

$H^\infty\text{-}\text{calculus}$ for the Stokes operator on bounded Lipschitz domains

Peer Kunstmann

Karlsruhe Institute of Technology (KIT) Institute for Anaylsis

joint work with Lutz Weis (KIT)

25 April 2018

$Outline \ of \ the \ talk$

- 1. The Stokes operator in bounded Lipschitz domains
- 2. Result on H^{∞} -calculus
- 3. The proof
- (a) Conditions on Littlewood-Paley operators
- (b) Verifying assumptions in L^q
- (c) Verifying assumptions in L^2
- 4. Applications

1. The Stokes operator in bounded Lipschitz domains

Navier-Stokes equations on $\Omega\subseteq \mathbb{R}^d$ bounded Lipschitz

$$\partial_t u - \Delta u + (u \cdot \nabla)u + \nabla p = 0, \quad \text{in } (0, T) \times \Omega,$$

$$\operatorname{div} u = 0, \quad \text{in } (0, T) \times \Omega,$$

$$u = 0, \quad \text{on } (0, T) \times \partial \Omega,$$

$$u(0, \cdot) = u_0, \quad \text{in } \Omega.$$

(4月) トイヨト イヨト

1. The Stokes operator in bounded Lipschitz domains

Navier-Stokes equations on $\Omega\subseteq \mathbb{R}^d$ bounded Lipschitz

$$\partial_t u - \Delta u + (u \cdot \nabla)u + \nabla p = 0, \quad \text{in } (0, T) \times \Omega,$$

$$\operatorname{div} u = 0, \quad \operatorname{in } (0, T) \times \Omega,$$

$$u = 0, \quad \operatorname{on } (0, T) \times \partial \Omega,$$

$$u(0, \cdot) = u_0, \quad \text{in } \Omega.$$

Apply Helmholtz projection $\mathbb P$ onto divergence-free vector fields

$$\partial_t u - \mathbb{P}\Delta u + \mathbb{P}(u \cdot \nabla)u = 0, \quad \text{in } (0, T) \times \Omega,$$
$$u = 0, \quad \text{on } (0, T) \times \partial\Omega,$$
$$u(0, \cdot) = u_0 = \mathbb{P}u_0, \quad \text{in } \Omega.$$

Stokes operator A_2 in L^2

For $q\in(1,\infty)$ let

$$L^{q}_{\sigma}(\Omega) := \overline{\{\varphi \in C^{\infty}_{c}(\Omega)^{d} : \operatorname{div} \varphi = 0\}}^{\|\cdot\|_{q}}$$
$$= \{u \in L^{q}(\Omega)^{d} : \operatorname{div} u = 0, \nu \cdot u = 0 \text{ on } \partial\Omega\}$$

The Stokes operator A_2 in $L^2_{\sigma}(\Omega)$ is associated with the form

$$\mathfrak{a}(u,v)=\int_{\Omega}\nabla u\cdot\overline{\nabla v}\,dx$$

defined on

$$H^1_{0,\sigma}(\Omega) := \overline{\{\varphi \in C^\infty_c(\Omega)^d : \operatorname{div} \varphi = 0\}}^{\|\cdot\|_{H^1}} = H^1_0(\Omega)^d \cap L^2_\sigma(\Omega).$$

Compare: $-\Delta_2^D$ in $L^2(\Omega)^d$ is associated with a defined on $H^1_0(\Omega)^d$.

Stokes operator in L^2 (cont.)

Then

- $A_2 \ge 0$ is self adjoint in $L^2_{\sigma}(\Omega)$,
- e^{-zA_2} is an exponentially stable analytic semigroup on $\{\operatorname{Re} z > 0\}$,
- A_2 has a functional calculus for bounded Borel functions on $[0,\infty)$,
- $D(A_2^{1/2}) = H^1_{0,\sigma}(\Omega)$,

Stokes operator in L^2 (cont.)

Then

- $A_2 \ge 0$ is self adjoint in $L^2_{\sigma}(\Omega)$,
- e^{-zA_2} is an exponentially stable analytic semigroup on $\{\operatorname{Re} z > 0\}$,
- A_2 has a functional calculus for bounded Borel functions on $[0,\infty)$,
- $D(A_2^{1/2}) = H^1_{0,\sigma}(\Omega)$,
- $D(A_2^{s/2}) = H^s_{\sigma}(\Omega) := H^s(\Omega)^d \cap L^2_{\sigma}(\Omega)$ for $s \in (0, 1/2)$ \rightarrow Mitrea Monniaux 2008.

