STOCHASTIC HOMOGENIZATION OF THE
LANDAU-LIFSHITZ EQUATION

A. de Bouard

CMAP, CNRS and Ecole Polytechnique, France
joint work with F. Alouges (CMAP), B. Merlet (Lille) and L. Nicolas (CMAP)

Stochastic Partial Differential Equations
CIRM, 14 - 18 May, 2018



Exchange spring magnets

“This is a new type of magnet comprising a fine sub-micron hard magnetic phase and
soft magnetic phase that behaves like a homogenous and uniform magnet with
magnetic exchange coupling operation working between the two phases... It is said
that if a high-coercivity exchange spring magnet with anisotropy could be developed,
it would be the best magnet in the world, but this goal has not been attained at this
time. "

(Source : http ://www.shinetsu-rare-earth-magnet.jp)
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Dynamical equation
Landau-Lifshitz ~ 1935 :
Herr(m) = —Dpm&(m) = div (aex Vm) + l.o.t

then the LL equation is given by

%—T = —m X Hegr(m) — am x (m X Heg(m)) in D
m(0,x) = mo(x) in D

om ,

o 0 on 0D

a > 0, damping :

dé(m) om 2




The homogenization problem

» The material is made of several compounds (with extra
asumptions on the compounds distribution)

» Each compound has its own aey, Mg, k, u
» The size of each compound is ¢ << 1

~+ understand the limit as € — 0 of the model with

em) = [ oo (2) 19+ [ k(%) (1= (m-e (%))
0 [y (v (%) m) -, (;)muo‘/DHext-Ms(j)m

that is : convergence of miny(p 2y (M) as € — 07 of stationary
solutions 7 of dynamical solutions ?



Reminders about homogenization (periodic case)

Model problem

{ —div(a(%)Vu:)=finD

us. =0on 9D

» “multiscale expansion”

=)

c

us(x) ~ up(x) + ey (x./ i) 4.
with u1(x,y) Q-periodic in y, so that
Vit (x) ~ Vyug(x) + Vyuy (x, ;) 4.

» Plugging the ansatz leads to 2 problems

i) The cell problem : ¥Vx € D

—divy(a(y)(Vxuo(x) + Vyui(x,y))) =0fory € Q
with up(x,-) Q- periodic



Note that s

up = E Oy, U0 Xk
k=1
where the correctors yx solves

—divy(a(y)Vyxk) = divy(a(y)ex)
with (e1, e, e3) basis of R3. There is a unique Q-periodic
solution xx with [, xkdy = 0.

i) The homogenized problem
divx(/ a(y)(Vxuo(x) + Vyui(x,y)) dy) =fforyeD
Q
up(x) =0 on 9D

which may be written as

-y o[> /Q 31 (V) (Ok + Dy, xk) dy | Ot = £
Xi j



Hence, if _
Ahom = /Q a(y)(I +Vyx) dy,

> g solves
—divg(ApomVug) = f for y € D
up(x) =0on 0D

» For any ¢ € R3,
Apom€ € = inf / a()(E+ Vo)) - (€ + V() dy

PeH}(Q) JQ

> . minimizes in H&(D)

;/Da(z) Vu-vudx—/Dfudx

> g minimizes in H&(D)

1
/AhomVu-Vudx—/fudx
2.D JD



Periodic homogenization of the Brown energy

Alouges, Di Fratta, 2015; let aex be (0,1)3—periodic and let

E(m) = /D e (g) IVm[2,  with m(x) € S2
i.e. consider for sirr.1p|icity only the exchange energy. Then
Theorem : £.(m) T-converges in the weak H! topology to
Ip T&hom(m, Vm) dx where, for any &,

Tghom(m, &) = inf aex(¥)[€ + Vo(y) [ dy.
(DGHul(Q.,mi) Q

Morever, for any m € S, for any ¢,

Taron(m ) =8ron(6) = 6 [ awly)le + Vol dy
Hom).

- Ahomg : 5

independent of m ~~ ghom is the classical homogenization density.



Stochastic homogenization of the LLG equation

In spring magnets, the structure is not periodic but randomly
distributed

Figure 2 A sample of the coefficient field defined in (0.9) by the Poisson point cloud.

Figure 1 A picce of a sample of a random checkerboard. The conductivity matrix is
& P » ity b The matrix a is equal to ag in the black region and to a; in the white region.

equal to ag in the black region, and ay in the white region.

