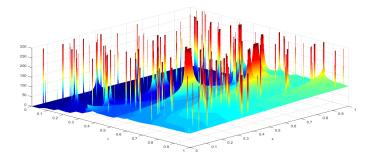
Path regularity of the solution to the stochastic heat equation with Lévy noise

Carsten Chong École Polytechnique Fédérale de Lausanne

Marseille, May 2018

Joint work with Robert Dalang and Thomas Humeau (both EPFL)



$$\begin{cases} (\partial_t - \Delta)u(t, x) = \sigma(u(t, x))\dot{\boldsymbol{L}}(t, x), & (t, x) \in [0, T] \times \mathbb{R}^d, \\ u(0, x) = u_0(x), & x \in \mathbb{R}^d, \end{cases}$$

 σ globally Lipschitz continuous function u_0 continuous bounded initial condition \dot{L} Lévy space-time white noise

Lévy space-time white noise

 $L = (L(A): A \text{ is a bounded Borel subset of } \mathbb{R}_+ \times \mathbb{R}^d)$

- L is an $L^0(\Omega)$ -valued random measure.
- $(L(A_i))_{i\in\mathbb{N}}$ are independent for pairwise disjoint $(A_i)_{i\in\mathbb{N}}$
- The law of L(A) only depends on Leb(A)

Lévy space-time white noise

 $L = (L(A): A \text{ is a bounded Borel subset of } \mathbb{R}_+ \times \mathbb{R}^d)$

- L is an $L^0(\Omega)$ -valued random measure.
- $(L(A_i))_{i\in\mathbb{N}}$ are independent for pairwise disjoint $(A_i)_{i\in\mathbb{N}}$
- The law of L(A) only depends on Leb(A)
- L(A) is N(0, Leb(A))-distributed

Why non-Gaussian noise?

Why non-Gaussian noise?

1 Stable limit theorem: If X_i are i.i.d. symmetric with

$$\mathbb{P}[X_1 > x] \sim ax^{-\alpha}, \quad x \to \infty, \quad (\mathbb{E}[X_1^2] = \infty!)$$

for some $\alpha \in (0,2)$, then

$$\frac{1}{n^{1/\alpha}}\sum_{i=1}^n X_i \stackrel{d}{\to} S\alpha S(v_a)$$

 $S\alpha S(v)$ is the symmetric α -stable distribution with scale v

Why non-Gaussian noise?

1 Stable limit theorem: If X_i are i.i.d. symmetric with

$$\mathbb{P}[X_1 > x] \sim ax^{-\alpha}, \quad x \to \infty, \quad (\mathbb{E}[X_1^2] = \infty!)$$

for some $\alpha \in (0, 2)$, then

$$\frac{1}{n^{1/\alpha}}\sum_{i=1}^n X_i \stackrel{d}{\to} S\alpha S(v_a)$$

 $S\alpha S(v)$ is the symmetric α -stable distribution with scale v

2 Poisson limit theorem: If X_1, \ldots, X_n are i.i.d. with $\mathbb{P}[X_1 = 1] = 1 - \mathbb{P}[X_1 = 0] = \lambda/n$, then

$$\sum_{i=1}^n X_i \stackrel{d}{\to} \mathsf{Poisson}(\lambda)$$

The Gaussian assumption is questionable if ...

- (*Heavy tails*) The noise has infinite variance.
- (Discreteness) The noise exhibits rare but sudden shocks.

The Gaussian assumption is questionable if ...

- (*Heavy tails*) The noise has infinite variance.
- (Discreteness) The noise exhibits rare but sudden shocks.

Applications:

- Physics: Energy dissipation in turbulence
- Biology: Neuron potentials
- Finance: Interest rates

Discrete noise $\dot{W}_{\epsilon} \xrightarrow{\text{CLT}} \text{Continuous noise } \dot{W}$

• Convergence of noise/solution should <u>not</u> be measured in C^{α} topologies.

Discrete noise $\dot{W}_{\epsilon} \xrightarrow{\text{CLT}} \text{Continuous noise } \dot{W}$

- Convergence of noise/solution should <u>not</u> be measured in C^{α} topologies.
- Topology should be "punish" jumps too much!

