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Linear operators

Joint with Salvador Rodŕıguez-López (Stockholm) and Wolfgang Staubach (Uppsala).

Consider the wave equation

∂ttu(x, t)−∆xu(x, t) = 0

with initial conditions

u(x, 0) = g(x) and ∂tu(x, 0) = h(x).

The solution to this initial value problem can be written as

u(x, t) =

∫
Rn

(
ĝ(ξ) cos(2π|ξ|t) + ĥ(ξ)

sin(2π|ξ|t)
2π|ξ|

)
e2πix·ξdξ,

so, for example, [Peral ’80] asked if g ≡ 0 when does the estimate

‖u(·, t)‖Lp ≤ Cp‖h‖Lp

hold? More generally we are led to consider a Fourier integral operator

T φa (f)(x) =

∫ amplitude
↓

a(x, ξ)f̂(ξ)ei

phase
↓
φ(x,ξ)dξ

with φ(x, ξ) = x · ξ + |ξ|.

2 / 16



Linear operators
Joint with Salvador Rodŕıguez-López (Stockholm) and Wolfgang Staubach (Uppsala).

Consider the wave equation

∂ttu(x, t)−∆xu(x, t) = 0

with initial conditions

u(x, 0) = g(x) and ∂tu(x, 0) = h(x).

The solution to this initial value problem can be written as

u(x, t) =

∫
Rn

(
ĝ(ξ) cos(2π|ξ|t) + ĥ(ξ)
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Linear operators

T φa (f)(x) =

∫
a(x, ξ)f̂(ξ)eiφ(x,ξ)dξ

Assumptions.

|

det ∂2
x,ξφ(x, ξ)

| ≥ c > 0.

φ(x, ξ) is smooth away from ξ = 0 and positively homogeneous of
degree 1.

a ∈ Smρ,δ meaning

|

∂αξ ∂
β
xa(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|.

Boundedness results. Consider an amplitude a(x, ξ) ∈ Sm1,0 with
compact x-support.

T φa : L2 → L2 when a ∈ S0
1,0. [Hörmander ’71], [Èskin ’70]

T φa : Hp → Lp when m ≤ −(n− 1)|1/p− 1/2| and 1 ≤ p <∞.

T φa : h1 → h1 when m = −(n− 1)/2. [Seeger-Sogge-Stein ’91]

T φa weak-type (1, 1) when m = −(n− 1)/2. [Tao ’04]
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T φa : Hp → Lp when m ≤ −(n− 1)|1/p− 1/2| and 1 ≤ p <∞.

T φa : h1 → h1 when m = −(n− 1)/2. [Seeger-Sogge-Stein ’91]

T φa weak-type (1, 1) when m = −(n− 1)/2. [Tao ’04]

3 / 16



Linear operators

T φa (f)(x) =

∫
a(x, ξ)f̂(ξ)eiφ(x,ξ)dξ

Assumptions.

| det ∂2
x,ξφ(x, ξ)| ≥ c > 0.

φ(x, ξ) is smooth away from ξ = 0 and positively homogeneous of
degree 1.

a ∈ Smρ,δ meaning |∂αξ ∂
β
xa(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|.

Boundedness results. Consider an amplitude a(x, ξ) ∈ Sm1,0 with
compact x-support.

T φa : L2 → L2 when a ∈ S0
1,0. [Hörmander ’71], [Èskin ’70]

T φa : Hp → Lp when m ≤ −(n− 1)|1/p− 1/2| and 1 ≤ p <∞.

T φa : h1 → h1 when m = −(n− 1)/2. [Seeger-Sogge-Stein ’91]

T φa weak-type (1, 1) when m = −(n− 1)/2. [Tao ’04]

3 / 16



Linear operators

T φa (f)(x) =

∫
a(x, ξ)f̂(ξ)eiφ(x,ξ)dξ

Assumptions.

| det ∂2
x,ξφ(x, ξ)| ≥ c > 0.

φ(x, ξ) is smooth away from ξ = 0 and positively homogeneous of
degree 1.

a ∈ Smρ,δ meaning |∂αξ ∂
β
xa(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β|.

Boundedness results. Consider an amplitude a(x, ξ) ∈ Sm1,0 with
compact x-support.

