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Exchange spring magnets

“This is a new type of magnet comprising a fine sub-micron hard magnetic phase and
soft magnetic phase that behaves like a homogenous and uniform magnet with
magnetic exchange coupling operation working between the two phases... It is said
that if a high-coercivity exchange spring magnet with anisotropy could be developed,
it would be the best magnet in the world, but this goal has not been attained at this
time. ”

(Source : http ://www.shinetsu-rare-earth-magnet.jp)



Exchange spring magnets

(source : G. Hadjipanayis and A. Gabay.The incredible pull of nanocomposite magnets.

IEEE Spectrum)

(source : Wikipedia)



Brown energy

E(m) =

∫
D
aex |∇m|2

+

∫
D
k(1− (m · u)2)

−µ0

∫
D
Hext ·Msm

−µ0

2

∫
R3

Hd (Msm) ·Msm



Dynamical equation

Landau-Lifshitz ∼ 1935 :

Heff (m) = −DmE(m) = div (aex∇m) + l .o.t

then the LL equation is given by

∂m

∂t
= −m × Heff (m)− αm × (m × Heff (m)) in D

m(0, x) = m0(x) in D

∂m

∂n
= 0 on ∂D

α > 0, damping :

dE(m)

dt
= −

∫
D
Heff (m) · ∂m

∂t
dx = −α

∫
D
|m × Heff (m)|2 dx



The homogenization problem

I The material is made of several compounds (with extra
asumptions on the compounds distribution)

I Each compound has its own aex ,MS , k , u

I The size of each compound is ε << 1

 understand the limit as ε→ 0 of the model with

Eε(m) =

∫
D
aex

(x
ε

)
|∇m|2 +

∫
D
k
(x
ε

)(
1−

(
m · u

(x
ε

))2
)

−µ0

2

∫
R3

Hd

(
Ms

(x
ε

)
m
)
·Ms

(x
ε

)
m − µ0

∫
D
Hext ·Ms

(x
ε

)
m

that is : convergence of minH1(D,S2) Eε(m) as ε→ 0 ? of stationary
solutions ? of dynamical solutions ?



Reminders about homogenization (periodic case)

Model problem {
−div

(
a
(

x
ε

)
∇uε

)
= f in D

uε = 0 on ∂D
(1)

I “multiscale expansion”

uε(x) ∼ u0(x) + εu1

(
x ,

x

ε

)
+ · · ·

with u1(x , y) Q-periodic in y , so that

∇xuε(x) ∼ ∇xu0(x) +∇yu1

(
x ,

x

ε

)
+ · · ·

I Plugging the ansatz leads to 2 problems

i) The cell problem : ∀x ∈ D{
−divy (a(y)(∇xu0(x) +∇yu1(x , y))) = 0 for y ∈ Q

with u1(x , ·) Q - periodic



Note that

u1 =
3∑

k=1

∂xk
u0 χk

where the correctors χk solves

−divy (a(y)∇yχk ) = divy (a(y)ek )

with (e1, e2, e3) basis of R3. There is a unique Q-periodic
solution χk with

∫
Q χkdy = 0.

ii) The homogenized problem −divx

(∫
Q
a(y)(∇xu0(x) +∇yu1(x , y)) dy

)
= f for y ∈ D

u0(x) = 0 on ∂D

which may be written as

−
∑

xi

∂i

[∑
j

∫
Q
ai ,j (y)(δj ,k + ∂yjχk ) dy

]
∂xk

u0 = f



Hence, if

Ahom =

∫
Q
a(y)(I +∇yχ) dy ,

I u0 solves {
−divx (Ahom∇u0) = f for y ∈ D

u0(x) = 0 on ∂D

I For any ξ ∈ R3,

Ahomξ · ξ = inf
φ∈H1

] (Q)

∫
Q
a(y)(ξ +∇φ(y)) · (ξ +∇φ(y)) dy

I uε minimizes in H1
0 (D)

1

2

∫
D
a
(x
ε

)
∇u · ∇u dx −

∫
D
fu dx

I u0 minimizes in H1
0 (D)

1

2

∫
D
Ahom∇u · ∇u dx −

∫
D
fu dx



Periodic homogenization of the Brown energy

Alouges, Di Fratta, 2015 ; let aex be (0, 1)3-periodic and let

Eε(m) =

∫
D
aex

(x
ε

)
|∇m|2, with m(x) ∈ S2

i.e. consider for simplicity only the exchange energy. Then

Theorem : Eε(m) Γ-converges in the weak H1 topology to∫
D Tghom(m,∇m) dx where, for any ξ,

Tghom(m, ξ) = inf
φ∈H1

] (Q,m⊥)

∫
Q
aex (y)|ξ +∇φ(y)|2 dy .

Morever, for any m ∈ S1, for any ξ,

Tghom(m, ξ) = ghom(ξ) = inf
φ∈H1

] (Q,R3)

∫
Q
aex (y)|ξ +∇φ(y)|2 dy

= Ahomξ · ξ

independent of m  ghom is the classical homogenization density.