S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative stochastic
homogenization and large-scale regularity, arXiv



Consider the Landau-Lifshitz equation :

ag;s = m. xdiv(a(¥,w)Vm.) — am; x (m. x div(a(¥,w)Vm.))
m:(0) = my, xeD

with |mg(x)| =1, a.e. in D.

Here a is a random field (possibly matrix valued) indexed by R3,
on a probability space (2, F,P).
or the harmonic maps equation :

{ div(a(%,w)Vm.) x m.(x) =0

|ms(x)| =1, a.e.on D.



Harmonic maps

Note that the later equation is equivalent to
: X >
div(a(=,w)Vm.) = [Vm.|*m,
€
(due to the constraint |m;| =1, a.e.)

Weak formulation : m. € HY(D,R3), |m.| = 1, a.e.

/D (a(Z,w)Vm.(x) x m(x)) - Vé(x) dx = 0

€

for all regular test functions ¢.

Existence of weak solutions : Chen, Coron et al., ~ 1990
(stationary or heat flow); No uniqueness



Landau-Lifshitz-Gilbert equation

Weak formulation : (using the equivalent Gilbert form)
m. € HY((0, T) x D), |m.| = 1, a.e. and for all regular test
functions ¢ on (0, T) x D = Qr,

/ (de + amg X %) - ¢ dxdt
Jor ot ot

=(1+a?) /Q (a(g,w)Vm€ x mg) - V dxdt.
J QT

Moreover, m.(0) = mg in the trace sense and there isa K >0
such that

1 t i
/ a(X,w)Vmg-Vmgdx+/ / yam |2dxdt < K
2 D € Jo JD ot

Existence of weak solutions : Visintin, 1985, Alouges-Soyeur,
1989. No uniqueness



The random structure

Kozlov ; Papanicolaou-Varadhan; Piatnitskii Zhikov (stochastic
two-scale convergence), ...

Q, F,P) probability space (canonical space); P = £(a)

v

(Tx)«crs translation group on £2; assume P is T-invariant
(stationarity), and T si ergodic

v

a(x,w) = a( T,w) is assumed to be stochastically continuous
~> £} is a compact metric space

H = L2(Q, F,P), and C(), are separable
Diu(Q2) = ai—;u(wa)‘X:O infinitesimal generator of translations

along the 3 axis; closed and densely defined operator;
H! = N3_,D(D;) is densely defined and separable

L2,,(Q) : closure of {Dyu, ue CYHQ)}in L2(2;R3).

pot

v

v

v



Diffusion equation :

G. Papanicolaou and S. Varadhan, 1979.

_div (a (Tgw) Vua(XaW)) =finDxQ (2)
u. =0o0n 9D x Q

Then, (u:)- strongly converges in L?(D x Q) towards the solution
of

—div (As homVuo(x)) = f in D (3)
up=0o0n 90D

where, for all £ € R3,
As7hom€ £ = 'Q}fE (a(w)|£ + D¢(w)|2)

— inf [ a()l¢ + Dv(w)PdP(w)

a
Q



Stochastic 2-scale convergence

Periodic 2-scale convergence

Nguetseng, 1989, Allaire, 1992 : m.(x) — mo(x, y) if for all
smooth test function ¢ on D x Q, y-periodic,

/ me(x)o(x.x/e)dx = [ mo(x,y)d(x.y) dx dy
D Dx@

Stochastic 2-scale convergence :

Piatnitskii, Zhikov, 2006 ; (Bourgeat, Mikelic, Wright, 1994 : in
mean) : mg(x) — mo(x,w) if for all "smooth” ¢ on D x Q, for a.e.
wo € Q,

/ me(x)o(x, Tojewo) dx = [ mo(x, w)(x, w) dx dP(w)
D DxQ

Pbe : Choice of wg?



Birkhoff ergodic theorem

For all ¢ € L}(Q),
t ﬂTootss|1A| /tA &( Towo) dx = /Q $(w)dP(Q) = E(¢)

for P a.e. wg € Q.