T φa : L2 → L2 when a ∈ S0
1,0.
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Bilinear Operators

In studying various non-linear equations, multilinear oscillatory
integral operators appear. For example [Bernicot-Germain ’10],
[Germain-Masmoudi-Shatah ’12]. A bilinear operator looks like this:

T φa (f, g)(x) =

∫∫
a(x, ξ, η)f̂(ξ)ĝ(η)eiφ(x,ξ,η)dξdη

with |∂αξ ∂
β
η ∂

γ
xa(x, ξ, η)| ≤ Cα,β(1 + |ξ|+ |η|)m−ρ(|α|+|β|)+δ|γ|.

Pseudodifferential case, φ(x, ξ, η) = x · (ξ + η), was studied by
[Coifman-Meyer ’78].

Bilinear Fourier integral operators studied by [Grafakos-Peloso ’10]

under restrictions on the support of the amplitude, and
φ(x, ξ, η) = x · (ξ + η) + ψ(x, ξ, η).

Separable phases φ(x, ξ, η) = φ1(x, ξ) + φ2(x, η) and amplitudes
with compact x-support studied by [Rodŕıguez-López-R-Staubach ’14].
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4 / 16



Bilinear Operators

In studying various non-linear equations, multilinear oscillatory
integral operators appear. For example [Bernicot-Germain ’10],
[Germain-Masmoudi-Shatah ’12]. A bilinear operator looks like this:

T φa (f, g)(x) =

∫∫
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4 / 16



Bilinear Operators

In studying various non-linear equations, multilinear oscillatory
integral operators appear. For example [Bernicot-Germain ’10],
[Germain-Masmoudi-Shatah ’12]. A bilinear operator looks like this:

T φa (f, g)(x) =

∫∫
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4 / 16



Bilinear Operators

In studying various non-linear equations, multilinear oscillatory
integral operators appear. For example [Bernicot-Germain ’10],
[Germain-Masmoudi-Shatah ’12]. A bilinear operator looks like this:

T φa (f, g)(x) =

∫∫
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a(x, ξ, η)f̂(ξ)ĝ(η)eiφ(x,ξ,η)dξdη

with |∂αξ ∂
β
η ∂

γ
xa(x, ξ, η)| ≤ Cα,β(1 + |ξ|+ |η|)m−ρ(|α|+|β|)+δ|γ|.

Pseudodifferential case, φ(x, ξ, η) = x · (ξ + η), was studied by
[Coifman-Meyer ’78].

Bilinear Fourier integral operators studied by [Grafakos-Peloso ’10]

under restrictions on the support of the amplitude, and
φ(x, ξ, η) = x · (ξ + η) + ψ(x, ξ, η).

Separable phases φ(x, ξ, η) = φ1(x, ξ) + φ2(x, η) and amplitudes
with compact x-support studied by [Rodŕıguez-López-R-Staubach ’14].
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Coifman-Meyer decomposition of the amplitude
Consider an amplitude a(x, ξ, η) = a1(x, ξ, η)

↑
|η| ≤ |ξ|

+ a2(x, ξ, η)
↑

|η| ≥ |ξ|

in S0
1,0:

T φa1
(f, g)(x) =

∫∫
a1(x, ξ, η)f̂(ξ)ĝ(η)eiφ(x,ξ,η)dξdη

1 =

∫ ∞
0

∫∫
a1(x, ξ, η)ψ̂(tξ)2f̂(ξ)φ̂(tη)2ĝ(η)eiφ(x,ξ,η)dξdη

dt

t
.

For

a1(x, ξ/t, η/t)ψ̂(ξ)φ̂(η) =

∫∫
m(x, t, u, v)

(1 + |u|+ |v|)N
eiu·ξeiv·ηdudv

we have

|∂αξ,ηa1(x, ξ/t, η/t)| . (1 + |ξ|/t+ |η|/t)−|α|t−|α| = (t+ |ξ|+ |η|)−|α| . 1.

So

a1(x, ξ, η)ψ̂(tξ)φ̂(tη) =

∫∫
m(x, t, u, v)

(1 + |u|+ |v|)N
eiu·tξeiv·tηdudv
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dt

t
.