Similar for $-\Delta_2^D$ in $L^2(\Omega)^d$. In particular

•
$$D((-\Delta_2^D)^{s/2}) = H^s(\Omega)^d$$
 for $s \in (0, 1/2)$.

25 April 2018

Stokes operator in L^2 (cont.)

Question: Is $A_2 = -\mathbb{P}_2 \Delta_2^D$ with $D(A_2) = D(\Delta_2^D) \cap L^2_{\sigma}(\Omega)$? Not quite.

However, for $\widetilde{A_2}$: $H^1_{0,\sigma}(\Omega) \to (H^1_{0,\sigma}(\Omega))^*$ we have (Monniaux 2006)

$$\widetilde{A_2} = -\widetilde{P_2}\widetilde{\Delta_2^D}J_2, \qquad \text{where}$$

$$\begin{split} & J_2: H^1_{0,\sigma}(\Omega) \quad \to \quad H^1_0(\Omega)^d \quad \text{inclusion}, \\ \widetilde{P_2} &= J_2^*: \left(H^1_0(\Omega)^d\right)^* \quad \to \quad \left(H^1_{0,\sigma}(\Omega)\right)^* \quad \text{restriction}. \end{split}$$

Then

$$D(A_2) = \{ u \in H^1_0(\Omega)^d \cap L^2_{\sigma}(\Omega) : \exists \phi \in L^2(\Omega) : \underbrace{-\Delta u + \nabla \phi}_{=A_2 u} \in L^2_{\sigma}(\Omega) \}.$$

Helmholtz decomposition in L^q

For q = 2 we have the Helmholtz (or Leray) decomposition

 $L^2(\Omega)^d = L^2_{\sigma}(\Omega) \oplus \nabla H^1(\Omega)$ (orthogonal)

with Helmholtz projection $\mathbb{P}_2 : L^2(\Omega)^d \to L^2_{\sigma}(\Omega)$.

Helmholtz decomposition in L^q

For q = 2 we have the Helmholtz (or Leray) decomposition

 $L^2(\Omega)^d = L^2_\sigma(\Omega) \oplus
abla H^1(\Omega)$ (orthogonal)

with Helmholtz projection $\mathbb{P}_2: L^2(\Omega)^d \to L^2_{\sigma}(\Omega).$

For q
eq 2 $L^q(\Omega)^d = L^q_\sigma(\Omega) \oplus
abla W^{1,q}(\Omega)$

holds if

• $d \geq 3$ and $q \in (rac{3+arepsilon}{2+arepsilon},3+arepsilon)$ (Fabes Mendez Mitrea 1998)

• d = 2 and $q \in (\frac{4+\varepsilon}{3+\varepsilon}, 4+\varepsilon)$ (D. Mitrea 2002) where $\varepsilon = \varepsilon(\Omega)$ and $\varepsilon = \infty$ for $\partial \Omega \in C^1$.

A D D A D D A D D A D D A

Stokes operator in L^q : Shen's result

Theorem (Shen 2012)

For any $\theta \in (\pi/2, \pi)$ there exists $\varepsilon > 0$, only depending on d, θ and the Lipschitz character of Ω , such that for

$$\left|\frac{1}{q} - \frac{1}{2}\right| < \frac{1}{2d} + \varepsilon$$

there is a constant $C_{q,\theta}$ satisfying

$$\|(\lambda+A_q)^{-1}f\|_{L^q}\leq rac{\mathcal{C}_{q, heta}}{|\lambda|+1}\|f\|_{L^q}, \quad \lambda\in\Sigma_ heta, f\in L^q_\sigma(\Omega),$$

where $C_{q,\theta}$ only depends on d, q, θ and Lipschitz character of Ω .