However : With previous assumptions, one may prove that for
some Qo with P(Q) = 1, for all wg € Qo, and for all ¢ € C(Q),

lim / ¢( Ty /ewo) dx = E(¢).
JA

e—0

Qo : typical trajectories



Stochastic 2-scale convergence

Def : wy € Qg being fixed, m.(x) — mg(x,w) if for all
# € C(R3), and all 9 € C(R),

/‘ me(x)p(x)( Ty jewo) dx — | mo(x, w)op(x)(w) dx dP(w)
D DxQ

Theorem :

There exists Qo C Q with P(g) = 1, such that if wg € Qo and if
(m.)c is bounded in L? then there exists mp € L?(D x Q) s.t. up to
a subsequence

mes — mo

stochastically two scale.



Homogenization of the LLG equation

Theorem : Alouges, dB, Merlet, Nicolas, 2018

Let wo € Qo, let m.(t) € HY(Q1; S?) be a family of weak solutions
of (LLG) (resp. a family of weak Harmonic maps such that (m.).
is bounded in HY(D)) then, up to extraction, m. weakly converges
to m in H1((0, T) x D)3, which is a weak solution of

%—T = 1 % div(As hom V) — am x (M x div(As pomV)))
Iﬂ(O) = Mo
(resp. m. weakly converges in H*(D, S?) to m which is a weak
solution of

—div(m x As homV M) = 0)

and As pom Is the classical stochastic homogenization tensor.



|deas of proof (harmonic maps)

» Use Rellich Theorem, and the previous theorem ~~ up to
extraction :
m. — m strongly in L2
Vm, - Vym+ f(x,w),
weakly in L2, where ¢ € L2 ,(Q).

pot

» We recover |m| =1, a.e. and it follows m L &;, for i =1,2,3.

» Use the variational formulation :
/ <a(TX Jewo)m. () x Vmg(x)) - $(x)dx = 0
D

with ¢(x) = ed(x)v(Ty/ewo) ; ¥ € C2(D); v € CHQ,R?)
~> using weak-strong convergence

/Q 2()(0;(x) + &(x,)) - Di{v x m(x)) dP = 0.



This shows that a(.)(Vm(x) + €) is in the L?(Q)-orthogonal of

L2,:(,R?) and thus

/ a(w)(Vm(x) + &(x,w))dP(w) = As homV m(x)
Q

i.e £ is a solution of the cell problem.

Next, take ¢ € C2°(D,R3) and taking the limit implies

/D () < ( /Q 2()(Vfi(x) + £(x, 0)dP(w)) - H(x) dx = 0

which leads to
—div(m x A57homvn_7) =0.



LLG : works in the same way, adapting the definition of the
stochastic two-scale convergence (take account of time
dependence).

Remark on the energy inequality :

Usually, for weak solution of LLG, one has the energy inequality :

/()Vm( - Vm(t dx+//\ |2 dxds

1

< / a(x)Vmg - Vmodx.
2 Jp

However, we only have for the homogenized solution :

;/D As homV m(t) - Vm()dx+/ /\ |2 dxds

_ (2
< /D E(2)|Vm(0)[2dx.



Other energy terms

When all energy terms are taken into account, on must write
m°(t,x) = M*(x)u®(t,x), with |[u°| =1, and v* and M® both
depend on the material component; then v satisfies the LL

equation :
ou® e e [ e\
= mx Hr(6°) = au x (uF % Hig (")) in D
u®(0,x) = up(x) in D
88125 =0 on dD

with

Heg(u) = div(a°Vu) + MEhg(MEu) + MEhee — YV yor(u).



Assume :
» a°(x,w) = a(T,/.w) (same assumptions as before)
» M*(x,w) = Ms(T,/.w), Ms in C(Q) and bounded
> Oe(x,u) = dan(Ty)jew, u) with Vyga, in C(Q); typically
Pan(w, u) = K(w)(1 — (v(w) - v)?),

v along the easy axis, |v| = 1, k is bounded

Then, up to a subsequence, u® converges weakly in H! to a weak
solution of the LL equation with

Heff( ) = diV(ASJ,omVU)+E(M5)hd(M5u)—i—E(MSpLgot(MSU))
+E(Ms)hext + V E(dan(u)).



Conclusion

> Unified formalism for periodic and stochastic homogenization
2-scale convergence (Piatniskii and Zhidkov)

» No need for uniqueness of the solution to the limiting equation

» Could also obtain I'—convergence type results for stochastic
case

» Stochastic homogenization for harmonic maps equation

» Stochastic homogenization of Landau-Lifshitz equation
(including all physical terms)

» Numerical implementation 4+ optimization of the
distribution...



