## The weak- $A_{\infty}$ condition for harmonic measure

Xavier Tolsa





April 23, 2018

X. Tolsa (ICREA / UAB)

The weak- $A_{\infty}$  condition for harmonic measure

April 23, 2018 1 / 17

#### Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$  open. For  $p \in \Omega$ ,  $\omega^p$  is the harmonic measure in  $\Omega$  with pole in p.

#### Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$  open. For  $p \in \Omega$ ,  $\omega^p$  is the harmonic measure in  $\Omega$  with pole in p. That is, for  $f \in C(\partial\Omega)$ ,  $\int f d\omega^p$  is the value at p of the harmonic extension of f to  $\Omega$ .

#### Harmonic measure

 $\Omega \subset \mathbb{R}^{n+1}$  open. For  $p \in \Omega$ ,  $\omega^p$  is the harmonic measure in  $\Omega$  with pole in p. That is, for  $f \in C(\partial \Omega)$ ,  $\int f d\omega^p$  is the value at p of the harmonic extension of f to  $\Omega$ .

#### Probabilistic interpretation [Kakutani]:

When  $\Omega$  is bounded,  $\omega^{p}(E)$  is the probability that a particle with a Brownian movement leaving from  $p \in \Omega$  escapes from  $\Omega$  through E.



X. Tolsa (ICREA / UAB)

## Rectifiability

We say that  $E \subset \mathbb{R}^d$  is rectifiable if it is  $\mathcal{H}^1$ -a.e. contained in a countable union of curves of finite length.

*E* is *n*-rectifiable if it is  $\mathcal{H}^n$ -a.e. contained in a countable union of  $C^1$  (or Lipschitz) *n*-dimensional manifolds.

## Rectifiability

We say that  $E \subset \mathbb{R}^d$  is rectifiable if it is  $\mathcal{H}^1$ -a.e. contained in a countable union of curves of finite length.

*E* is *n*-rectifiable if it is  $\mathcal{H}^n$ -a.e. contained in a countable union of  $C^1$  (or Lipschitz) *n*-dimensional manifolds.

E is n-AD-regular if

 $\mathcal{H}^n(B(x,r) \cap E) \approx r^n$  for all  $x \in E$ ,  $0 < r \le \operatorname{diam}(E)$ .

*E* is uniformly *n*-rectifiable if it is *n*-AD-regular and there are  $M, \theta > 0$  such that for all  $x \in E$ ,  $0 < r \le \text{diam}(E)$ , there exists a Lipschitz map

$$g: \mathbb{R}^n \supset B_n(0,r) \rightarrow \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap g(B_n(0,r))) \geq \theta r^n.$$

X. Tolsa (ICREA / UAB)

## Rectifiability

We say that  $E \subset \mathbb{R}^d$  is rectifiable if it is  $\mathcal{H}^1$ -a.e. contained in a countable union of curves of finite length.

*E* is *n*-rectifiable if it is  $\mathcal{H}^n$ -a.e. contained in a countable union of  $C^1$  (or Lipschitz) *n*-dimensional manifolds.

E is n-AD-regular if

 $\mathcal{H}^n(B(x,r) \cap E) \approx r^n$  for all  $x \in E$ ,  $0 < r \le \operatorname{diam}(E)$ .

*E* is uniformly *n*-rectifiable if it is *n*-AD-regular and there are  $M, \theta > 0$  such that for all  $x \in E$ ,  $0 < r \le \text{diam}(E)$ , there exists a Lipschitz map

$$g: \mathbb{R}^n \supset B_n(0,r) \rightarrow \mathbb{R}^d, \qquad \|\nabla g\|_{\infty} \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap g(B_n(0,r))) \geq \theta r^n.$$

Uniform *n*-rectifiability is a quantitative version of *n*-rectifiability introduced by David and Semmes.

X. Tolsa (ICREA / UAB)

## Metric properties of harmonic measure

- In the plane if  $\Omega$  is simply connected and  $\mathcal{H}^1(\partial \Omega) < \infty$ , then  $\mathcal{H}^1 \approx \omega^p$ . (F.& M. Riesz)
- Many results in  $\mathbb C$  using complex analysis (Makarov, Jones, Bishop, Wolff,...).
- The analogue of Riesz theorem fails in higher dimensions (counterexamples by Wu and Ziemer).
- In higher dimension, need real analysis techniques.
   Connection with uniform rectifiability studied recently by Hofmann, Martell, Uriarte-Tuero, Mayboroda, Azzam, Badger, Bortz, Toro, Akman, etc.
- A basic result of Dahlberg: If Ω is a Lipschitz domain, then ω ∈ A<sub>∞</sub>(ℋ<sup>n</sup>|<sub>∂Ω</sub>).
- What happens in more general domains?