Discrete noise $\dot{W}_{\epsilon} \xrightarrow{\text{CLT}} \text{Continuous}$ noise \dot{W}

- Convergence of noise/solution should <u>not</u> be measured in C^{α} topologies.
- Topology should be "punish" jumps too much!
- This is different to SDEs with jumps: approximation holds in <u>uniform</u> topology!

Theorem: Lévy–Itô decomposition (Adler et al. 1983)

Every Lévy space-time white noise can be decomposed as

$$L(A) = \underbrace{b \operatorname{Leb}(A)}_{\operatorname{drift}} + \underbrace{cW(A)}_{\operatorname{Gaussian part}} + \underbrace{\int_{\mathbb{R}_+ \times \mathbb{R}^d} \int_{\mathbb{R}} \mathbf{1}_A(s, y) z \mathbf{1}_{|z| \ge 1} \, \mu(\mathrm{d}s, \mathrm{d}y, \mathrm{d}z)}_{\operatorname{big jumps part} = L^P(A)} + \underbrace{\int_{\mathbb{R}_+ \times \mathbb{R}^d} \int_{\mathbb{R}} \mathbf{1}_A(s, y) z \mathbf{1}_{|z| < 1} \, (\mu - \nu) (\mathrm{d}s, \mathrm{d}y, \mathrm{d}z)}_{\operatorname{small jumps part} = L^M(A)}$$

Theorem: Lévy-Itô decomposition (Adler et al. 1983)

Every Lévy space-time white noise can be decomposed as

$$L(A) = \underbrace{b \operatorname{Leb}(A)}_{\operatorname{drift}} + \underbrace{cW(A)}_{\operatorname{Gaussian part}} + \underbrace{\int_{\mathbb{R}_+ \times \mathbb{R}^d} \int_{\mathbb{R}} \mathbf{1}_A(s, y) z \mathbf{1}_{|z| \ge 1} \, \mu(\mathrm{d}s, \mathrm{d}y, \mathrm{d}z)}_{\operatorname{big jumps part} = L^P(A)} + \underbrace{\int_{\mathbb{R}_+ \times \mathbb{R}^d} \int_{\mathbb{R}} \mathbf{1}_A(s, y) z \mathbf{1}_{|z| < 1} \, (\mu - \nu)(\mathrm{d}s, \mathrm{d}y, \mathrm{d}z)}_{\operatorname{small jumps part} = L^M(A)}$$

- μ : Poisson random measure, i.e. $\mu = \sum_{i=1}^{\infty} \delta_{(S_i, Y_i, Z_i)}$
 - $S_i = \text{jump times}, \quad Y_i = \text{jump locations}, \quad Z_i = \text{jump sizes}$

Theorem: Lévy–Itô decomposition (Adler et al. 1983)

Every Lévy space-time white noise can be decomposed as

$$L(A) = \underbrace{b \operatorname{Leb}(A)}_{\operatorname{drift}} + \underbrace{cW(A)}_{\operatorname{Gaussian part}} + \underbrace{\int_{\mathbb{R}_+ \times \mathbb{R}^d} \int_{\mathbb{R}} \mathbf{1}_A(s, y) z \mathbf{1}_{|z| \ge 1} \, \mu(\mathrm{d}s, \mathrm{d}y, \mathrm{d}z)}_{\operatorname{big jumps part} = L^P(A)} + \underbrace{\int_{\mathbb{R}_+ \times \mathbb{R}^d} \int_{\mathbb{R}} \mathbf{1}_A(s, y) z \mathbf{1}_{|z| < 1} \, (\mu - \nu) (\mathrm{d}s, \mathrm{d}y, \mathrm{d}z)}_{\operatorname{small jumps part} = L^M(A)}$$