For

a1(x, ξ/t, η/t)ψ̂(ξ)φ̂(η) =

∫∫
m(x, t, u, v)

(1 + |u|+ |v|)N
eiu·ξeiv·ηdudv

we have

|∂αξ,ηa1(x, ξ/t, η/t)| . (1 + |ξ|/t+ |η|/t)−|α|t−|α| = (t+ |ξ|+ |η|)−|α| . 1.

So

a1(x, ξ, η)ψ̂(tξ)φ̂(tη) =

∫∫
m(x, t, u, v)

(1 + |u|+ |v|)N
eiu·tξeiv·tηdudv

5 / 16



Coifman-Meyer decomposition of the amplitude
Consider an amplitude a(x, ξ, η) = a1(x, ξ, η)

↑
|η| ≤ |ξ|

+ a2(x, ξ, η)
↑

|η| ≥ |ξ|

in S0
1,0:

T φa1
(f, g)(x) =

∫∫
a1(x, ξ, η)f̂(ξ)ĝ(η)eiφ(x,ξ,η)dξdη
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Coifman-Meyer decomposition of the amplitude

And the operator becomes a weighted average in u and v of

∫ ∞
0

∫∫
m(x, t, u, v) ψ̂(tξ)eiu·tξ f̂(ξ) φ̂(tη)eiv·tη ĝ(η) ei

φ1(x, ξ) + φ2(x, η)
↓

φ(x,ξ,η)dξdη
dt

t

=

∫ ∞
0

m(x, t, u, v)T φ1(Qut (f))(x)T φ2(P vt (g))(x)
dt

t
.

It now compares well to the paraproduct
∫∞

0 Qt(f)(x)Pt(g)(x)dtt and

we could prove T φa : L2 × L2 → L1, for example. More generally, if

m ≤ −(n− 1)
(
|1p −

1
2 |+ |

1
q −

1
2 |
)

and a ∈ Sm1,0 then T φa : Lp × Lq → Lr

(1
p + 1

q = 1
r , 1 < p, q <∞).

Examples from PDEs point to studying

φ(x, ξ, η) = x · (ξ + η) + φ1(ξ) + φ2(η) + φ3(ξ + η),

so this is what we will do. . .
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Non-Separable Phases
Repeating the argument above we replace the amplitude with

a1(x, ξ/t, η/t)ψ̂(ξ)φ̂(η)ψ̂(ξ + η)

(
t

|ξ|

)m1+m2
(

t

|ξ + η|

)m3

and obtain that T φa (f, g)(x) is an average of∫ ∞
0

(
Mm ◦Qt ◦ T φ3

|·|m3

)(
(T φ1

|·|m1
◦Qut )(f)(T φ2

t−m2
◦ P vt )(g)

)
(x)

dt

t
.

Obstacles:

Commutators of these operators appear hard to deal with: for now
we assume the amplitude is independent of x.

It is m which has compact x-support. This means the linear FIOs
here do not have compact x-support.

Concerning the ‘end-point’ cases, linear H1 → L1 boundedness is
no longer good enough.
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Back to linear operators

We need boundedness results with the same domain and target space.
It’s been known for some time that T φa : h1 → h1 for a ∈ Sm1,0,
m ≤ −(n− 1)/2 with compact x-support [Seeger-Sogge-Stein ’91]

Local Hardy Spaces hp (0 < p ≤ 1). [Goldberg ’79] An analogue to
Hp but considers harmonic functions on a strip. Hardy spaces Hp are
often seen as a more appropriate Lp when p ≤ 1, but also have some
disadvantages;

��Hp hp does ��not contain Schwartz functions;

��Hp hp is ��not well defined on manifolds; and

pseudodifferential operators are ��not bounded on ��Hp hp.

Can we removing the compact x-support? [Ruzhansky-Sugimoto ’15]

provided a method to go from local boundedness to global boundedness
and applied it in the setting of Lp spaces.
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Main result

Theorem (Rod́ıguez-López, R and Staubach)

Suppose that n/(n+ 1) <p ≤ 1 and m ≤ −(n− 1)(1/p− 1/2). For
a ∈ Sm1,0 and φ(x, ξ) = x · ξ + ψ(ξ) satisfying our assumptions, we have
the estimate

‖Tψa (f)‖hp ≤ C‖f‖hp .

The end-point n/(n+ 1) for p is sharp.

