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The stochastic pde

∂

∂t
u(t , x) =

1

2

∂2

∂x2
u(t , x) + b(u(t , x)) + σ(u(t , x)) Ẇ (t , x), (1)

t > 0, x ∈ ]0 , 1[,

Ẇ is space-time white noise,

homogeneous Dirichlet boundary conditions:

u(t , 0) = u(t , 1) = 0 for all t > 0,

initial condition: u(0 , x) = u0(x), x ∈ [0 , 1].

b, σ : R→ R

Classical case: b and σ are globally Lipschitz (implies linear growth).

Krylov & Rozovskii (1979), Walsh (1986), ...

Here: b and σ will be locally Lipschitz with superlinear growth.
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Related literature

Related literature on spde’s with coefficients with superlinear growth

Mueller (1991). Considers b(u) ≡ 0, σ(u) = uγ , with 1 6 γ < 3
2

(locally
Lipschitz, superlinear growth). Establishes existence of a global solution.

Krylov (1996). Considers (essentially) b(u) = u, |σ(u)| 6 c|u|γ , with
1 6 γ < 3

2
. Establishes existence of a global solution.

Mueller & Sowers (1993). b ≡ 0, σ(u) = uγ . Establish that for γ large enough,
there is blowup in finite time.

Mueller (2000). b ≡ 0, σ(u) = uγ , γ > 3
2
. There exists τ <∞ a.s. such that

P

{
lim
t↑τ

sup
x∈[0,1]

u(t, x) = +∞

}
> 0.

Monotonicity conditions: Donati-Martin & Pardoux (1993), Cerrai (2003),
Liu & Röckner (2015).

Typical case: b(u) = −u3 (locally Lipschitz, but pushes back towards origin).

Here: b(u) will push towards ±∞.
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Related literature

Deterministic case: σ ≡ 0

Case of o.d.e.’s:

u′(t) = b(u(t)), u(0) = u0, b : R→ R+.

Then finite-time blowup occurs if and only if Osgood’s condition holds:∫ +∞

u0

dz

b(z)
< +∞

(b ↑ +∞ quickly enough for the integral to be finite).

Example: b(u) = uγ with γ > 1. Then finite-time blowup occurs.
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Related literature

Deterministic case: σ ≡ 0, continued

Deterministic heat equation: σ ≡ 0, b(u) = uγ , γ > 1:

∂

∂t
u(t , x) =

1

2

∂2

∂x2
u(t , x) + (u(t , x))γ , (2)

x ∈ ]0, 1[, t > 0,

Dirichlet b.c.

u(0 , x) = c u0(x), where u0 > 0, u0 6≡ 0, u0 ∈ C([0, 1],R+), c > 0.

γ ∈ ]1, 3[: all classical solutions blow up in finite time.

γ > 3:
for c large enough, all classical solutions blow up in finite time.
for c small enough, there exist small global solutions (for c small, uγ is
small, and the solution stays near 0).
there exist small stationary solutions.

Reference: Galaktionov & Vasquez (2002).
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Deterministic versus stochastic

Bonder & Groisman (2009)

Corollary. The deterministic heat equation (2) may have a global solution even
in the case where ∫ +∞

1

dz

b(z)
< +∞

For instance, this occurs if b(z) = zγ and γ > 3.

Theorem 1 (Bonder & Groisman, 2009)

Suppose σ ≡ σ0 6= 0, b > 0, b is convex and∫ +∞

1

dz

b(z)
< +∞

Then finite-time blowup occurs in the SPDE (1), that is, there exists τ < +∞
a.s. such that

lim
t↑τ

sup
x∈[0,1]

u(t, x) = +∞ a.s.
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Deterministic versus stochastic

Question

Is the Bonder & Groisman result optimal?

Question. If ∫ +∞

1

dz

b(z)
= +∞,

is there finite-time blowup?