X. Tolsa (ICREA / UAB)

- For  $x, y \in \overline{\Omega}$ , a curve  $\gamma \subset \overline{\Omega}$  from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ , and

• 
$$\mathcal{H}^1(\gamma) \leq C |x-y|$$
.

- For x, y ∈ Ω, a curve γ ⊂ Ω from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ , and
  - $\mathcal{H}^1(\gamma) \leq C |x-y|$ .
- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.

- For x, y ∈ Ω, a curve γ ⊂ Ω from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ , and
  - $\mathcal{H}^1(\gamma) \leq C |x-y|$ .
- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.
- Ω is semiuniform if all x ∈ Ω, y ∈ ∂Ω are connected by a C-cigar curve.

- For x, y ∈ Ω, a curve γ ⊂ Ω from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ , and

• 
$$\mathcal{H}^1(\gamma) \leq C |x-y|$$
.

- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.
- Ω is semiuniform if all x ∈ Ω, y ∈ ∂Ω are connected by a C-cigar curve.
- $\Omega$  is NTA if it is uniform and has exterior corkscrews,

- For  $x, y \in \overline{\Omega}$ , a curve  $\gamma \subset \overline{\Omega}$  from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ , and

• 
$$\mathcal{H}^1(\gamma) \leq C |x-y|$$
.

- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.
- Ω is semiuniform if all x ∈ Ω, y ∈ ∂Ω are connected by a C-cigar curve.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at ∂Ω there is another ball B' ⊂ B \ Ω with r(B') ≈ r(B).

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open.

- For  $x, y \in \overline{\Omega}$ , a curve  $\gamma \subset \overline{\Omega}$  from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z, \Omega^c)$ , and •  $\mathcal{H}^1(\gamma) \leq C |x-y|$ .
- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.
- $\Omega$  is semiuniform if all  $x \in \Omega$ ,  $y \in \partial \Omega$  are connected by a *C*-cigar curve.
- Ω is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at ∂Ω there is another ball B' ⊂ B \ Ω with r(B') ≈ r(B).

NTA 
$$\subsetneq$$
 uniform  $\subsetneq$  semiuniform.

X. Tolsa (ICREA / UAB)

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open.

- For  $x, y \in \overline{\Omega}$ , a curve  $\gamma \subset \overline{\Omega}$  from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z,\Omega^c)$ , and

• 
$$\mathcal{H}^1(\gamma) \leq C |x-y|$$
.

- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.
- Ω is semiuniform if all x ∈ Ω, y ∈ ∂Ω are connected by a C-cigar curve.
- $\Omega$  is NTA if it is uniform and has exterior corkscrews, i.e. for every ball *B* centered at  $\partial \Omega$  there is another ball  $B' \subset B \setminus \overline{\Omega}$  with  $r(B') \approx r(B)$ .

A non trivial NTA domain:



X. Tolsa (ICREA / UAB)

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open.

- For  $x, y \in \overline{\Omega}$ , a curve  $\gamma \subset \overline{\Omega}$  from x to y is a C-cigar curve with bounded turning if
  - $\min(\mathcal{H}^1(\gamma(x,z)), \mathcal{H}^1(\gamma(y,z))) \leq C \operatorname{dist}(z,\Omega^c)$ , and

• 
$$\mathcal{H}^1(\gamma) \leq C |x-y|$$
.

- $\Omega$  is uniform if all  $x, y \in \Omega$  are connected by a *C*-cigar curve.
- $\Omega$  is semiuniform if all  $x \in \Omega$ ,  $y \in \partial \Omega$  are connected by a *C*-cigar curve.
- $\Omega$  is NTA if it is uniform and has exterior corkscrews, i.e. for every ball B centered at  $\partial\Omega$  there is another ball  $B' \subset B \setminus \overline{\Omega}$  with  $r(B') \approx r(B)$ .