Proof. It essentially sufficies to prove T φa : hp → Lp because f ∈ hp if
and only if

θ ∗ f ∈ Lp and
∑

|α|≤M+1

‖θε ∗ rα(f)‖Lp ≤ A,

where θ ∈ C∞, θ̂ ≡ 1 on B1, supp θ̂ ⊂ B2, θε(x) = ε−nθ(x/ε),

rα = rα1
1 ◦ · · · ◦ rαnn and r̂j(f)(ξ) = −if̂(ξ)(1− θ(ξ))ξk/|ξ|.
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Low-frequency part

Consider

(θ ∗ Tψa )(f)(x) =

∫
a(x, ξ)θ̂(ξ)f̂(ξ)ei(x·ξ+ψ(ξ))dξ

which has the kernel

K(x, y) =

∫
a(x, ξ)θ̂(ξ)eiψ(ξ)ei(x−y)·ξdξ.

We can use the fact ∂αξ e
i(x−y)·ξ = i|α|(x− y)αei(x−y)·ξ and∣∣∣∂αξ (a(x, ξ)θ̂(ξ)eiψ(ξ)

)∣∣∣ . |ξ|1−|α|
so we obtain the kernel estimate |K(x, y)| . 〈x− y〉−n−ε for all
ε ∈ [0, 1) which gives

|(θ ∗ Tψa )(f)(x)| . (〈·〉−n−ε ∗ |f |)(x) .M(|f |r)1/r

for n/(n+ ε) < r. Thus, (θ ∗ Tψa )(f) ∈��L
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High-frequency part, large balls

We have ∇ξei(z·ξ+ψ(ξ)) = i(z +∇ψ(ξ))ei(z·ξ+ψ(ξ)) so the singularity set

Σ = {z | z +∇ψ(ξ) = 0 for some ξ.}

is where we expect the kernel of our operator to be singular. Thus the
function

H(z) = inf
ξ∈Rn

|z +∇ψ(ξ)|

and its super level sets

∆r = {z |H(z) ≥ r}

are of interest. For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.
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↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f ,

we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn)

≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, large balls
For r ≥ 1,

Rn \∆2r ⊂ B(2+N)r,

x ∈ ∆2r and |y| ≤ r implies H(x) ≤ 2H(x− y) and x− y ∈ ∆r,

|H(x− y)LK(x, y)| ≤ C(r) for x− y ∈ ∆2r and |y| ≤ r, and

‖H−L‖Lp(∆r) ≤ C(r) for L > n/p.

Then, for an atom f , we have

‖Tψa (f)‖Lp(Rn) ≤ ‖Tψa (f)‖Lp(∆2r) + ‖Tψa (f)‖Lp(Rn\∆2r)
↑

L2-boundedness and compact support

and for x ∈ ∆2r

|Tψa (f)(x)| ≤ 2LH(x)−L
∫
|y|≤r

|H(x− y)LK(x, y)||f(y)|dy

. H(x)−L
∫
|y|≤r

|f(y)|dy . H(x)−L.

12 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein.

Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein.

Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j ,

then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2.

The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =

∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =

∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1,

and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

Deal with singular set similarly to Seeger-Sogge-Stein. Perform a
Littlewood-Paley decomposition into pieces of frequency 2j , then split
each annulus into roughly 2(n−1)j/2 truncated cones of width 2j/2. The
kernel can thus be decomposed as

K(x, y) =
∑
j≥0

Kj(x, y) =
∑
j≥0

∑
ν

Kν
j (x, y)

and, for r ≤ 1, we can prove the estimates

(i)
∫
Rn |Kj(x, y)|pdx ≤ A2jn(p−1) uniformly in y,

(ii)
∫
Rn supy∈B|Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B|Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

13 / 16



High-frequency part, small balls

(ii)
∫
Rn supy∈B |Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B |Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

Split the integral∫
Rn

|Tψa (f)(x)|pdx =

∫
B∗
|Tψa (f)(x)|pdx

↑
Use Lq → L2 bddness and |B∗| . r

+

∫
(B∗)c

|Tψa (f)(x)|pdx

and again,∫
(B∗)c

|Tψa (f)(x)|pdx

≤
∑

2j≥r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(iii)

+
∑

2j<r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(ii)

14 / 16



High-frequency part, small balls

(ii)
∫
Rn supy∈B |Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B |Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.
Split the integral∫

