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Examples from PDEs point to studying

o(x,8,m) =2 - (§+n) + ¢1(§) + d2(n) + ¢3(§ + 1),

so this is what we will do. ..
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Repeating the argument above we replace the amplitude with
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and obtain that T¢ (f, g)(z) is an average of
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Obstacles:
o Commutators of these operators appear hard to deal with: for now

we assume the amplitude is independent of x.

e It is m which has compact x-support. This means the linear FIOs
here do not have compact z-support.

o Concerning the ‘end-point’ cases, linear H' — L' boundedness is
no longer good enough.
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Can we removing the compact z-support? [Ruzhansky-Sugimoto ’15]

provided a method to go from local boundedness to global boundedness
and applied it in the setting of LP spaces.
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