For example, what happens for b(z) = |z | log+ |z | ?
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Notion of solution to the stochastic heat equation

Definition

A random field solution u = {u(t, x), t > 0, x ∈ [0, 1]} of the stochastic heat
equation (1) is a jointly measurable, adapted process such that, for all
(t, x) ∈ R+ × [0, 1],

u(t, x) = (Gt ∗ u0)(x) +

∫
[0,t]×[0,1]

Gt−s(x , y) b(u(s, y)) dsdy

+

∫
[0,t]×[0,1]

Gt−s(x , y)σ(u(s, y)) W (ds, dy),

where Gt(x , y) is the heat kernel with zero Dirichlet boundary conditions.

Remark

The stochastic integral is a “localized Walsh integral,” that is, we only require
that ∫

[0,t]×[0,1]

[Gt−s(x , y)σ(u(s, y))]2 dsdy ∞ a.s.,

and do not require that the expectation of this integral be finite.

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang 8 / 24



Notion of solution to the stochastic heat equation

Definition

A random field solution u = {u(t, x), t > 0, x ∈ [0, 1]} of the stochastic heat
equation (1) is a jointly measurable, adapted process such that, for all
(t, x) ∈ R+ × [0, 1],

u(t, x) = (Gt ∗ u0)(x) +

∫
[0,t]×[0,1]

Gt−s(x , y) b(u(s, y)) dsdy

+

∫
[0,t]×[0,1]

Gt−s(x , y)σ(u(s, y)) W (ds, dy),

where Gt(x , y) is the heat kernel with zero Dirichlet boundary conditions.

Remark

The stochastic integral is a “localized Walsh integral,” that is, we only require
that ∫

[0,t]×[0,1]

[Gt−s(x , y)σ(u(s, y))]2 dsdy ∞ a.s.,

and do not require that the expectation of this integral be finite.

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang 8 / 24



Results

Main result

Notation. For α ∈ ]0 , 1],

Cα0 :=
{

f : [0 , 1]→ R such that f (0) = f (1) = 0 and

‖f ‖Cα0 := sup
0≤x<y≤1

|f (y)− f (x)|
|y − x |α <∞

}
.

Theorem 2 (D., Khoshnevisan & Zhang (2017))

Suppose that:

i. u0 ∈ ∪0<α≤1Cα0 ;

ii. b and σ are locally Lipschitz functions such that

|b(z)| = O(|z | log |z |) and |σ(z)| = o
(
|z |(log |z |)1/4

)
, as z → ±∞.

Then the stochastic heat equation (1) has a random field solution u in
C(R+ × [0, 1]) (global solution), and this solution is unique. In particular, u
satisfies

sup
t∈[0,T ]

sup
x∈[0,1]

|u(t , x)| <∞ a.s. for all T ∈ ]0 ,∞[.
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Preliminary study

Case where b and σ are globally Lipschitz

Notation. For a globally Lipschitz function f : R→ R, there are constants c(f )
and L(f ) such that

|f (z)| 6 c(f ) + L(f )|z |, for all z ∈ R.

Remark. One possible choice for L(f ) is the Lipschitz constant ‖f ‖C1
0

of f . In

this case, one can take c(f ) = |f (0)|. Often, the smallest possible value of
L(f ) is smaller than ‖f ‖C1

0
.

Proposition

Let u be the solution of (1). There exists A < +∞ such that, for all t > 0, for

all k ∈ [2,
√

L(b)/L(σ)2],

sup
x∈[0,1]

E
(
|u(t , x)|k

)
≤
[
A

(
‖u0‖L∞ +

c(b)

L(b)
+

c(σ)√
L(σ)

)
· exp (AL(b) t)

]k
(3)
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Preliminary study

Proof of Proposition

(un): sequence of Picard iterates used to construct the solution of (1).
Define

Nβ,k (un) := sup
t≥0

sup
x∈[0,1]

(
e−βt‖un(t , x)‖k

)
.