2. Result on H^{∞} -calculus

Theorem 1 (K. Weis 2017)

Let $\Omega \subseteq \mathbb{R}^d$ where $d \ge 3$ be a bounded Lipschitz domain. Then there exists $\varepsilon = \varepsilon(\Omega) > 0$ such that, for

$$\left|\frac{1}{q}-\frac{1}{2}\right|<\frac{1}{2d}+\varepsilon,$$

the Stokes operator A_q has a bounded H^{∞} -calculus in $L^q_{\sigma}(\Omega)$. For these q we have $D(A^{\alpha}_q) = D((-\Delta^D_q)^{\alpha}) \cap L^q_{\sigma}(\Omega)$ for

$$|\alpha| < \frac{1}{2} - \left(\frac{1}{d} + 2\varepsilon\right)^{-1} \Big| \frac{1}{2} - \frac{1}{q} \Big|.$$

イロン 不同 とくほど 不同 とう

3. The proof: (a) Conditions on Littlewood-Paley operators

 H^∞ -calculus characterized by Littlewood-Paley estimates like

$$\|x\|_{L^q} \sim \left\|\left(\sum_{n\in\mathbb{Z}}|\varphi(2^nA)x|^2\right)^{1/2}\right\|_{L^q}, \quad x\in L^q(U),$$

McIntosh 1986; CDMY 1996; Kalton Weis 2001

Optimal angle is the angle of (almost) R-sectoriality,

McIntosh 1986, Kalton Weis 2001, Kalton K. Weis 2006.

Idea: Transfer H^{∞} -calculus from an operator B to an (almost) R-sectorial operator A via Littlewood-Paley square functions Kalton K. Weis 2006.

Conditions on Littlewood-Paley operators: Result

Theorem 2 (K. Weis 2017)

Let *B* have a bounded $H^{\infty}(\Sigma_{\sigma})$ -calculus on a Banach space *X* and let *A* be an (almost) *R*-sectorial operator in *X*. Assume that there are functions $\varphi, \psi \in H_0^{\infty}(\Sigma_{\nu}) \setminus \{0\}$ where $\nu > \sigma$ such that, for some $\beta > 0$ and all $k \in \mathbb{Z}$,

$$\sup_{1 \le s, t \le 2} \mathcal{R}\{\varphi(s2^{j+k}A)\psi(t2^{j}B) : j \in \mathbb{Z}\} \le C2^{-\beta|k|}, \quad (1)$$

$$\sup_{1 \le s, t \le 2} \mathcal{R}\{\varphi(s2^{j+k}A)'\psi(t2^{j}B)' : j \in \mathbb{Z}\} \le C2^{-\beta|k|}. \quad (2)$$

Then A has a bounded H^{∞} -calculus on X.

Conditions on Littlewood-Paley operators: Basic idea for $X = L^p$ Assume $\sum_{n \in \mathbb{Z}} \psi^2(2^n \lambda) = 1$ for all λ . Then

$$\begin{aligned} & \left\| \left(\sum_{n} |\varphi(2^{n}A)x|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &= \left\| \left(\sum_{n} |\varphi(2^{n}A)[\sum_{m} \psi^{2}(2^{n+m}B)x]|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &\leq \sum_{m} \left\| \left(\sum_{n} |\varphi(2^{n}A)\psi(2^{n+m}B)\psi(2^{n+m}B)x|^{2} \right)^{1/2} \right\|_{L^{p}} \end{aligned}$$

25 April 2018

Conditions on Littlewood-Paley operators: Basic idea for $X = L^p$ Assume $\sum_{n \in \mathbb{Z}} \psi^2(2^n \lambda) = 1$ for all λ . Then

$$\begin{split} & \left\| \left(\sum_{n} |\varphi(2^{n}A)x|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &= \left\| \left(\sum_{n} |\varphi(2^{n}A)[\sum_{m} \psi^{2}(2^{n+m}B)x]|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &\leq \sum_{m} \left\| \left(\sum_{n} |\varphi(2^{n}A)\psi(2^{n+m}B)\psi(2^{n+m}B)x|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &= \sum_{m} \left\| \left(\sum_{n} |\varphi(2^{n-m}A)\psi(2^{n}B)\psi(2^{n}B)x|^{2} \right)^{1/2} \right\|_{L^{p}} \end{split}$$

