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Stochastic heat equation with multiplicative Lévy noise

{
(∂t −∆)u(t, x) = σ(u(t, x))L̇(t, x), (t, x) ∈ [0,T ]× Rd ,
u(0, x) = u0(x), x ∈ Rd ,

σ globally Lipschitz continuous function

u0 continuous bounded initial condition

L̇ Lévy space–time white noise
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Lévy noise

Lévy space–time white noise

L = (L(A) : A is a bounded Borel subset of R+ × Rd)

L is an L0(Ω)-valued random measure.

(L(Ai ))i∈N are independent for pairwise disjoint (Ai )i∈N

The law of L(A) only depends on Leb(A)

L(A) is N(0,Leb(A))-distributed
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Why non-Gaussian noise?

1 Stable limit theorem: If Xi are i.i.d. symmetric with

P[X1 > x ] ∼ ax−α, x →∞, (E[X 2
1 ] =∞!)

for some α ∈ (0, 2), then

1

n1/α

n∑
i=1

Xi
d→ SαS(va)

SαS(v) is the symmetric α-stable distribution with scale v

2 Poisson limit theorem: If X1, . . . ,Xn are i.i.d. with
P[X1 = 1] = 1− P[X1 = 0] = λ/n, then

n∑
i=1

Xi
d→ Poisson(λ)
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Why non-Gaussian noise?

The Gaussian assumption is questionable if ...

(Heavy tails) The noise has infinite variance.

(Discreteness) The noise exhibits rare but sudden shocks.

Applications:

Physics: Energy dissipation in turbulence

Biology: Neuron potentials

Finance: Interest rates
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Why non-Gaussian noise?

Discrete noise Ẇε
CLT−→ Continuous noise Ẇ

Convergence of noise/solution should not be measured in Cα

topologies.

Topology should be “punish” jumps too much!

This is different to SDEs with jumps: approximation holds in
uniform topology!

6 / 21



Why non-Gaussian noise?

Discrete noise Ẇε
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Theorem: Lévy–Itô decomposition (Adler et al. 1983)

Every Lévy space–time white noise can be decomposed as

L(A) = bLeb(A)︸ ︷︷ ︸
drift

+ cW (A)︸ ︷︷ ︸
Gaussian part

+

∫
R+×Rd

∫
R

1A(s, y)z1|z|≥1 µ(ds,dy ,dz)︸ ︷︷ ︸
big jumps part=LP (A)

+

∫
R+×Rd

∫
R

1A(s, y)z1|z|<1 (µ− ν)(ds,dy ,dz)︸ ︷︷ ︸
small jumps part=LM (A)

µ: Poisson random measure, i.e. µ =
∑∞

i=1 δ(Si ,Yi ,Zi )

Si = jump times, Yi = jump locations, Zi = jump sizes

ν: intensity measure of µ:

ν(ds,dy ,dz) = ds dy m(dz)

where m is the Lévy measure of L, i.e.:∫
R

(1 ∧ |z |2)m(dz) <∞.
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where m is the Lévy measure of L, i.e.:∫
R

(1 ∧ |z |2)m(dz) <∞.



Some examples and properties

Examples

Symmetric α-stable noise with α ∈ (0, 2) if

b = c = 0, m(dz) = a|z |−1−α dz

Standard Poisson noise if

b = c = 0, m(dz) = δ1(dz)
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Some examples and properties

Moments: For q ∈ (0,∞) we have∫
R
|z |q1|z|≥1m(dz) <∞ ⇐⇒ E[|L(A)|q] <∞ for bounded A

α-stable noise with α ∈ (0, 2)

q < α : E[|L(A)|q] <∞ q ≥ α : E[|L(A)|q] =∞

Jump variation: For p ∈ [0, 2] we have∫
R
|z |p1|z|<1m(dz) <∞ ⇐⇒

∑
(Ti ,Xi )∈A

|Zi |p <∞ for bounded A

α-stable noise with α ∈ (0, 2)

Infinitely many jumps on any space–time domain!

α < 1: Jumps summable =⇒ L(ω;dt, dx) is a measure!