By a direct calculation:

Nβ,k (un+1) ≤ Cβ,k + Lβ,k Nβ,k (un), (4)

where

Lβ,k := c max

(
L(b)

β
,
k1/2L(σ)

β1/4

)
and Cβ,k is the constant on the r.h.s. of (3).

Choose β = 16c4L(b). Then

L16c4L(b),k 6 max

(
1

16
,

k1/2L(σ)

2[L(b)]1/4

)
6

1

2
(5)

since 2 6 k 6
√

L(b)/L(σ)2. Then (4) and (5) imply:

N16c4L(b),k(u) 6 lim sup
n→∞

N16c4L(b),k(un) 6 2Cβ,k .

The Proposition is proved with A = 16c4.
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Preliminary study

Uniform moment bounds

Let u be the solution of (1).

Theorem 3

Suppose u0 ∈ Cα0 , α ∈ ]0, 1]. Let w = max(12, 6/α), fix T0 > 0.
Assume that

√
L(b) > wL(σ)2.

Then there exists A <∞ such that, for all T ∈ ]0 ,T0], for all

k ∈
]
w ,
√

L(b)/L(σ)2
]
,

E

(
sup

t∈[0,T ]
sup

x∈[0,1]
|u(t , x)|k

)
(6)

≤
[
A(1 ∨ T )(1+α

2
∧ 1

4
)
(
‖u0‖Cα0 + k1/2M1 + k1/2M2M3 e

AL(b) T
)]k

,

where

M1 := c(b) + c(σ); M2 := L(b) + L(σ); M3 := ‖u0‖L∞ +
c(b)

L(b)
+

c(σ)

L(σ)
.
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Preliminary study

Idea of proof of Theorem 3

By the Dirichlet boundary condition,

|u(t, x)| = |u(t, x)− u(t, 0)|.

Do a careful estimate of E [|u(t, x)− u(s, y)|k ], keeping track of Lipschitz
constants:

E [|u(t, x)− u(s, y)|k ] 6
[
A
(
‖u0‖Cα0 + k1/2M1 + k1/2M2M3 e

AL(b) T
)]k

× (|t − s|
α
2
∧ 1

4 + |x − y |α∧
1
2 )k

In order to get the supremum inside the expectation, use an anisotropic
Kolmogorov Continuity Theorem [D., Khoshnevisan & E. Nualart (2007)]:

E

 sup
(t,x) 6=(s,y)
s6t6T

|u(t, x)− u(s, y)|k[
|t − s|α2 ∧ 1

4 + |x − y |α∧ 1
2

]kδ−w

 6 r.h.s. of (6)

for δ ∈ ]w
k
, 1[.

This proves Theorem 3.
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Proof of main result

Ideas in the proof of Theorem 2

Recall the statement:

Theorem (D., Khoshnevisan & Zhang (2017))

Suppose that u0 ∈ ∪0<α≤1Cα0 , and b and σ are locally Lipschitz functions such
that

|b(z)| = O(|z | log |z |) and |σ(z)| = o
(
|z |(log |z |)1/4

)
, as x → ±∞.

Then the stochastic heat equation (1) has a unique (global solution).

Proof. Define the truncation of the function b(z):

bN(z) :=


b(−N) if z < −N,

b(z) if |z | ≤ N,

b(N) if z > N.

σN(z) is defined similarly. Then bN and σN are globally Lipschitz.
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

In the spde, replace b by bN and σ by σN :

∂

∂t
uN(t , x) =

1

2

∂2

∂x2
uN(t , x) + bN(uN(t , x)) + σ(uN(t , x)) Ẇ (t , x), (7)

with same b.c. and i.c. Then (7) has globally Lipschitz coefficients.

Suppose (for simplicity) that b(z) = θ1 + θ2|z | log+ |z |. Then

L(bN) = θ2(1 + log N), L(σN) = o((log N)1/4).