Example: The complement of this Cantor set is uniform but not NTA:

X. Tolsa (ICREA / UAB)

#### Harmonic measure in different types of domains

Definition: We say that  $\omega \in A_{\infty}$  if, for any ball *B* centered in  $\partial\Omega$  and  $p \in \Omega \setminus 2B$ ,  $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$  uniformly.

#### Harmonic measure in different types of domains Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$ , $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (David, Jerison / Semmes)

If  $\Omega$  is NTA and  $\partial \Omega$  is uniformly n-rectifiable, then  $\omega \in A_{\infty}$ .

## Harmonic measure in different types of domains

Definition: We say that  $\omega \in A_{\infty}$  if, for any ball *B* centered in  $\partial\Omega$  and  $p \in \Omega \setminus 2B$ ,  $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$  uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let  $\Omega \subset \mathbb{R}^{n+1}$  be uniform, with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ .

## Harmonic measure in different types of domains

Definition: We say that  $\omega \in A_{\infty}$  if, for any ball *B* centered in  $\partial\Omega$  and  $p \in \Omega \setminus 2B$ ,  $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega\cap B})$  uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let  $\Omega \subset \mathbb{R}^{n+1}$  be uniform, with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ .

(b)  $\partial \Omega$  is uniformly n-rectifiable.

#### Harmonic measure in different types of domains Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$ , $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let  $\Omega \subset \mathbb{R}^{n+1}$  be uniform, with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ .

- (b)  $\partial \Omega$  is uniformly n-rectifiable.
  - (b)  $\Rightarrow$  (a) by Hofmann and Martell.

#### Harmonic measure in different types of domains Definition: We say that $\omega \in A_{\infty}$ if, for any ball *B* centered in $\partial\Omega$ and $p \in \Omega \setminus 2B$ , $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$ uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let  $\Omega \subset \mathbb{R}^{n+1}$  be uniform, with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ .

- (b)  $\partial \Omega$  is uniformly n-rectifiable.
  - (b)  $\Rightarrow$  (a) by Hofmann and Martell.
  - (a) ⇒ (b) by Hofmann, Martell and Uriarte-Tuero (alternative argument by Azzam, Hofmann, Martell, Nyström and Toro).

## Harmonic measure in different types of domains

Definition: We say that  $\omega \in A_{\infty}$  if, for any ball *B* centered in  $\partial\Omega$  and  $p \in \Omega \setminus 2B$ ,  $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$  uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let  $\Omega \subset \mathbb{R}^{n+1}$  be uniform, with  $\partial\Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ . (b)  $\partial\Omega$  is uniformly n-rectifiable.

Theorem (Azzam) Let  $\Omega \subset \mathbb{R}^{n+1}$ , with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ . (b)  $\partial \Omega$  is uniformly n-rectifiable and  $\Omega$  is semiuniform.

X. Tolsa (ICREA / UAB)

## Harmonic measure in different types of domains

Definition: We say that  $\omega \in A_{\infty}$  if, for any ball *B* centered in  $\partial\Omega$  and  $p \in \Omega \setminus 2B$ ,  $\omega^p \in A_{\infty}(\mathcal{H}^n|_{\partial\Omega \cap B})$  uniformly.

Theorem (Hofmann, Martell, Uriarte-Tuero) Let  $\Omega \subset \mathbb{R}^{n+1}$  be uniform, with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ . (b)  $\partial \Omega$  is uniformly n-rectifiable.

Theorem (Azzam) Let  $\Omega \subset \mathbb{R}^{n+1}$ , with  $\partial \Omega$  n-AD-regular. TFAE: (a)  $\omega \in A_{\infty}$ . (b)  $\partial \Omega$  is uniformly n-rectifiable and  $\Omega$  is semiuniform.

• A previous partial result by Aikawa and Hirata.

X. Tolsa (ICREA / UAB)

Consider the PDE:

$$\begin{cases} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{cases}$$

X. Tolsa (ICREA / UAB)

Consider the PDE:

$$\begin{cases} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{cases}$$

 $\text{For } x\in\partial\Omega\text{, denote} \quad \textit{Nu}(x)=\sup_{y\in\Gamma(x)}|u(x)|.$ 

Consider the PDE:

 $\left\{ \begin{array}{l} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{array} \right.$ 

For  $x \in \partial \Omega$ , denote  $Nu(x) = \sup_{y \in \Gamma(x)} |u(x)|$ .

