Global solutions to reaction-diffusion equations
with super-linear drift and multiplicative noise

Robert C. Dalang

Ecole Polytechnique Fédérale de Lausanne

Based on joint work with:

Davar Khoshnevisan (Univ. of Utah), = Tusheng Zhang (Univ. of Manchester)

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang



The stochastic pde

o 1 82

et = 55

r u(t,x) + b(u(t,x)) +o(u(t,x) W(t,x), (1)

t>0, xe€]0,1],
W is space-time white noise,
homogeneous Dirichlet boundary conditions:
u(t,0)=u(t,1)=0 for all t > 0,

initial condition: u(0,x) = wo(x), x € [0,1].
b,o:R—R
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The stochastic pde

o 1 82

et = 55

r u(t,x) + b(u(t,x)) +o(u(t,x) W(t,x), (1)

t>0, xe€]0,1],
W is space-time white noise,
homogeneous Dirichlet boundary conditions:
u(t,0)=u(t,1)=0 for all t > 0,
initial condition: u(0,x) = wo(x), x € [0,1].
b,o:R—R
Classical case: b and o are globally Lipschitz (implies linear growth).

Krylov & Rozovskii (1979), Walsh (1986), ...

Here: b and o will be locally Lipschitz with superlinear growth.
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Related literature

Related literature on spde’s with coefficients with superlinear growth

Mueller (1991). Considers b(u) =0, o(u) = u”, with 1 <~ < 3 (locally
Lipschitz, superlinear growth). Establishes existence of a global solution.
Krylov (1996). Considers (essentially) b(u) = u, |o(u)| < c|u|?, with
1<y < % Establishes existence of a global solution.

Mueller & Sowers (1993). b =0, o(u) = u”. Establish that for v large enough,
there is blowup in finite time.

Mueller (2000). b =0, o(u) = u”, v > 3. There exists 7 < oo a.s. such that

P<lim sup u(t,x) =400 > 0.
7 xe[o0,1]
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Related literature

Related literature on spde’s with coefficients with superlinear growth

Mueller (1991). Considers b(u) =0, o(u) = u”, with 1 <~ < 3 (locally
Lipschitz, superlinear growth). Establishes existence of a global solution.
Krylov (1996). Considers (essentially) b(u) = u, |o(u)| < c|u|?, with
1<y < % Establishes existence of a global solution.

Mueller & Sowers (1993). b =0, o(u) = u”. Establish that for v large enough,
there is blowup in finite time.

Mueller (2000). b =0, o(u) = u”, v > 3. There exists 7 < oo a.s. such that

P<lim sup u(t,x) =400 > 0.
7 xe[o0,1]

Monotonicity conditions: Donati-Martin & Pardoux (1993), Cerrai (2003),
Liu & Rockner (2015).
Typical case: b(u) = —u® (locally Lipschitz, but pushes back towards origin).

Here: b(u) will push towards +oo.
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Related literature

Deterministic case: o =0

Case of o.d.e.’s:
u'(t) = b(u(t)), u(0) = wo, b:R—Ry.

Then finite-time blowup occurs if and only if Osgood'’s condition holds:

(b1 400 quickly enough for the integral to be finite).

Example: b(u) = u” with v > 1. Then finite-time blowup occurs.
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Related literature

Deterministic case: o = 0, continued

Deterministic heat equation: 0 =0, b(u) = u”, v > 1:

2
D utx) = 20 ultx) + (e, ) )
x €]0,1[, t>0,
Dirichlet b.c.
u(0,x) = cuo(x), where up >0, ug Z0, up € C([0,1],R4), ¢ > 0.
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Related literature

Deterministic case: o = 0, continued

Deterministic heat equation: 0 =0, b(u) = u”, v > 1:
1o
2 0x?
x €]0,1[, t>0,
Dirichlet b.c.
u(0,x) = cuo(x), where up >0, ug Z0, up € C([0,1],R4), ¢ > 0.

t,x) = u(t,x) + (u(t,x))”, 2

PTa

e v €]1,3[: all classical solutions blow up in finite time.
o v>3:
o for c large enough, all classical solutions blow up in finite time.
o for ¢ small enough, there exist small global solutions (for ¢ small, u” is

small, and the solution stays near 0).
o there exist small stationary solutions.