α ≥ 1: Jumps non-summable =⇒ L(ω;dt,dx) = is not a
measure!
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Stochastic heat equation with Lévy noise

Heat equation with Lévy noise (mild formulation):

u(t, x) = u0(t, x) +

∫ t

0

∫
Rd

G (t − s, x − y)σ(u(s, y)) L(ds, dy)

(SHE-L)
where L is a Lévy space–time white noise without Gaussian part.
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Existence and uniqueness

Theorem (C. 2017)

If the Lévy measure m satisfies∫
|z|≤1

|z |p m(dz) +

∫
|z|>1

|z |q m(dz) <∞

with some

0 < p < 1 +
2

d
and q >

p

1 + (1 + 2
d − p)

then (SHE-L) admits a mild solution u.

Previous results: Existence and uniqueness if∫
R
|z |p m(dz) <∞.

See Saint Loubert Bié (1998).
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Problem formulation

What are the path properties of u?
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Why?

At every jump of the noise, the solution exhibits a singularity

If the noise has infinite activity, there are infinitely many
singularities on any non-empty open subset

The paths (t, x) 7→ u(t, x) cannot be continuous, càdlàg, of
bounded p-variation etc.

13 / 21



Why?

At every jump of the noise, the solution exhibits a singularity

If the noise has infinite activity, there are infinitely many
singularities on any non-empty open subset

The paths (t, x) 7→ u(t, x) cannot be continuous, càdlàg, of
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What kind of path properties?

Ideas:

Regularity t 7→ u(t, ·) as a process with values in an infinite
dimensional space

Partial regularity of

t 7→ u(t, x) for fixed x
x 7→ u(t, x) for fixed t
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A negative result

Theorem: see e.g. Peszat and Zabczyk (2007)

With additive Lévy noise, the process t 7→ u(t, ·) does not have a
càdlàg modification in Lploc(Rd).

Why?

Every jump contributes G (t − Ti , x − Xi )Zi to the solution.

G (ε, ·)→ δ0 as ε→ 0.

δ0 /∈ Lploc(Rd).
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Sobolev spaces of real order

Definition

The Sobolev space of order r ∈ R is given by

Hr (Rd) :=
{
f ∈ S ′(Rd) : ξ 7→ (1 + |ξ|2)

r
2F(f )(ξ) ∈ L2(Rd)

}
,

equipped with the norm

‖f ‖Hr (Rd ) :=
∥∥∥(1 + | · |2)

r
2F(f )(·)

∥∥∥
L2(Rd )

.

We also define the localized spaces

Hr ,loc(Rd) :=
{
f ∈ S ′(Rd) : θf ∈ Hr (Rd) for all θ ∈ C∞c (Rd)

}
.

Important example

For x ∈ Rd , δx belongs to Hr (Rd) if and only if r < −d/2.
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Càdlàg modifications

Theorem (C., Dalang & Humeau 17)

Under the existence conditions above, the process t 7→ u(t, ·) has a
càdlàg modification in Hr ,loc(Rd) for every r < −d/2.

 Useful for convergence in law of stochastic PDEs

Previous results: Kotelenez (1982), Hausenblas (2009), Zhu,
Brzeźniak and Hausenblas (2009)

Novelty: Heavy tailed noise (e.g. α-stable noise)
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Partial regularity

What about the regularity of

t 7→ u(t, x), x 7→ u(t, x)

for fixed x or fixed t, respectively?
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Regularity in space for fixed time

Theorem (C., Dalang & Humeau 17)

1 Suppose
∫
|z|≤1 |z |

p m(dz) <∞ for some p ∈ (0, 2d ∧ 2).

Then for every t ∈ [0,T ], the section x 7→ u(t, x) has a
continuous modification.

2 Suppose that σ = 1 and m behaves like |z |−α−1 dz around the
origin with some α ∈ [ 2d , 2).

Then for every t ∈ [0,T ], the section x 7→ u(t, x) is almost
surely unbounded on every non-empty open subset of Rd .
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Regularity in time for fixed space

Theorem (C., Dalang & Humeau 17)

1 Suppose
∫
|z|≤1 |z |

p m(dz) <∞ for some p ∈ (0, 1).

Then for every x ∈ Rd , the section t 7→ u(t, x) has a
continuous modification.

2 Suppose that σ = 1 and m behaves like |z |−α−1 dz around the
origin with some α ∈ [1, 2).

Then for every x ∈ Rd , the section t 7→ u(t, x) is almost
surely unbounded on every non-empty open subset of [0,T ].
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Thank you very much!
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