#### Theorem (Hofmann, Le)

Let  $\Omega \subset \mathbb{R}^{n+1}$ , with  $\partial \Omega$  n-AD-regular, satisfying the interior corkscrew condition. TFAE:

(a) For some 
$$p > 1$$
, the Dirichlet problem is  $L^p$ -solvable, i.e.  
 $\|Nu\|_{L^p(\mathcal{H}^n|_{\partial\Omega})} \le C \|f\|_{L^p(\mathcal{H}^n|_{\partial\Omega})}$  for all  $f \in L^p(\mathcal{H}^n|_{\partial\Omega})$ .

Consider the PDE:

 $\left\{ \begin{array}{l} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{array} \right.$ 

 $\text{For } x \in \partial \Omega \text{, denote} \quad \textit{Nu}(x) = \sup_{y \in \Gamma(x)} |u(x)|.$ 

#### Theorem (Hofmann, Le)

Let  $\Omega \subset \mathbb{R}^{n+1}$ , with  $\partial \Omega$  n-AD-regular, satisfying the interior corkscrew condition. TFAE:

(a) For some 
$$p > 1$$
, the Dirichlet problem is  $L^p$ -solvable, i.e.  
 $\|Nu\|_{L^p(\mathcal{H}^n|_{\partial\Omega})} \le C \|f\|_{L^p(\mathcal{H}^n|_{\partial\Omega})}$  for all  $f \in L^p(\mathcal{H}^n|_{\partial\Omega})$ .

(b) The Dirichlet problem is BMO-solvable, i.e. for any ball B centered at  $\partial \Omega$ ,

$$\int_{B\cap\Omega} |\nabla u|^2 \operatorname{dist}(x,\partial\Omega) \, dx \leq C \, \|f\|_{BMO(\mathcal{H}^n|_{\partial\Omega})}^2 \, r(B)^n.$$

X. Tolsa (ICREA / UAB)

Consider the PDE:

 $\left\{ \begin{array}{l} \Delta u = 0 \quad \text{in } \Omega, \\ u = f \quad \text{in } \partial \Omega. \end{array} \right.$ 

 $\text{For } x \in \partial \Omega \text{, denote} \quad \textit{Nu}(x) = \sup_{y \in \Gamma(x)} |u(x)|.$ 

#### Theorem (Hofmann, Le)

Let  $\Omega \subset \mathbb{R}^{n+1}$ , with  $\partial \Omega$  n-AD-regular, satisfying the interior corkscrew condition. TFAE:

(a) For some 
$$p > 1$$
, the Dirichlet problem is  $L^p$ -solvable, i.e.  
 $\|Nu\|_{L^p(\mathcal{H}^n|_{\partial\Omega})} \le C \|f\|_{L^p(\mathcal{H}^n|_{\partial\Omega})}$  for all  $f \in L^p(\mathcal{H}^n|_{\partial\Omega})$ .

(b) The Dirichlet problem is BMO-solvable, i.e. for any ball B centered at  $\partial \Omega$ ,

$$\int_{B\cap\Omega} |\nabla u|^2 \operatorname{dist}(x,\partial\Omega) \, dx \leq C \, \|f\|_{BMO(\mathcal{H}^n|_{\partial\Omega})}^2 \, r(B)^n.$$

(c)  $\omega \in \text{weak} - A_{\infty}$ .

X. Tolsa (ICREA / UAB) The weak- $A_{\infty}$  condition for harmonic measure

•  $\Omega$  satisfies the interior corkscrew condition if for every ball B centered at  $\partial \Omega$  with  $r(B) \leq \text{diam}(\Omega)$  there is another ball  $B' \subset B \cap \Omega$  with  $r(B') \approx r(B)$ .