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang



Related literature

Deterministic case: o = 0, continued

Deterministic heat equation: 0 =0, b(u) = u”, v > 1:

2
D utx) = 20 ultx) + (e, ) )
x €]0,1[, t>0,
Dirichlet b.c.
u(0,x) = cuo(x), where up >0, ug Z0, up € C([0,1],R4), ¢ > 0.

e v €]1,3[: all classical solutions blow up in finite time.
o v>3:
o for c large enough, all classical solutions blow up in finite time.
o for ¢ small enough, there exist small global solutions (for ¢ small, u” is

small, and the solution stays near 0).
o there exist small stationary solutions.

Reference: Galaktionov & Vasquez (2002).

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang



Deterministic versus stochastic

Bonder & Groisman (2009)

Corollary. The deterministic heat equation (2) may have a global solution even

in the case where
/ vz
1 b(z)

For instance, this occurs if b(z) = z7 and v > 3.
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Deterministic versus stochastic

Bonder & Groisman (2009)

Corollary. The deterministic heat equation (2) may have a global solution even

in the case where
/ vz
1 b(z)

For instance, this occurs if b(z) = z7 and v > 3.

Theorem 1 (Bonder & Groisman, 2009)
Suppose o = g9 #0, b > 0, b is convex and

/+oo £ _ +oo
1 b(z)

Then finite-time blowup occurs in the SPDE (1), that is, there exists T < 400
a.s. such that

lim sup u(t,x) = +oo a.s.
17 xe[0,1]
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Deterministic versus stochastic

Question

Is the Bonder & Groisman result optimal?

/+oo i oo
1 b(z) ’

For example, what happens for b(z) = |z|log, |z| ?

Question. If

is there finite-time blowup?
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Notion of solution to the stochastic heat equation

Definition

A random field solution u = {u(t,x), t >0, x € [0,1]} of the stochastic heat
equation (1) is a jointly measurable, adapted process such that, for all
(t,x) € Ry x [0,1],

u(t, x) = (Ge % t0)(x) + / Ge—(x,) b(u(s, y)) dsdy

[0,¢]x[0,1]

+ / Gees(x, ) o{u(s, y)) Wi, dy);
[0,t] x[0,1]

where G¢(x,y) is the heat kernel with zero Dirichlet boundary conditions.
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Notion of solution to the stochastic heat equation

Definition

A random field solution u = {u(t,x), t >0, x € [0,1]} of the stochastic heat
equation (1) is a jointly measurable, adapted process such that, for all
(t,x) € Ry x [0,1],

u(t, x) = (Ge % t0)(x) + / Ge—(x,) b(u(s, y)) dsdy

[0,¢]x[0,1]

+ / Gees(x, ) o{u(s, y)) Wi, dy);
[0,t] x[0,1]

where G¢(x,y) is the heat kernel with zero Dirichlet boundary conditions.

Remark

The stochastic integral is a “localized Walsh integral,” that is, we only require
that

/ [Gees(x, ¥) o(u(s, )P dedy 00 2:5.,
[0,] x[0,1]

and do not require that the expectation of this integral be finite.
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Results
Main result

Notation. For oo €]0,1],
cg o= {f :[0,1] — R such that £(0) = £(1) = 0 and

Hf”(cg = sup M < OO}

0<x<y<1 |y —x|®
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Results
Main result

Notation. For oo €]0,1],
cg o= {f :[0,1] — R such that £(0) = £(1) = 0 and

Hf”(cg = sup M < OO}

0<x<y<1 |y —x|®

Theorem 2 (D., Khoshnevisan & Zhang (2017))
Suppose that:

I. uo € Upca<1Cq';

ii. b and o are locally Lipschitz functions such that
|b(z)| = O(|z|log|z]) and |o(2)| = o (|z|(|og |z\)1/4) . asz — %oo.

Then the stochastic heat equation (1) has a random field solution u in
C(R4+ x [0,1]) (global solution), and this solution is unique. In particular, u
satisfies

sup sup |u(t,x)| < oo a.s. forall T €]0,00].
te0,T] x€[0,1]
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Preliminary study

Case where b and o are globally Lipschitz

Notation. For a globally Lipschitz function f : R — R, there are constants c(f)
and L(f) such that

F(2)] < c(f) + L(f)|z|, forall z€R.

Remark. One possible choice for L(f) is the Lipschitz constant HfH(C(l) of f. In
this case, one can take ¢(f) = |f(0)|. Often, the smallest possible value of
L(f) is smaller than Hf”C(l).
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Preliminary study

Case where b and o are globally Lipschitz

Notation. For a globally Lipschitz function f : R — R, there are constants c(f)
and L(f) such that

F(2)] < c(f) + L(f)|z|, forall z€R.