25 April 2018

Conditions on Littlewood-Paley operators: Basic idea for $X = L^p$ Assume $\sum_{n \in \mathbb{Z}} \psi^2(2^n \lambda) = 1$ for all λ . Then

$$\begin{split} & \left\| \left(\sum_{n} |\varphi(2^{n}A)x|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &= \left\| \left(\sum_{n} |\varphi(2^{n}A)[\sum_{m} \psi^{2}(2^{n+m}B)x]|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &\leq \sum_{m} \left\| \left(\sum_{n} |\varphi(2^{n}A)\psi(2^{n+m}B)\psi(2^{n+m}B)x|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &= \sum_{m} \left\| \left(\sum_{n} |\varphi(2^{n}-mA)\psi(2^{n}B)\psi(2^{n}B)x|^{2} \right)^{1/2} \right\|_{L^{p}} \\ &\leq C \left(\sum_{m} 2^{-\beta|m|} \right) \left\| \left(\sum_{n} |\psi(2^{n}B)x|^{2} \right)^{1/2} \right\|_{L^{p}} \lesssim C' \|x\|_{L^{p}}. \end{split}$$

25 April 2018

Conditions on Littlewood-Paley operators: Complemented subspaces

Theorem 2' (K. Weis 2017)

Let X and Y be Banach spaces. Let $R: Y \to X$ and $S: X \to Y$ satisfy $RS = I_X$. Let B have a bounded $H^{\infty}(\Sigma_{\sigma})$ -calculus in Y and let A be (almost) R-sectorial in X. Assume that there are functions $\varphi, \psi \in H_0^{\infty}(\Sigma_{\nu}) \setminus \{0\}$ where $\nu > \sigma$ such that for some $\beta > 0$

$$\sup_{1 \le s,t \le 2} \mathcal{R}\{\varphi(s2^{j+k}A)R\psi(t2^{j}B) : j \in \mathbb{Z}\} \le C2^{-\beta|k|}$$
(3)

 $\sup_{1\leq s,t\leq 2} \mathcal{R}\{\varphi(s2^{j+k}A)'S'\psi(t2^{j}B)': j\in\mathbb{Z}\} \leq C2^{-\beta|k|}.$ (4)

Then A has a bounded H^{∞} -calculus on X.

Conditions on Littlewood-Paley operators: How to get (3)?

Condition (3) holds if

 $R(D(B^{\alpha})) \subseteq D(A^{\alpha}), \qquad \|A^{\alpha}Ry\|_{X} \leq C\|B^{\alpha}y\|_{Y}, \qquad (5)$

for $\alpha = \alpha_1, \alpha_2$ where $\alpha_1 < 0 < \alpha_2$.

Conditions on Littlewood-Paley operators: How to get (3)?

Condition (3) holds if

 $R(D(B^{\alpha})) \subseteq D(A^{\alpha}), \qquad \|A^{\alpha}Ry\|_{X} \leq C\|B^{\alpha}y\|_{Y}, \qquad (5)$

for $\alpha = \alpha_1, \alpha_2$ where $\alpha_1 < 0 < \alpha_2$. Proof:

$$\begin{aligned} \varphi(t2^{j+k}A)R\psi(s2^{j}B) \\ &= \left(\frac{t}{s}\right)^{\alpha}2^{\alpha k}(t2^{j+k})^{-\alpha}A^{-\alpha}\varphi(t2^{j+k}A)[A^{\alpha}RB^{-\alpha}](s2^{j})^{\alpha}B^{\alpha}\psi(s2^{j}B) \\ &= \left(\frac{t}{s}\right)^{\alpha}2^{\alpha k}\,\widetilde{\varphi}(t2^{j+k}A)\,M\,\widetilde{\psi}(s2^{j}B), \end{aligned}$$

where $\widetilde{\varphi}(z)=z^{-lpha}\varphi(z)$, $\widetilde{\psi}(z)=z^{lpha}\psi(z)$ are in H_0^∞

П

How to get (3)? (cont.)