- $\Omega$  satisfies the interior corkscrew condition if for every ball B centered at  $\partial \Omega$  with  $r(B) \leq \text{diam}(\Omega)$  there is another ball  $B' \subset B \cap \Omega$  with  $r(B') \approx r(B)$ .
- We say that ω ∈ weak-A<sub>∞</sub> if for every ε ∈ (0, 1) there exists δ ∈ (0, 1) such that for every ball B centered at ∂Ω, all p ∈ Ω \ 4B, and all E ⊂ B ∩ ∂Ω, the following holds:

 $\text{if} \quad \mathcal{H}^n(E) \leq \delta \, \mathcal{H}^n(B \cap \partial \Omega), \quad \text{ then } \quad \omega^p(E) \leq \varepsilon \, \omega^p(2B).$ 

- $\Omega$  satisfies the interior corkscrew condition if for every ball B centered at  $\partial \Omega$  with  $r(B) \leq \text{diam}(\Omega)$  there is another ball  $B' \subset B \cap \Omega$  with  $r(B') \approx r(B)$ .
- We say that ω ∈ weak-A<sub>∞</sub> if for every ε ∈ (0,1) there exists δ ∈ (0,1) such that for every ball B centered at ∂Ω, all p ∈ Ω \ 4B, and all E ⊂ B ∩ ∂Ω, the following holds:

 $\text{if} \quad \mathcal{H}^n(E) \leq \delta \, \mathcal{H}^n(B \cap \partial \Omega), \quad \text{ then } \quad \omega^p(E) \leq \varepsilon \, \omega^p(2B).$ 

The weak-A<sub>∞</sub> condition implies ω ≪ H<sup>n</sup>|<sub>∂Ω</sub>.
 But, ω may be non-doubling, and we may have H<sup>n</sup>|<sub>∂Ω</sub> ≰ ω.

- $\Omega$  satisfies the interior corkscrew condition if for every ball B centered at  $\partial \Omega$  with  $r(B) \leq \text{diam}(\Omega)$  there is another ball  $B' \subset B \cap \Omega$  with  $r(B') \approx r(B)$ .
- We say that ω ∈ weak-A<sub>∞</sub> if for every ε ∈ (0, 1) there exists
   δ ∈ (0, 1) such that for every ball B centered at ∂Ω, all p ∈ Ω \ 4B, and all E ⊂ B ∩ ∂Ω, the following holds:

 $\text{if} \quad \mathcal{H}^n(E) \leq \delta \, \mathcal{H}^n(B \cap \partial \Omega), \quad \text{ then } \quad \omega^p(E) \leq \varepsilon \, \omega^p(2B).$ 

- The weak-A<sub>∞</sub> condition implies ω ≪ H<sup>n</sup>|<sub>∂Ω</sub>.
   But, ω may be non-doubling, and we may have H<sup>n</sup>|<sub>∂Ω</sub> ≰ ω.
- Problem: Find a geometric characterization of the weak- $A_{\infty}$  condition.

#### Geometric characterization of the weak- $A_{\infty}$ condition I

 ω ∈ weak−A<sub>∞</sub> + interior corkscrew condition ⇒ ∂Ω is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].

#### Geometric characterization of the weak- $A_{\infty}$ condition I

- ω ∈ weak−A<sub>∞</sub> + interior corkscrew condition ⇒ ∂Ω is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].
- But  $\partial \Omega$  uniformly *n*-rectifiable  $\Rightarrow \omega \in \text{weak}-A_{\infty}$  (Bishop, Jones).

### Geometric characterization of the weak- $A_{\infty}$ condition I

- ω ∈ weak−A<sub>∞</sub> + interior corkscrew condition ⇒ ∂Ω is uniformly n-rectifiable [Hofmann, Martell], [Mourgoglou-T.].
- But  $\partial \Omega$  uniformly *n*-rectifiable  $\Rightarrow \omega \in \text{weak}-A_{\infty}$  (Bishop, Jones).
- The uniform *n*-rectifiability of ∂Ω can be characterized in terms of a corona type decomposition for harmonic measure (Garnett-Mourgoglou-T.).

X. Tolsa (ICREA / UAB)

#### Geometric characterization of the weak- $A_{\infty}$ condition II

 Given x ∈ Ω, y ∈ ∂Ω, a c-carrot curve from x to y is a curve γ ⊂ Ω ∪ {y} with end-points x and y such that dist(z, ∂Ω) ≥ c H<sup>1</sup>(γ(y, z)) for all z ∈ γ, where γ(y, z) is the arc in γ between y and z.

#### Geometric characterization of the weak- $A_{\infty}$ condition II

 Given x ∈ Ω, y ∈ ∂Ω, a c-carrot curve from x to y is a curve γ ⊂ Ω ∪ {y} with end-points x and y such that dist(z, ∂Ω) ≥ c H<sup>1</sup>(γ(y, z)) for all z ∈ γ, where γ(y, z) is the arc in γ between y and z.