In particular, √
L(bN)

(L(σN))2

−→
N→+∞ +∞.

Define
τ 1
N = inf{t > 0 : sup

x∈[0,1]

|uN(t, x)| > N}.

Will show:
τ 1
∞ := lim

N→∞
τ 1
N = +∞ a.s.

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang 15 / 24



Proof of main result

Ideas in the proof of Theorem 2 (continued)

In the spde, replace b by bN and σ by σN :

∂

∂t
uN(t , x) =

1

2

∂2

∂x2
uN(t , x) + bN(uN(t , x)) + σ(uN(t , x)) Ẇ (t , x), (7)
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

Fix ε > 0. Then

P{τ 1
N < ε} = P

{
sup

t∈[0,ε]

sup
x∈[0,1]

|uN(t, x)| > N

}
.

By Chebychev, this is

6
1

Nk
E

[
sup

t∈[0,ε]

sup
x∈[0,1]

|uN(t, x)|k
]

(k > w = max(12, 6
α

))

By Theorem 3, this is

6
1

Nk

[
A‖u0‖Cα0 (B + log N)eAε log N

]k
≡ C (B + log N)k Nk(Aε−1)

−→ 0 as N → +∞, if ε = ε0 > 0 is small enough.

Therefore, τ 1
∞ > ε0 > 0 a.s.
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

Therefore, non-explosion is guaranteed for ε0 > 0 units of time.

By the Markov property, can restart at time ε0: non-explosion is guaranteed for
2ε0 units of time, . . . , kε0 units of time, for all k.

For general b: use the previous case + a comparison theorem of Donati-Martin
& Pardoux (1993).

Theorem 2 is proved.
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L2–formulation

Another formulation of long-term existence

L2–initial condition: u0 ∈ L2[0 , 1] =: L2

Consider L2
loc-solutions: solutions up to a stopping time τ (variational

formulation of (1)).

Theorem 4

Suppose in addition that σ : R→ R is bounded, and |b(z)| = O(|z | log |z |) as
|z | → ∞. Then, every L2

loc-solution u of (1) is a long-time solution:

sup
t∈[0,τ∧T ]

∫ 1

0

|u(t , x)|2 dx <∞ a.s. for every T ∈ [0 ,∞[.

Remark

(a) Suppose τ is a maximal time up to which the solution can be constructed:

sup
t∈[0,τ [

‖u(t)‖L2[0,1] =∞ a.s.

Then Theorem 4 implies that τ =∞ a.s.: supt∈[0,T ] ‖u(t)‖L2[0,1] <∞ a.s. for
all T > 0.
(b) The question of the existence of an L2

loc-solution of (1) under the
assumptions of Theorem 4 is open.
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L2–formulation

Ideas in the proof of Theorem 4

Define

τ(R) :=

{
inf {t ∈ [0 , τ [ : ‖u(t)‖L2 > R} if { · · · } 6= ∅,
τ otherwise.

To prove that P{supt<τ∧T ‖u(t)‖L2 =∞} = 0, it suffices to prove that

lim
R→∞

P{τ(R) < τ ∧ T} = 0 for all T > 0. (8)

Define

vR(t , x) =

∫
[0,t]×[0,1]

Gt−s(x , y)σ(u(s ∧ τ(R) , y)) W (ds dy),

and
dR := u − vR ,

so that on {τ > t},

ḋR(t) = 1
2
d ′′R (t) + b (vR(t) + dR(t)) , (9)

subject to initial condition dR(0) = u0 and Dirichlet b.c.
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L2–formulation

Ideas in the proof of Theorem 4 (continued)

By the Kolmogorov continuity theorem, vR has a jointly continuous version.
Define

τM(R) := inf

{
t > 0 : sup

x∈[0,1]
|vR(t , x)| > M

}
M > 0.