- μ : Poisson random measure, i.e. $\mu = \sum_{i=1}^{\infty} \delta_{(S_i, Y_i, Z_i)}$
 - $S_i = \text{jump times}, \quad Y_i = \text{jump locations}, \quad Z_i = \text{jump sizes}$
- ν : intensity measure of μ :

$$\nu(\mathrm{d} s, \mathrm{d} y, \mathrm{d} z) = \mathrm{d} s \, \mathrm{d} y \, m(\mathrm{d} z)$$

where *m* is the **Lévy measure** of *L*, i.e.:

$$\int_{\mathbb{R}} (1 \wedge |z|^2) \, m(\mathrm{d} z) < \infty.$$

Examples

• Symmetric α -stable noise with $\alpha \in (0,2)$ if

$$b = c = 0$$
, $m(\mathrm{d}z) = a|z|^{-1-\alpha} \mathrm{d}z$

• Standard Poisson noise if

$$b = c = 0$$
, $m(\mathrm{d}z) = \delta_1(\mathrm{d}z)$

Moments: For $q \in (0,\infty)$ we have

$$\int_{\mathbb{R}} |z|^{q} \mathbf{1}_{|z| \ge 1} \, m(\mathrm{d} z) < \infty \iff \mathbb{E}[|L(A)|^{q}] < \infty \text{ for bounded } A$$

Moments: For $q \in (0,\infty)$ we have

$$\int_{\mathbb{R}} |z|^{q} \mathbf{1}_{|z| \ge 1} m(\mathrm{d}z) < \infty \iff \mathbb{E}[|\mathcal{L}(A)|^{q}] < \infty \text{ for bounded } A$$

 α -stable noise with $\alpha \in (0,2)$

 $\boldsymbol{q} < lpha : \mathbb{E}[|L(A)|^q] < \infty$ $\boldsymbol{q} \ge lpha : \mathbb{E}[|L(A)|^q] = \infty$

Moments: For
$$oldsymbol{q}\in(0,\infty)$$
 we have

$$\int_{\mathbb{R}} |z|^{q} \mathbf{1}_{|z| \ge 1} m(\mathrm{d}z) < \infty \iff \mathbb{E}[|L(A)|^{q}] < \infty \text{ for bounded } A$$

 α -stable noise with $\alpha \in (0,2)$

 $\boldsymbol{q} < lpha : \mathbb{E}[|L(A)|^q] < \infty$ $\boldsymbol{q} \ge lpha : \mathbb{E}[|L(A)|^q] = \infty$

Jump variation: For $p \in [0, 2]$ we have

$$\int_{\mathbb{R}} |z|^{p} \mathbf{1}_{|z|<1} \, m(\mathrm{d} z) < \infty \iff \sum_{(\mathcal{T}_{i}, X_{i}) \in \mathcal{A}} |Z_{i}|^{p} < \infty \text{ for bounded } \mathcal{A}$$

Moments: For
$$oldsymbol{q} \in (0,\infty)$$
 we have

$$\int_{\mathbb{R}} |z|^{q} \mathbf{1}_{|z| \geq 1} \, m(\mathrm{d} z) < \infty \iff \mathbb{E}[|\mathcal{L}(A)|^{q}] < \infty \text{ for bounded } A$$

lpha-stable noise with $lpha \in (0,2)$

 $\boldsymbol{q} < lpha : \mathbb{E}[|L(A)|^q] < \infty$ $\boldsymbol{q} \ge lpha : \mathbb{E}[|L(A)|^q] = \infty$

Jump variation: For $p \in [0, 2]$ we have $\int_{\mathbb{R}} |z|^{p} \mathbf{1}_{|z|<1} m(\mathrm{d}z) < \infty \iff \sum_{\substack{(T_{i}, X_{i}) \in A}} |Z_{i}|^{p} < \infty \text{ for bounded } A$

α -stable noise with $\alpha \in (0,2)$

- Infinitely many jumps on any space-time domain!
- $\alpha < 1$: Jumps summable $\implies L(\omega; dt, dx)$ is a measure!
- $\alpha \geq 1$: Jumps non-summable $\implies L(\omega; dt, dx) = is \text{ not } a$ measure!

Heat equation with Lévy noise (mild formulation):

$$u(t,x) = u_0(t,x) + \int_0^t \int_{\mathbb{R}^d} G(t-s,x-y)\sigma(u(s,y)) L(\mathrm{d} s,\mathrm{d} y)$$
(SHE-L)
where L is a Lévy space-time white noise without Gaussian part.