• We denote 
$$\delta_{\Omega}(x) = \text{dist}(x, \partial \Omega)$$
.

We say that Ω satisfies the weak local John condition if there are
 λ, θ ∈ (0, 1) such that for every x ∈ Ω there is a Borel set
 F ⊂ B(x, 2δ<sub>Ω</sub>(x)) ∩ ∂Ω with H<sup>n</sup>(F) ≥ θ H<sup>n</sup>(B(x, 2δ<sub>Ω</sub>(x)) ∩ ∂Ω) such
 that every y ∈ F can be joined to x by a λ-carrot curve.

X. Tolsa (ICREA / UAB) The weak- $A_{\infty}$  condition for harmonic measure April 23, 2018 10 / 17

## Our main result I

#### Theorem (Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$  be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then  $\omega \in \text{weak}-A_{\infty}$ .

## Our main result I

#### Theorem (Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$  be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then  $\omega \in \text{weak}-A_{\infty}$ .

Hofmann and Martell conjectured that the converse also holds.

## Our main result I

#### Theorem (Hofmann, Martell)

Let  $\Omega \subset \mathbb{R}^{n+1}$  be an open set with uniformly n-rectifiable boundary satisfying the weak local John condition. Then  $\omega \in \text{weak}-A_{\infty}$ .

Hofmann and Martell conjectured that the converse also holds.

#### Theorem (Azzam, Mourgoglou, T.) Let $\Omega \subset \mathbb{R}^{n+1}$ be onen with a $\Delta D$ regular boundary.

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open with n-AD-regular boundary. If  $\omega \in \text{weak}-A_{\infty}$ , then  $\Omega$  satisfies the weak local John condition.

Putting all together:

Theorem

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

Putting all together:

#### Theorem

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

(a)  $\omega \in \text{weak} - A_{\infty}$ .

Putting all together:

#### Theorem

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

- (a)  $\omega \in \text{weak} A_{\infty}$ .
- (b)  $\partial \Omega$  is uniformly n-rectifiable and  $\Omega$  satisfies the weak local John condition.

Putting all together:

#### Theorem

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

- (a)  $\omega \in \text{weak} A_{\infty}$ .
- (b)  $\partial \Omega$  is uniformly n-rectifiable and  $\Omega$  satisfies the weak local John condition.

#### Remark

Very recently Hofmann and Martell have shown that (b)  $\Rightarrow \Omega$  has big pieces of chord-arc subdomains (BPCAS).

Putting all together:

#### Theorem

Let  $\Omega \subset \mathbb{R}^{n+1}$  be open with n-AD-regular boundary, satisfying the interior corkscrew condition. TFAE:

- (a)  $\omega \in \text{weak} A_{\infty}$ .
- (b)  $\partial \Omega$  is uniformly n-rectifiable and  $\Omega$  satisfies the weak local John condition.

#### Remark

Very recently Hofmann and Martell have shown that (b)  $\Rightarrow \Omega$  has big pieces of chord-arc subdomains (BPCAS). Since BPCAS  $\Rightarrow \omega \in \text{weak}-A_{\infty}$  (Bennewitz, Lewis), we have

$$\mathsf{BPCAS} \iff (a) \iff (b).$$

X. Tolsa (ICREA / UAB)

 For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ<sub>Ω</sub>(p)) ∩ ∂Ω to p.

- For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ<sub>Ω</sub>(p)) ∩ ∂Ω to p.
- We use the Green function to construct the curves. A fundamental property:

For all  $\lambda > 0$ ,  $\{x \in \Omega : g(p, x) > \lambda\}$  is connected and contains p.

- For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ<sub>Ω</sub>(p)) ∩ ∂Ω to p.
- We use the Green function to construct the curves. A fundamental property:

For all  $\lambda > 0$ ,  $\{x \in \Omega : g(p, x) > \lambda\}$  is connected and contains p.

• Important difficulties:

 $\omega^{p}$  may be non doubling.

 $\omega^{p_1}$  and  $\omega^{p_2}$  may be mutually singular.