Remark. One possible choice for L(f) is the Lipschitz constant HfH(C(l) of f. In
this case, one can take ¢(f) = |f(0)|. Often, the smallest possible value of
L(f) is smaller than Hf||<c(1)~

Proposition

Let u be the solution of (1). There exists A < +oo such that, for all t > 0, for

all k € [2, v/L(b)/L(c)?],

k
: b))\ .
XZ?O?HIE(Mt,x)l)<[A<||uo||Loo+L(b)+m> ep(AL(bm} (3)
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Preliminary study
Proof of Proposition

(un): sequence of Picard iterates used to construct the solution of (1).

Define
N3 k(up) :=sup sup (e”gtHun(t,x)Hk) .
t>0x€[0,1]

By a direct calculation:

Ng k(unt1) < Cax + Lk N «(un), (4)
where

L(b) K21 (0)
L/gﬁk = Ccmax <B s W

and Cga« is the constant on the r.h.s. of (3).
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Preliminary study
Proof of Proposition

(un): sequence of Picard iterates used to construct the solution of (1).

Define
N3 k(up) :=sup sup (e”gtHun(t,x)Hk) .
t>0x€[0,1]

By a direct calculation:

Nk (uns1) < Coe + Lg i Ngie(un), (4)
where
L(b) kY2L(c
L/gﬁk = Ccmax <(ﬁ) s /81/5)>

and Cga« is the constant on the r.h.s. of (3).
Choose 3 = 16¢*L(b). Then

L - 1 kY2L(0) 1
16cL(b),k S MAX| 1o 72[L(b)]1/4 <3 (5)

since 2 < k < 4/L(b)/L(c)?. Then (4) and (5) imply:

Nlﬁc“L(b),k(”) < limsup MGC“L(b),k(uﬁ) < 2Ck-
n—-o0o

The Proposition is proved with A = 16¢*.
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Preliminary study

Uniform moment bounds

Let u be the solution of (1).

Theorem 3

Suppose up € C§, « €]0,1]. Let w = max(12,6/«), fix To > 0.

Assume that /L(b) > wL(c)?

Then there exists A < oo such that, for all T €]0, To], for all

€ ] w, «/L(b)/L(a)z],

E ( sup  sup |u(t,x)|k> (6)
te[0,T] x€[0,1]
< [A(l v T)(H%/\%) <||uoHcg + K2 My + K2 MMz AT T)]k )
where
My = c(b) + c(0); Mo i=L(b) + L{o); Ms i= [lugllio= + % + E";
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Preliminary study
Idea of proof of Theorem 3

By the Dirichlet boundary condition,
|u(t, x)| = [u(t, x) — u(t, 0)].

Do a careful estimate of E[|u(t, x) — u(s, y)|*], keeping track of Lipschitz
constants:

k
Eflut.x) — u(s.0)/" < [A(lluolleg + K2 Ma + K2 MaMs 41O

x (|t —s| 315 4 |x — y|*"5)"
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Preliminary study
Idea of proof of Theorem 3

By the Dirichlet boundary condition,
|u(t, x)| = [u(t, x) — u(t, 0)].

Do a careful estimate of E[|u(t, x) — u(s, y)|*], keeping track of Lipschitz
constants:

k
Eflut.x) — u(s.0)/" < [A(lluolleg + K2 Ma + K2 MaMs 41O

x (|t —s| 315 4 |x — y|*"5)"

In order to get the supremum inside the expectation, use an anisotropic
Kolmogorov Continuity Theorem [D., Khoshnevisan & E. Nualart (2007)]:

lu(t,x) — u(s, y)|* < r.hs. of (6)

E sup ]ka—w

(ts,;)t#és‘;_y) |:‘t _ s|%/\% 4 ‘X _ y|a/\%

for 5 €]%, 1[.

This proves Theorem 3.
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Proof of main result
Ideas in the proof of Theorem 2

Recall the statement:

Theorem (D., Khoshnevisan & Zhang (2017))

Suppose that vy € Uo<a<1Cq, and b and o are locally Lipschitz functions such
that

|b(z)| = O(|z|log|z]) and |o(2)| = o (|z|(|og |z\)1/4) . as x — oo,

Then the stochastic heat equation (1) has a unique (global solution).
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Proof of main result
Ideas in the proof of Theorem 2

Recall the statement:

Theorem (D., Khoshnevisan & Zhang (2017))

Suppose that vy € Uo<a<1Cq, and b and o are locally Lipschitz functions such
that

|b(z)| = O(|z|log|z]) and |o(2)| = o (|z|(|og |z\)1/4) . as x — oo,

Then the stochastic heat equation (1) has a unique (global solution).