Then

sup
R>0

P {τM(R) < T} ≤ sup
R>0

E(supt∈[0,T ] supx∈[0,1] |vR(t , x)|)
M

6
AT

M
. (10)

Define

D(t) := dR (t ∧ τ(R) ∧ τM(R)) , V (t) := vR (t ∧ τ(R) ∧ τM(R)) [0 ≤ t ≤ T ],

and the Lyapunov function [Fang & Zhang (2005)]

Φ(r) := exp

(∫ r

0

dz

1 + z log+ z

)
[r > 0].

Notice that
Φ′(r)[1 + r log+ r ] = Φ(r) for all r ≥ 0. (11)
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L2–formulation

Ideas in the proof of Theorem 4 (continued)

By the Chain Rule:

Φ
(
‖D(t)‖2

L2

)
= Φ

(
‖u0‖2

L2

)
+

∫ t

0
Φ′
(
‖D(s)‖2

L2

) d

ds
‖D(s)‖2

L2

Since

d

ds
‖D(s)‖2

L2 = 2 〈Ḋ(s) , D(s)〉L2 = 2 〈 1
2
D′′(s) + b(V (s) + D(s)) , D(s)〉L2 ,

we get

Φ
(
‖D(t)‖2

L2

)
= Φ

(
‖u0‖2

L2

)
−
∫ t

0
Φ′
(
‖D(s)‖2

L2

) ∥∥D′(s)
∥∥2

L2 ds

+ 2

∫ t

0
Φ′
(
‖D(s)‖2

L2

)
〈b(V (s) + D(s)) ,D(s)〉L2 ds. (12)

From the L log L growth of b, can deduce

〈b(V (s) + D(s)) ,D(s)〉L2 ≤ C̄(b,M)
{
‖D(s)‖2

L2 log L + ‖D(s)‖2
L2 + 1

}
.

Consequence of Gross’ log-Sobolev inequality:

‖h‖2
L2 log L ≤ ε‖h

′‖2
L2 + Kε‖h‖2

L2 + ‖h‖2
L2 log+

(
‖h‖2

L2

)
+ e−1,

with ε := 1/(2C̄(b,M)) to get

〈b(V (s) + D(s)) ,D(s)〉L2 ≤ 1
2
‖D′(s)‖2

L2 +c∗
{
‖D(s)‖2

L2 + ‖D(s)‖2
L2 log+

(
‖D(s)‖2

L2

)
+ 1
}
.
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L2–formulation

Ideas in the proof of Theorem 4 (continued)

Combine with (12) to get rid of the term with D ′(s):

Φ
(
‖D(t)‖2

L2

)
≤ Φ

(
‖u0‖2

L2

)
+C∗

∫ t

0
Φ′
(
‖D(s)‖2

L2

) {
1 + ‖D(s)‖2

L2 log+

(
‖D(s)‖2

L2

)}
ds.

Combine with the property (11) of Φ to get

Φ
(
‖D(t)‖2

L2

)
≤ Φ

(
‖u0‖2

L2

)
+ C

∫ t

0

Φ
(
‖D(s)‖2

L2

)
ds, (13)

From Gronwall’s inequality:

sup
R>0

E
[
Φ
(
‖dR(T ∧ τ(R) ∧ τM(R)‖2

L2

)]
≤ C(b ,M ,T ). (14)
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L2–formulation

Conclusion

Finally, we prove (8):

P {τ(R) < τ ∧ T}
6 P {τ(R) < τ ∧ T ≤ τM(R)}+ P {τM(R) < T}

6 P
{

Φ
(
‖d(T ∧ τ(R) ∧ τM(R))‖2

L2

)
≥ Φ

(
(R −M)2)}+

AT

M
(by (10))

6
C(b ,M ,T )

Φ ((R −M)2)
+

AT

M
. (by (14))

Let R →∞, then M →∞, to obtain (8).
Theorem 4 is proved. �

Conclusion. The Bonder-Groisman condition is essentially optimal!
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