Stochastic homogenization of the LLG equation

In spring magnets, the structure is not periodic but randomly
distributed

S. Armstrong, T. Kuusi and J.-C. Mourrat, Quantitative stochastic
homogenization and large-scale regularity, arXiv



Consider the Landau-Lifshitz equation :
∂mε

∂t
= mε × div

(
a( x

ε , ω)∇mε

)
− αmε ×

(
mε × div

(
a( x

ε , ω)∇mε

))
mε(0) = m0, x ∈ D

with |m0(x)| = 1, a.e. in D.

Here a is a random field (possibly matrix valued) indexed by R3,
on a probability space (Ω,F ,P).

or the harmonic maps equation :{
div
(
a( x

ε , ω)∇mε

)
×mε(x) = 0

|mε(x)| = 1, a.e. on D.



Harmonic maps

Note that the later equation is equivalent to

div
(
a(
x

ε
, ω)∇mε

)
= |∇mε|2mε

(due to the constraint |mε| = 1, a.e.)

Weak formulation : mε ∈ H1(D,R3), |mε| = 1, a.e.∫
D

(
a(
x

ε
, ω)∇mε(x)×mε(x)

)
· ∇φ(x) dx = 0

for all regular test functions φ.

Existence of weak solutions : Chen, Coron et al., ∼ 1990
(stationary or heat flow) ; No uniqueness



Landau-Lifshitz-Gilbert equation

Weak formulation : (using the equivalent Gilbert form)
mε ∈ H1((0,T )× D), |mε| = 1, a.e. and for all regular test
functions φ on (0,T )× D = QT ,∫

QT

(∂mε

∂t
+ αmε ×

∂mε

∂t

)
· φ dxdt

= (1 + α2)

∫
QT

(
a(
x

ε
, ω)∇mε ×mε

)
· ∇φ dxdt.

Moreover, mε(0) = m0 in the trace sense and there is a K > 0
such that

1

2

∫
D
a(
x

ε
, ω)∇mε · ∇mεdx +

∫ t

0

∫
D

∣∣∂mε

∂t

∣∣2dxdt ≤ K

Existence of weak solutions : Visintin, 1985, Alouges-Soyeur,
1989. No uniqueness



The random structure

Kozlov ; Papanicolaou-Varadhan ; Piatnitskii Zhikov (stochastic
two-scale convergence), ...

I (Ω,F ,P) probability space (canonical space) ; P = L(a)

I (Tx )x∈R3 translation group on Ω ; assume P is T -invariant
(stationarity), and T si ergodic

I a(x , ω) = a(Txω) is assumed to be stochastically continuous
 Ω is a compact metric space

I H = L2(Ω,F ,P), and C (Ω), are separable

I Diu(Ω) = ∂
∂xi

u(Txω)|x=0
infinitesimal generator of translations

along the 3 axis ; closed and densely defined operator ;
H1 = ∩3

i=1D(Di ) is densely defined and separable

I L2
pot(Ω) : closure of {Dωu, u ∈ C 1(Ω)} in L2(Ω;R3).



Diffusion equation :

G. Papanicolaou and S. Varadhan, 1979.{
−div

(
a
(
T x

ε
ω
)
∇uε(x , ω)

)
= f in D × Ω

uε = 0 on ∂D × Ω
(2)

Then, (uε)ε strongly converges in L2(D × Ω) towards the solution
of {

−div (As,hom∇u0(x)) = f in D
u0 = 0 on ∂D

(3)

where, for all ξ ∈ R3,

As,homξ · ξ = inf
ψ
E
(
a(ω)|ξ + Dψ(ω)|2

)
= inf

ψ

∫
Ω
a(ω)|ξ + Dψ(ω)|2dP(ω)



Stochastic 2-scale convergence

Periodic 2-scale convergence

Nguetseng, 1989, Allaire, 1992 : mε(x)� m0(x , y) if for all
smooth test function φ on D × Q, y -periodic,∫

D
mε(x)φ(x , x/ε) dx →

∫
D×Q

m0(x , y)φ(x , y) dx dy

Stochastic 2-scale convergence :

Piatnitskii, Zhikov, 2006 ; (Bourgeat, Mikelic, Wright, 1994 : in
mean) : mε(x)� m0(x , ω) if for all ”smooth” φ on D ×Ω, for a.e.
ω0 ∈ Ω,∫

D
mε(x)φ(x ,Tx/εω0) dx →

∫
D×Ω

m0(x , ω)φ(x , ω) dx dP(ω)

Pbe : Choice of ω0 ?



Birkhoff ergodic theorem

For all φ ∈ L1(Ω),

lim
t→+∞

1

t3|A|

∫
tA
φ(Txω0) dx =

∫
Ω
φ(ω)dP(Ω) = E(φ)

for P a.e. ω0 ∈ Ω.

However : With previous assumptions, one may prove that for
some Ω0 with P(Ω0) = 1, for all ω0 ∈ Ω0, and for all φ ∈ C (Ω),

lim
ε→0

∫
A
φ(Tx/εω0) dx = E(φ).