Proof. Define the truncation of the function b(z):

b(—N) if z< —N,
bu(z) == b(z)  if |z <N,
b(N) ifz> N.

on(z) is defined similarly. Then by and oy are globally Lipschitz.
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

In the spde, replace b by by and o by op:

2

o) 10 .
au;\/(t,x) = EWUN(t’X) + bn(un(t,x)) +o(un(t,x)) W(t,x), (7)

with same b.c. and i.c. Then (7) has globally Lipschitz coefficients.
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

In the spde, replace b by by and o by op:
D (e = 2 () + buun(e, ) + olune. ) W(ex). (1)
atuN ) —28X2UN 5 N UN\T, o\un\t, ) )

with same b.c. and i.c. Then (7) has globally Lipschitz coefficients.

Suppose (for simplicity) that b(z) = 61 + 62|z|log, |z|. Then
L(bn) = 62(1+logN),  L(ow) = o((log N)*/*).

In particular,

V L(bN) —

Tlom)y Mt T
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

In the spde, replace b by by and o by op:
D (e = 2 () + buun(e, ) + olune. ) W(ex). (1)
atuN ) —28X2UN 5 N UN\T, o\un\t, ) )

with same b.c. and i.c. Then (7) has globally Lipschitz coefficients.

Suppose (for simplicity) that b(z) = 61 + 62|z|log, |z|. Then

L(by) = 62(1 + log N), L(on) = of(log N)*).

In particular,

V L(bN) —

(L(O’N))2 N—+oo + oo.
Define

mny = inf{t >0: sup |un(t,x)| > N}.
x€[0,1]
Will show:
1. . 1
Too := lim 7y = +00 a.s.
N— oo
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

Fix € > 0. Then

P{riy <e}=PQ sup sup |un(t,x)|>Np.
te[0,e] x€[0,1]

By Chebychev, this is

E

sup sup |un(t, x)|k] (k> w =max(12, 2))

1
< —
S ONK T | o] xefo.1]
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

Fix e > 0. Then
P{ry <e}=P< sup sup |un(t,x) > Np.
te[0,e] x€[0,1]
By Chebychev, this is
- E

< =
S ONK T | o] xefo.1]

sup sup |un(t, x)|k] (k> w =max(12, 2))

By Theorem 3, this is
1
Nk
—0 as N — 400, if € =¢€o > 0 is small enough.

k
< [AHuoHCg (B + log N)e™ '°€N} = C (B + log N)k N<A=—D

Therefore, 7L, > €9 > 0 as.
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

Therefore, non-explosion is guaranteed for €9 > 0 units of time.

By the Markov property, can restart at time €9: non-explosion is guaranteed for
2¢e0 units of time, ..., kep units of time, for all k.
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Proof of main result

Ideas in the proof of Theorem 2 (continued)

Therefore, non-explosion is guaranteed for €9 > 0 units of time.

By the Markov property, can restart at time €9: non-explosion is guaranteed for
2¢e0 units of time, ..., kep units of time, for all k.

For general b: use the previous case + a comparison theorem of Donati-Martin
& Pardoux (1993).

Theorem 2 is proved.
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2 B
L“—formulation

Another formulation of long-term existence

[*—initial condition: uo € L?[0,1] =: 1.2
Consider 1.2 -solutions: solutions up to a stopping time 7 (variational
formulation of (1)).
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2 B
L“—formulation

Another formulation of long-term existence

[*—initial condition: uo € L?[0,1] =: 1.2
Consider 1.2 -solutions: solutions up to a stopping time 7 (variational
formulation of (1)).

Theorem 4

Suppose in addition that o : R — R is bounded, and |b(z)| = O(|z|log|z|) as
|z| = co. Then, every L2 -solution u of (1) is a long-time solution:

1
sup / lu(t, x))* dx < oo a.s. for every T € [0, oo].
tef0,7AT] Jo
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2 B
L“—formulation

Another formulation of long-term existence

[*—initial condition: uo € L?[0,1] =: 1.2
Consider 1.2 -solutions: solutions up to a stopping time 7 (variational
formulation of (1)).