Rn

|Tψa (f)(x)|pdx =

∫
B∗
|Tψa (f)(x)|pdx

↑
Use Lq → L2 bddness and |B∗| . r

+

∫
(B∗)c

|Tψa (f)(x)|pdx

and again,∫
(B∗)c

|Tψa (f)(x)|pdx

≤
∑

2j≥r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(iii)

+
∑

2j<r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(ii)

14 / 16



High-frequency part, small balls

(ii)
∫
Rn supy∈B |Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B |Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.
Split the integral∫

Rn

|Tψa (f)(x)|pdx =

∫
B∗
|Tψa (f)(x)|pdx

↑
Use Lq → L2 bddness and |B∗| . r

+

∫
(B∗)c

|Tψa (f)(x)|pdx

and again,∫
(B∗)c

|Tψa (f)(x)|pdx

≤
∑

2j≥r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(iii)

+
∑

2j<r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(ii)

14 / 16



High-frequency part, small balls

(ii)
∫
Rn supy∈B |Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B |Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.
Split the integral∫

Rn

|Tψa (f)(x)|pdx =

∫
B∗
|Tψa (f)(x)|pdx

↑
Use Lq → L2 bddness and |B∗| . r

+

∫
(B∗)c

|Tψa (f)(x)|pdx

and again,∫
(B∗)c

|Tψa (f)(x)|pdx

≤
∑

2j≥r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(iii)

+
∑

2j<r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(ii)

14 / 16



High-frequency part, small balls

(ii)
∫
Rn supy∈B |Kj(x, y)− pj(x, y − y′)|pdx ≤ A2MpjrMp2jn(p−1) for

2−j ≥ r, where y′ is the centre of B and pj(x, y − y′) is the Taylor
polynomial of Kj centred at y′ of order M − 1, and

(iii)
∫

(B∗)c supy∈B |Kj(x, y)|pdx ≤ A2−jr−12jn(p−1) for 2−j ≤ r.

Split the integral∫
Rn

|Tψa (f)(x)|pdx =

∫
B∗
|Tψa (f)(x)|pdx

↑
Use Lq → L2 bddness and |B∗| . r

+

∫
(B∗)c

|Tψa (f)(x)|pdx

and again,∫
(B∗)c

|Tψa (f)(x)|pdx

≤
∑

2j≥r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(iii)

+
∑

2j<r−1

∫
(B∗)c

|Tj(f)(x)|pdx

↑
(ii)

14 / 16



High-frequency part, small balls
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2j≥r−1

∫
(B∗)c

|Tj(f)(x)|pdx

=
∑

2j≥r−1

∫
(B∗)c

∣∣∣∣∫
B
Kj(x, y)f(y)dy

∣∣∣∣p dx
≤

∑
2j≥r−1

∫
(B∗)c

sup
y∈B
|Kj(x, y)|pdx

∣∣∣∣∫
Br

f(y)dy

∣∣∣∣p
≤

∑
2j≥r−1

A2−jr−12jn(p−1)

∣∣∣∣∫
B
f(y)dy

∣∣∣∣p ≤ Cr1−n(p−1)r−1rn(p−1).
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Sharpness of the inequality n/(n + 1) < p

This is a consequence of the lack of smoothness of the phase at the
origin. The lack of smoothness leads to a lack of decay at infinity. For
example, take φ(x, ξ) = x · ξ + |ξ|, f̂ a smooth compactly supported
function equal to 1 near the origin and n = 1. Then

T φ1 (f)(x) =

∫ ∞
−∞

f̂(ξ)ei(x·ξ+|ξ|)dξ

=

∫ ∞
−∞

f̂(ξ)

(
1 + i|ξ| − |ξ|

2

2
+ . . .

)
eix·ξdξ

and

x2i

∫ ∞
0

ξf̂(ξ)eix·ξdξ =−i
∫ ∞

0
∂2
ξ (ξf̂(ξ))∂2

ξ (eix·ξ)dξ − if̂(0),

So T φ1 (f)(x) = 2f̂(0)
i|x|2 +O(|x|−3) as |x| → ∞. For n > 1 the same

method works with integration by parts replaced by the formula

Fn(f) = − 1

2π
Fn+2(f ′(·)/·)
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