) ◦ dzt) in Td × (0,∞),
u = u0 on Td × {0}.

• The integrability is not optimal, and can be extended to L1(Td),
modifying the definition of solution.

• The proof is based on a new estimate for the kinetic function in

W s,1, for s ∈
(

0, 2
m+1 ∧ 1

)
.
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Regularity of the kinetic function

Proposition [6] (F., Gess)

Let u0 ∈ L2(Td), and let u be a pathwise kinetic solution with initial
data u0 and kinetic function χ. For each s ∈ (0, 2

m+1 ∧ 1) and T ≥ 0,
there exists C = C(m, d, T, s) > 0 such that

‖χ‖L1([0,T ];W s,1(Td×R))

≤ C
(

1 + ‖u0‖L1(Td) + ‖u0‖(m+1)∨2
L1(Td) + ‖u0‖2L2(Td)

)
.

• The proof combines a uniform BV -estimate in the velocity
variable with the spatial regularity implied by the parabolic defect
measure.

• Some elements of the spatial regularity are based on the work of
Ebmeyer [5].
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Uniqueness of pathwise kinetic solutions

Theorem [6] (F., Gess)

Let m ∈ (0,∞). Suppose the z is an α-Hölder, geometric rough path,
for α ∈ (0, 12), and that, for γ > 1

α ,

∇xA(x, ξ) ∈ Cγ+2
b and ∂ξA(x, ξ) ∈ Cγ+2

b .

Let u10, u
2
0 ∈ L2

+(Td). If u1 and u2 are pathwise kinetic solutions with
initial data u10 and u20, then∥∥u1 − u2∥∥

L∞([0,∞);L1(Td)) ≤
∥∥u10 − u20∥∥L1(Td) .

In particular, pathwise kinetic solutions are unique.

• This work extends results of Lions, Perthame and Souganidis
[17, 18] and the Gess and Souganidis [9, 10, 11], who worked in
analogous x-independent and first-order settings.
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The proof of uniqueness

Some aspects of the proof:

• The characteristics link the spatial and velocity variables.

• It is necessary to use rough path estimates and a time-splitting
argument to handle errors arising from the transport by the
stochastic characteristics.

• It is necessary to use an optimal estimate for a singular moment of
the entropy and parabolic defect measures for small diffusion
exponents m ∈ (0, 1) ∪ (1, 2], which relies upon the nonnegativity
of the initial data.

• The integrability is not optimal.
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Singular moments of the defect measures

Proposition [6] (F., Gess)

Let u0 ∈ L2
+(Td). Suppose that u is a pathwise kinetic solution with

initial data u0 and entropy and parabolic defect measures p and q. For
each T > 0, there exists C = C(m, d, T ) > 0 such that

ˆ t

0

ˆ
R

ˆ
Td
|ξ|−1 (p+ q) dx dξ dr ≤ C

(
1 + ‖u0‖2L2(Td)

)
.

• Informally, this implies regularity for u[
m
2
].

• The estimate is false, in general, for signed initial data. The failure
is deterministic, and can be seen by considering the heat equation
with initial data that is locally linear near the origin.
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The existence of a random dynamical system

Theorem [6] (F., Gess)

Suppose that the noise t ∈ [0,∞) 7→ zt(ω) arises from the sample paths
of a fractional Brownian motion with Hurst parameter H ∈ (0, 1)
defined on a probability space ω ∈ (Ω,F ,P). Pathwise kinetic solutions
generate a random dynamical system on L2

+(Td) in the sense that, for
every u0 ∈ L2

+(Td), for almost every ω ∈ Ω,

u(u0, s, t; z·(ω)) = u(u0, 0, t− s; z·+s(ω)) for every 0 ≤ s ≤ t <∞.

• The random dynamical system is an almost sure semigroup
property for the equation.

• These are the first results proving the existence of a random
dynamical system for a nonlinear SPDE with x-dependent,
nonlinear noise.
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Thanks

Thank you.
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