Otherwise we could argue with different poles  $p_1, p_2, ...$ 

- For p ∈ Ω, we have to build carrot curves that connect a big proportion of the points from B(p, 2δ<sub>Ω</sub>(p)) ∩ ∂Ω to p.
- We use the Green function to construct the curves.
   A fundamental property:

For all  $\lambda > 0$ ,  $\{x \in \Omega : g(p, x) > \lambda\}$  is connected and contains p.

• Important difficulties:

 $\omega^{\rm p}$  may be non doubling.

 $\omega^{p_1}$  and  $\omega^{p_2}$  may be mutually singular.

Otherwise we could argue with different poles  $p_1, p_2, ...$ 

• Let  $\mu = \mathcal{H}^n|_{\partial\Omega}$ . We consider the good set G of points  $x \in \partial\Omega \cap B(p, 2\delta_{\Omega}(p))$  such that

$$\omega^{p}(B(x,r)) \approx \frac{1}{\delta_{\Omega}(p)^{n}} \, \mu(B(x,r)).$$

By the weak- $A_{\infty}$  property,  $\mu(G) \approx \mu(B(p, 2\delta_{\Omega}(p)) \approx \delta_{\Omega}(p)^{n}$ . We want to connect points in G to p.

X. Tolsa (ICREA / UAB)

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point  $x \in \Omega$  to another point  $x' \in \Omega$ , with  $\delta_{\Omega}(x') \approx 100 \, \delta_{\Omega}(x)$ .

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point  $x \in \Omega$  to another point  $x' \in \Omega$ , with  $\delta_{\Omega}(x') \approx 100 \, \delta_{\Omega}(x)$ .

#### Theorem (ACF)

Let  $B(x, R) \subset \mathbb{R}^{n+1}$ , and let  $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$  be nonnegative subharmonic functions. Suppose that that  $u_1(x) = u_2(x) = 0$ and  $u_1 \cdot u_2 \equiv 0$ . Set

$$J(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right)$$

X. Tolsa (ICREA / UAB)

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point  $x \in \Omega$  to another point  $x' \in \Omega$ , with  $\delta_{\Omega}(x') \approx 100 \, \delta_{\Omega}(x)$ .

#### Theorem (ACF)

Let  $B(x, R) \subset \mathbb{R}^{n+1}$ , and let  $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$  be nonnegative subharmonic functions. Suppose that that  $u_1(x) = u_2(x) = 0$ and  $u_1 \cdot u_2 \equiv 0$ . Set

$$J(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right)$$

Then  $J(x, \cdot)$  is non-decreasing in  $r \in (0, R]$ .

X. Tolsa (ICREA / UAB)

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point  $x \in \Omega$  to another point  $x' \in \Omega$ , with  $\delta_{\Omega}(x') \approx 100 \, \delta_{\Omega}(x)$ .

#### Theorem (ACF)

Let  $B(x, R) \subset \mathbb{R}^{n+1}$ , and let  $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$  be nonnegative subharmonic functions. Suppose that that  $u_1(x) = u_2(x) = 0$ and  $u_1 \cdot u_2 \equiv 0$ . Set

$$J(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right)$$

Then  $J(x, \cdot)$  is non-decreasing in  $r \in (0, R]$ .

This formula is a basic tool in free boundary problems.

X. Tolsa (ICREA / UAB)

We use Alt-Caffarelli-Friedman (ACF) monotonicity formula to connect a corkscrew point  $x \in \Omega$  to another point  $x' \in \Omega$ , with  $\delta_{\Omega}(x') \approx 100 \, \delta_{\Omega}(x)$ .

#### Theorem (ACF)

Let  $B(x, R) \subset \mathbb{R}^{n+1}$ , and let  $u_1, u_2 \in W^{1,2}(B(x, R)) \cap C(B(x, R))$  be nonnegative subharmonic functions. Suppose that that  $u_1(x) = u_2(x) = 0$ and  $u_1 \cdot u_2 \equiv 0$ . Set

$$J(x,r) = \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_1(y)|^2}{|y-x|^{n-1}} dy\right) \cdot \left(\frac{1}{r^2} \int_{B(x,r)} \frac{|\nabla u_2(y)|^2}{|y-x|^{n-1}} dy\right)$$

Then  $J(x, \cdot)$  is non-decreasing in  $r \in (0, R]$ .

This formula is a basic tool in free boundary problems. It can be used to "prove connectivity".