Theorem 4

Suppose in addition that o : R — R is bounded, and |b(z)| = O(|z|log|z|) as
|z| = co. Then, every 12 -solution u of (1) is a long-time solution:

1
sup / lu(t, x))* dx < oo a.s. for every T € [0, oo].
tef0,7AT] Jo

Remark

(a) Suppose 7 is a maximal time up to which the solution can be constructed:

sup ||u(t)ll 20,1 = o0 a.s.
telo,7[

Then Theorem 4 implies that T = 00 a.s.: sup,¢(o 11 ||u(t)] 20,1y < o0 a.s. for
all T > 0.

(b) The question of the existence of an 1%, -solution of (1) under the
assumptions of Theorem 4 is open.
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L%~formulation
Ideas in the proof of Theorem 4

Define
7(R) :== {inf{tG[O,T[i lu(t)|le > R} if{---}#2,

T otherwise.
To prove that P{sup,_, .7 ||u(t)|lL2 = co} = 0, it suffices to prove that
Rli_)moo P{r(R)<TAT}=0 for all T > 0. (8)
Define

()= [ G y)otuls A(R) ) Wids dy),
[0,6]x[0,1]

and
dr := u— g,
so that on {7 > t},
dr(t) = Tdr(t) + b(va(t) + dr(t)), (9)

subject to initial condition dr(0) = o and Dirichlet b.c.

Global solutions ; super-linear drift and multiplicative noise Robert C. Dalang



2 B
L“—formulation

Ideas in the proof of Theorem 4 (continued)

By the Kolmogorov continuity theorem, vg has a jointly continuous version.
Define

m(R):=inf<t>0: sup |vg(t,x)|>M M > 0.
x€[0,1]

Then

E(sup sup vr(t, x A
sup P{le(R) < T} < sup ( tel0,T] xe[0,1]| ( )] < AT
R>0 R>0 M

Define
D(t) :=dr(t AT(R)ATM(R)), V(1) :=vr(tAT(R)ATM(R)) [0<t<T],
and the Lyapunov function [Fang & Zhang (2005)]

" dz
®(r) :==exp </0 1+z|og+z> [r>0].

&' (r)[1+ rlog, r] = ®(r) for all r > 0. (11)

Notice that
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2 B
L“—formulation

Ideas in the proof of Theorem 4 (continued)

By the Chain Rule:

o (ID(D)I122) = @ ([luoll?-) +/0 o' (ID(s)II7>) %IID(S)IIEQ
Since
%IID(S)IIEz =2(D(s), D(s))12 = 2(3D"(s) + b(V(s) + D(s)), D(s))12,

we get
@ (ID(D)[172) = @ (llwollF2) 7/0 o' (|D(s)]12.) || D'(s)|[7. ds

t
2 [0 (ID(E)I) V() + D). D(s))z b (12)
From the Llog L growth of b, can deduce
(b(V(s) + D(s)), D(s))12 < C(b, M) {ID(5) P2 g, + D)2 +1} -
Consequence of Gross' log-Sobolev inequality:
A1 2 gy, < €llBlIF2 + KellAlZ> + 114122 log, (I1A1Z2) + e,

with & := 1/(2C(b, M)) to get
(b(V(s) + D(5)), D(s))2 < 3D ()72 +cx {ID(s)IF> + I1D(5)II5 2 logy (IID(s)]172) + 1} -
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2 B
L“—formulation

Ideas in the proof of Theorem 4 (continued)

Combine with (12) to get rid of the term with D’(s):

t
o (ID(2)[F2) <@ (||U0H]2Lz)+C*/O &' (ID(s)I72) {1+ [ID()I2 log (IID(s)II72) } ds.
Combine with the property (11) of ¢ to get

t
® ([D(2)]F2) < & (|luollz2 +C/ ® ([1D(s)]122 ) ds, (13)
(12IE:) < @ (i) + € [ (IDEIE)
From Gronwall's inequality:

supE [¢ (HdR(T AT(R) A TM(R)H?LZ)] < C(b,M,T). (14)
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L°—formulation
Conclusion

Finally, we prove (8):
P{r(R)<TAT}

SP{r(R)<7AT <tm(R)}+P{mm(R) < T}
Ar

< P{o(ld(T AT(R) ATu(R)IZ) = @((R—M)?) |+ T (by (10))
C(b,M,T) Ar
< m e (by (14))
Let R — oo, then M — oo, to obtain (8).
Theorem 4 is proved. g

Conclusion. The Bonder-Groisman condition is essentially optimal!
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