10/21

Existence and uniqueness

Theorem (C. 2017)

If the Lévy measure m satisfies

$$\int_{|z|\leq 1} |z|^p \, m(\mathrm{d} z) + \int_{|z|> 1} |z|^q \, m(\mathrm{d} z) < \infty$$

with some

$$0 and $q > rac{p}{1 + (1 + rac{2}{d} - p)}$$$

then (SHE-L) admits a mild solution u.

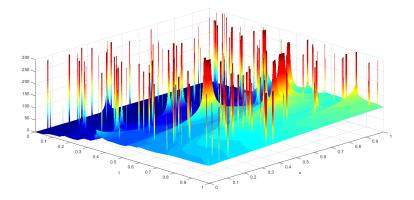
Previous results: Existence and uniqueness if

$$\int_{\mathbb{R}} |z|^p \, m(\mathrm{d} z) < \infty.$$

See Saint Loubert Bié (1998).

What are the path properties of *u*?

What are the path properties of *u*?



• At every jump of the noise, the solution exhibits a singularity

- At every jump of the noise, the solution exhibits a singularity
- If the noise has infinite activity, there are infinitely many singularities on any non-empty open subset

- At every jump of the noise, the solution exhibits a singularity
- If the noise has infinite activity, there are infinitely many singularities on any non-empty open subset
- The paths (t, x) → u(t, x) cannot be continuous, càdlàg, of bounded p-variation etc.

Ideas:

Regularity t → u(t, ·) as a process with values in an infinite dimensional space

Ideas:

- Regularity t → u(t, ·) as a process with values in an infinite dimensional space
- Partial regularity of

•
$$t \mapsto u(t, x)$$
 for fixed x

•
$$x \mapsto u(t, x)$$
 for fixed t

Theorem: see e.g. Peszat and Zabczyk (2007)

With additive Lévy noise, the process $t \mapsto u(t, \cdot)$ does <u>not</u> have a càdlàg modification in $L^{p}_{loc}(\mathbb{R}^{d})$.

Theorem: see e.g. Peszat and Zabczyk (2007)

With additive Lévy noise, the process $t \mapsto u(t, \cdot)$ does <u>not</u> have a càdlàg modification in $L^{p}_{loc}(\mathbb{R}^{d})$.

Why?

• Every jump contributes $G(t - T_i, x - X_i)Z_i$ to the solution.

•
$$G(\epsilon, \cdot) \rightarrow \delta_0$$
 as $\epsilon \rightarrow 0$.

• $\delta_0 \notin L^p_{\text{loc}}(\mathbb{R}^d)$.

Sobolev spaces of real order

Definition

The **Sobolev space of order** $r \in \mathbb{R}$ is given by

$$H_r(\mathbb{R}^d) := \left\{ f \in \mathcal{S}'(\mathbb{R}^d) \colon \xi \mapsto (1+|\xi|^2)^{rac{r}{2}} \mathcal{F}(f)(\xi) \in L^2(\mathbb{R}^d)
ight\},$$

equipped with the norm

$$\|f\|_{H_r(\mathbb{R}^d)} := \left\| (1+|\cdot|^2)^{\frac{r}{2}} \mathcal{F}(f)(\cdot) \right\|_{L^2(\mathbb{R}^d)}$$

Sobolev spaces of real order

Definition

The **Sobolev space of order** $r \in \mathbb{R}$ is given by

$$H_r(\mathbb{R}^d) := \left\{ f \in \mathcal{S}'(\mathbb{R}^d) \colon \xi \mapsto (1+|\xi|^2)^{rac{r}{2}} \mathcal{F}(f)(\xi) \in L^2(\mathbb{R}^d)
ight\},$$

equipped with the norm

$$\|f\|_{H_r(\mathbb{R}^d)} := \left\| (1+|\cdot|^2)^{\frac{r}{2}} \mathcal{F}(f)(\cdot) \right\|_{L^2(\mathbb{R}^d)}$$