Recall

$$\sup_{1\leq s,t\leq 2} \mathcal{R}\{\varphi(s2^{j+k}A)R\psi(t2^{j}B): j\in\mathbb{Z}\}\leq C2^{-\beta|k|}.$$
 (3)

Now let $X = L^q_{\sigma}(\Omega)$, $Y = L^q(\Omega)^d$, $R = \mathbb{P}$. Assume

- condition (3) holds for $q = q_0$ and $\beta = 0$ (automatic),
- condition (3) holds for q = 2 and $\beta > 0$ (can use (5) for that). By interpolation, (3) holds for q between 2 and q_0 and some $\beta > 0$.

How to get (3)? (cont.)

Recall

$$\sup_{1\leq s,t\leq 2} \mathcal{R}\{\varphi(s2^{j+k}A)R\psi(t2^{j}B): j\in\mathbb{Z}\}\leq C2^{-\beta|k|}.$$
 (3)

Now let $X = L^q_{\sigma}(\Omega)$, $Y = L^q(\Omega)^d$, $R = \mathbb{P}$. Assume

- condition (3) holds for $q = q_0$ and $\beta = 0$ (automatic),
- condition (3) holds for q = 2 and β > 0 (can use (5) for that). By interpolation, (3) holds for q between 2 and q₀ and some β > 0. For the proof of Theorem 1 we thus need
- A_q is *R*-sectorial in $L^q_{\sigma}(\Omega)$ for the stated range of *q*,
- $\mathbb{P}: H^s(\Omega)^d \to H^s_{\sigma}(\Omega)$ and projection in $H^s(\Omega)^d$ for |s| > 0 small.

The proof: (b) Verifying assumptions in L^q

Proposition 3 (K. Weis 2017, Tolksdorf 2017)

For any $\theta \in (\pi/2, \pi)$ there exists $\varepsilon > 0$, only depending on d, θ and the Lipschitz character of Ω , such that for

$$\left|\frac{1}{q} - \frac{1}{2}\right| < \frac{1}{2d} + \varepsilon$$

there exists a constant $\tilde{C}_{q,\theta}$, only depending on d, q, θ and Lipschitz character of Ω , such that

$$\mathcal{R}\{(|\lambda|+1)(\lambda+A_q)^{-1}:\lambda\in\Sigma_{ heta}\}\leq ilde{C}_{q, heta},$$

where the *R*-bound is taken for operators $L^q_{\sigma}(\Omega) \to L^q_{\sigma}(\Omega)$.

・ロト ・同ト ・ヨト ・ヨ

Sketch of proof (Proposition)

Proceed as in Shen 2012:

- q > 2 suffices (by self duality)
- use Shen's extrapolation lemma: needs estimate $L^2 \rightarrow L^q$ for the resolvent problem
- pass through L^2 -estimates for boundary value problems
- $L^2 \rightarrow L^q$ -estimate just needed for a single operator

Extend this to square functions!

The proof: (c) Verifying assumptions in L^2

Proposition (Mitrea Monniaux 2008)

For $|s| < \frac{1}{2}$, the Helmholtz projection \mathbb{P} acts as a bounded linear projection P_s in $H^s(\Omega)^d$ and yields the decomposition

$$H^{s}(\Omega)^{d} = H^{s}_{\sigma}(\Omega) \oplus \nabla H^{s+1}(\Omega)$$

as a topological direct sum.

The proof uses arguments from Fabes Mendez Mitrea 1998 and

$$\mathbb{P} u = u - \nabla \operatorname{div} \Pi_{\Omega}(u) - \nabla \psi,$$

where Π_Ω is the Newton potential and ψ solves

$$\Delta \psi = 0, \qquad rac{\partial \psi}{\partial
u} =
u \cdot (u -
abla \operatorname{div} \Pi_{\Omega}(u)).$$

4. Applications

Theorem (Tolksdorf 2018)

Let $\Omega\subseteq \mathbb{R}^d$ where $d\geq 3$ be a bounded Lipschitz domain. Then there exists $\varepsilon>0$ such that, for

$$\left|\frac{1}{q}-\frac{1}{2}\right|<\frac{1}{2d}+\varepsilon,$$

the Stokes operator A_q satisfies

$$D(A_q^{1/2}) = W_{0,\sigma}^{1,q}(\Omega).$$

 \rightarrow $L^{p}\text{-}L^{q}\text{-}mapping$ properties and gradient estimates for semigroup

 \rightarrow regularity results for Navier-Stokes equations complementing those by Mitrea, Monniaux 2008.