Ω0 : typical trajectories



Stochastic 2-scale convergence

Def : ω0 ∈ Ω0 being fixed, mε(x)� m0(x , ω) if for all
φ ∈ C∞c (R3), and all ψ ∈ C (Ω),∫

D
mε(x)φ(x)ψ(Tx/εω0) dx →

∫
D×Ω

m0(x , ω)φ(x)ψ(ω) dx dP(ω)

Theorem :

There exists Ω0 ⊂ Ω with P(Ω0) = 1, such that if ω0 ∈ Ω0 and if
(mε)ε is bounded in L2 then there exists m0 ∈ L2(D ×Ω) s.t. up to
a subsequence

mε � m0

stochastically two scale.



Homogenization of the LLG equation

Theorem : Alouges, dB, Merlet, Nicolas, 2018

Let ω0 ∈ Ω0, let mε(t) ∈ H1(QT ; S2) be a family of weak solutions
of (LLG) (resp. a family of weak Harmonic maps such that (mε)ε
is bounded in H1(D)) then, up to extraction, mε weakly converges
to m̄ in H1((0,T )× D)3, which is a weak solution of{

∂m̄

∂t
= m̄ × div

(
As,hom∇m̄

)
− αm̄ ×

(
m̄ × div(As,hom∇m̄))

)
m̄(0) = m0

(resp. mε weakly converges in H1(D,S2) to m̄ which is a weak
solution of

−div
(
m̄ × As,hom∇m̄

)
= 0)

and As,hom is the classical stochastic homogenization tensor.



Ideas of proof (harmonic maps)

I Use Rellich Theorem, and the previous theorem  up to
extraction :

mε → m̄ strongly in L2

∇mε � ∇xm̄ + ξ(x , ω),

weakly in L2, where ξ ∈ L2
pot(Ω).

I We recover |m̄| = 1, a.e. and it follows m̄ ⊥ ξi , for i = 1, 2, 3.

I Use the variational formulation :∫
D

(
a(Tx/εω0)mε(x)×∇mε(x)

)
· φ(x)dx = 0

with φ(x) = εψ(x)v(Tx/εω0) ; ψ ∈ C∞c (D) ; v ∈ C 1(Ω,R3)
 using weak-strong convergence∫

Ω
a(·)(∂jm̄(x) + ξj (x , ·)) · Dj (v × m̄(x)) dP = 0.



This shows that a(.)(∇m̄(x) + ξ) is in the L2(Ω)-orthogonal of
L2

pot(Ω,R3) and thus∫
Ω
a(ω)(∇m̄(x) + ξ(x , ω))dP(ω) = As,hom∇m̄(x)

i.e ξ is a solution of the cell problem.

Next, take φ ∈ C∞c (D,R3) and taking the limit implies∫
D
m̄(x)×

(∫
Ω
a(ω)(∇xm̄(x) + ξ(x , ω)dP(ω)) · φ(x) dx = 0

which leads to
−div(m̄ × As,hom∇m̄) = 0.



LLG : works in the same way, adapting the definition of the
stochastic two-scale convergence (take account of time
dependence).

Remark on the energy inequality :

Usually, for weak solution of LLG, one has the energy inequality :

1

2

∫
D
a(x)∇m(t) · ∇m(t)dx +

∫ t

0

∫
D

∣∣∂m
∂t

∣∣2 dxds
≤ 1

2

∫
D
a(x)∇m0 · ∇m0dx .

However, we only have for the homogenized solution :

1

2

∫
D
As,hom∇m̄(t) · ∇m̄(t) dx +

∫ t

0

∫
D

∣∣∂m̄
∂t

∣∣2 dxds
≤
∫

D
E(a)|∇m̄(0)|2dx .



Other energy terms

When all energy terms are taken into account, on must write
mε(t, x) = Mε(x)uε(t, x), with |uε| = 1, and uε and Mε both
depend on the material component ; then uε satisfies the LL
equation :

∂uε

∂t
= m × Hε

eff (uε)− αuε × (uε × Hε
eff (uε)) in D

uε(0, x) = u0(x) in D

∂uε

∂n
= 0 on ∂D

with

Hε
eff (u) = div(aε∇u) + Mεhd (Mεu) + Mεhext −∇uφε(u).



Assume :

I aε(x , ω) = a(Tx/εω) (same assumptions as before)

I Mε(x , ω) = MS (Tx/εω), MS in C (Ω) and bounded

I φε(x , u) = φan(Tx/εω, u) with ∇uφan in C (Ω) ; typically

φan(ω, u) = κ(ω)(1− (v(ω) · u)2),

v along the easy axis, |v | = 1, κ is bounded

Then, up to a subsequence, uε converges weakly in H1 to a weak
solution of the LL equation with

H0
eff (u) = div(As,hom∇u) + E(MS )hd (MSu) + E(MSPL2

pot
(MSu))

+E(MS )hext +∇uE(φan(u)).



Conclusion

I Unified formalism for periodic and stochastic homogenization
2-scale convergence (Piatniskii and Zhidkov)

I No need for uniqueness of the solution to the limiting equation

I Could also obtain Γ−convergence type results for stochastic
case

I Stochastic homogenization for harmonic maps equation

I Stochastic homogenization of Landau-Lifshitz equation
(including all physical terms)

I Numerical implementation + optimization of the
distribution...