We also define the localized spaces

$$H_{r,\mathsf{loc}}(\mathbb{R}^d) := \left\{ f \in \mathcal{S}'(\mathbb{R}^d) \colon heta f \in H_r(\mathbb{R}^d) ext{ for all } heta \in C^\infty_c(\mathbb{R}^d)
ight\}.$$

Sobolev spaces of real order

Definition

The **Sobolev space of order** $r \in \mathbb{R}$ is given by

$$H_r(\mathbb{R}^d) := \left\{ f \in \mathcal{S}'(\mathbb{R}^d) \colon \xi \mapsto (1+|\xi|^2)^{rac{r}{2}} \mathcal{F}(f)(\xi) \in L^2(\mathbb{R}^d)
ight\},$$

equipped with the norm

$$\|f\|_{H_r(\mathbb{R}^d)} := \left\| (1+|\cdot|^2)^{\frac{r}{2}} \mathcal{F}(f)(\cdot) \right\|_{L^2(\mathbb{R}^d)}$$

We also define the localized spaces

$$\mathcal{H}_{r,\mathsf{loc}}(\mathbb{R}^d) := \left\{ f \in \mathcal{S}'(\mathbb{R}^d) \colon heta f \in \mathcal{H}_r(\mathbb{R}^d) ext{ for all } heta \in \mathcal{C}^\infty_c(\mathbb{R}^d)
ight\}.$$

Important example

For $x \in \mathbb{R}^d$, δ_x belongs to $H_r(\mathbb{R}^d)$ if and only if r < -d/2.

Under the existence conditions above, the process $t \mapsto u(t, \cdot)$ has a càdlàg modification in $H_{r, \text{loc}}(\mathbb{R}^d)$ for every r < -d/2.

Under the existence conditions above, the process $t \mapsto u(t, \cdot)$ has a càdlàg modification in $H_{r, \text{loc}}(\mathbb{R}^d)$ for every r < -d/2.

→ Useful for *convergence in law* of stochastic PDEs

Under the existence conditions above, the process $t \mapsto u(t, \cdot)$ has a càdlàg modification in $H_{r, \text{loc}}(\mathbb{R}^d)$ for every r < -d/2.

→ Useful for *convergence in law* of stochastic PDEs

Previous results: Kotelenez (1982), Hausenblas (2009), Zhu, Brzeźniak and Hausenblas (2009)

Novelty: <u>Heavy tailed noise</u> (e.g. α -stable noise)

What about the regularity of

$$t \mapsto u(t, x), \quad x \mapsto u(t, x)$$

for fixed x or fixed t, respectively?

• Suppose $\int_{|z|<1} |z|^p m(\mathrm{d} z) < \infty$ for some $p \in (0, \frac{2}{d} \wedge 2)$.

Then for every $t \in [0, T]$, the section $x \mapsto u(t, x)$ has a continuous modification.

• Suppose $\int_{|z|<1} |z|^p m(\mathrm{d} z) < \infty$ for some $p \in (0, \frac{2}{d} \wedge 2)$.

Then for every $t \in [0, T]$, the section $x \mapsto u(t, x)$ has a continuous modification.

Suppose that $\sigma = 1$ and *m* behaves like $|z|^{-\alpha-1} dz$ around the origin with some $\alpha \in [\frac{2}{d}, 2)$.

Then for every $t \in [0, T]$, the section $x \mapsto u(t, x)$ is almost surely unbounded on every non-empty open subset of \mathbb{R}^d .

• Suppose $\int_{|z|\leq 1} |z|^p m(\mathrm{d} z) < \infty$ for some $p \in (0,1)$.

Then for every $x \in \mathbb{R}^d$, the section $t \mapsto u(t, x)$ has a continuous modification.

3 Suppose that $\sigma = 1$ and *m* behaves like $|z|^{-\alpha-1} dz$ around the origin with some $\alpha \in [1, 2)$.

Then for every $x \in \mathbb{R}^d$, the section $t \mapsto u(t, x)$ is almost surely unbounded on every non-empty open subset of [0, T].

Thank you very much!