X. Tolsa (ICREA / UAB) The weak- $A_{\infty}$  condition for harmonic measure

We want to connect  $x, x' \in \Omega$ . We know that

$$g(p, x) > \lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}},$$
  
 $g(p, x') > \lambda' \approx \frac{\delta_{\Omega}(x')}{\delta_{\Omega}(p)^{n}}.$ 

X. Tolsa (ICREA / UAB)

We want to connect  $x, x' \in \Omega$ . We know that

$$g(p, x) > \lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^n},$$
  
 $g(p, x') > \lambda' \approx \frac{\delta_{\Omega}(x')}{\delta_{\Omega}(p)^n}.$ 

Consider the functions

$$u_1(y) = (g(p, y) - \frac{1}{2}\lambda)^+ \chi_{U_x},$$
$$u_2(y) = (g(p, y) - \frac{1}{2}\lambda')^+ \chi_{U_{x'}}.$$

X. Tolsa (ICREA / UAB)

We want to connect  $x, x' \in \Omega$ . We know that

$$g(p, x) > \lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}},$$
  
 $g(p, x') > \lambda' \approx \frac{\delta_{\Omega}(x')}{\delta_{\Omega}(p)^{n}}.$ 

Consider the functions

$$u_1(y) = (g(p, y) - \frac{1}{2}\lambda)^+ \chi_{U_x},$$

$$u_2(y) = (g(p, y) - \frac{1}{2}\lambda')^+ \chi_{U_{x'}}.$$

If  $u_1 \cdot u_2 \equiv 0$  we get a contradiction using the ACF formula.

X. Tolsa (ICREA / UAB)

We want to connect  $x, x' \in \Omega$ . We know that

$$g(p, x) > \lambda \approx \frac{\delta_{\Omega}(x)}{\delta_{\Omega}(p)^{n}},$$
  
 $g(p, x') > \lambda' \approx \frac{\delta_{\Omega}(x')}{\delta_{\Omega}(p)^{n}}.$ 

Consider the functions

$$u_1(y) = (g(p, y) - \frac{1}{2}\lambda)^+ \chi_{U_x},$$

$$u_2(y) = (g(p, y) - \frac{1}{2}\lambda')^+ \chi_{U_{x'}}.$$

If  $u_1 \cdot u_2 \equiv 0$  we get a contradiction using the ACF formula. In this way we can build "short paths".

Problem:

When we iterate many times the constants worsen and this collapses.

X. Tolsa (ICREA / UAB) The weak- $A_{\infty}$  condition for harmonic measure

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

#### Theorem (David-Semmes)

Let E be n-AD-regular and  $\mu = \mathcal{H}^n|_E$ . Let  $\mathcal{D}_\mu$  be a dyadic lattice of cubes associated to  $\mu$ .

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

#### Theorem (David-Semmes)

Let E be n-AD-regular and  $\mu = \mathcal{H}^n|_E$ . Let  $\mathcal{D}_\mu$  be a dyadic lattice of cubes associated to  $\mu$ . Then E is uniformly n-rectifiable if and only if there exists a partition of  $\mathcal{D}_\mu$  into **trees**  $\mathcal{T} \in I$  satisfying:

Using a corona decomposition we combine the construction of short paths using ACF with geometric arguments.

#### Theorem (David-Semmes)

Let E be n-AD-regular and  $\mu = \mathcal{H}^n|_E$ . Let  $\mathcal{D}_\mu$  be a dyadic lattice of cubes associated to  $\mu$ . Then E is uniformly n-rectifiable if and only if there exists a partition of  $\mathcal{D}_\mu$  into **trees**  $\mathcal{T} \in I$  satisfying:

(a) The family of roots of  $\mathcal{T} \in I$  fulfils the packing condition

$$\sum_{\mathcal{T} \in I: \operatorname{Root}(\mathcal{T}) \subset \mathcal{S}} \mu(\operatorname{Root}(\mathcal{T})) \leq C \, \mu(S) \quad \textit{for all } S \in \mathcal{D}_{\mu}.$$

(b) In each  $T \in I$ , E is "very well approximated" by an n-dimensional Lipschitz graph associated with T (using  $\beta$  coefficients, say).

X. Tolsa (ICREA / UAB)

# Thank you!

X. Tolsa (ICREA / UAB)

The weak- $A_\infty$  condition for harmonic measure

April 23, 2018 17 / 17