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The classical incompressible Navier-Stokes equations:

ur +div(u ® u) — pAu+ VP =0 in Ry xQ

divu =0 in Ry xQ
(NS): .
u=0 on Ry x 092
ule=0 = uo in Q.
Here u = u(t,z) € R and P = P(t,z) € R with t >0 and z € Q C R%, d > 2.

1 ¢ 1
e Energy balance: §||u(t)||2L2 +u/ HVu||2L2 dr = 5”“0“%2
0

o Scaling invariance: If = R? then the System (NS) is invariant (up to a
change of P and wug) by the family of dilations:

Tyu(t, z) := Au(\2t, Ax).
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Global weak solutions

The classical incompressible Navier-Stokes equations:

ut +div(u ® u) — pAu+ VP =0 in Ry xQ

divu =0 in Ry xQ
(NS):

u=20 on R+ x 002

ult=0 = uo in Q.

Theorem (J. Leray, 1934)

Any divergence free ug € L?(Q) generates at least one global weak solution of
(NS) satisfying the energy inequality:

1 t 1
SIuOIZ: + 1 [ 10l dr < 2 o).

e The proof relies essentially on the energy balance and on compactness
arguments (or, equivalently, Schauder-Tikhonov theorem).

e Unless d = 2, uniqueness of Leray’s solutions is (still) an open question.
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‘Mild solutions’ of NS equations

Let A = —pAu+ VP be the Stokes operator. Then, formally,

—tA b e A
u(t) = e "“ug 7/0 e (div(u @ u)(7)) dr.

ur

B(u,u)

Lemma (based on the fixed point theorem in a Banach spaces)

Let X be a Banach space and B : X x X — X, a continuous bilinear map with

norm M . Then equation has a unique solution in the closed

ball B(0,2||ur | x) whenever
4]\/[H’u,LHX < 1.

e The largest spaces in which one may expect B to be continuous are scaling
tnvariant by the family of dilations (Th)x>o0-

e Examples : small initial data in Sobolev spaces H(El*l(R’l) (Fujita-Kato),
.4
Lebesgue space L%(RY) (Giga- Kato), Besov spaces B, (R%), etc.
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The inhomogeneous incompressible Navier-Stokes equations read:
(pu)t +div(pu @ u) — pAu+ VP =0 in Ry xQ
(INS):< divu=0 in Ry xQ
pt +div(pu) =0 in Ry x Q.

o Energy balance : %HMU(t)HQLQ + uAt ||Vu||2Lz dr = %H\/,OT)UOHQLQ
e Conservation of LP norms of functions of the density.
e Scaling invariance if Q = R%:
p(t,z) — p(A\%t, \x), u(t,z) = Au(\2t, Az), P(t,z) = A2P(\%t, \x).

o Global weak solutions with finite energy for any pair (po,ug) such that
po € L>=(Q) with po >0, and /pouo € L?(Q) with divug = 0 (Kazhikhov,
1974, J. Simon 1990, P.-L. Lions 1996).

e Even if d = 2, uniqueness in the class of finite energy solutions is a widely
open question.

o Strong solutions for smooth data (global if d =2 and infpg > 0) :
Ladyzhenskaya and Solonnikov (1978).
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Is (INS) a good model for mixture of non-reacting fluids ?

@ Can we solve uniquely (INS) if po is discontinuous across an interface ?

@ Is the solution unique for such a pg 7

@ Can we allow for vacuum regions 7

@ Is the regularity of interfaces preserved during the evolution ?
o We expect the interfaces to be transported by the flow of u. Hence, by
Cauchy-Lipschitz theorem, the minimal requirement for preserving their regularity

is Vu € LY(0,T; L (Q)).
It will be also needed for uniqueness.

e Even for d = 2 and for the heat equation, having just up € L?(£2) does not
ensure Vu € L1(0,T; L% (Q)).
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Aim of the talk

Presenting three different (and complementary) approaches:
@ Critical functional framework and endpoint maximal regularity;
@ Classical maximal regularity;

© Energy approach.
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Endpoint maximal regularity approach

I. An approach based on the endpoint maximal regularity

For simplicity, we assume that Q = R? (d > 2) and that p — 1 at oo.
Set a:= p — 1. System for (a,u, P) reads:

ur — pAu+ VP = —aus — (1 + a)div(u ® u) in Ry x R4
in Ry x R4

(INS): ¢ divu=0
in Ry x R

at+u-Va=0

Scaling invariance:

a(t,z) = a(A\%t, Ax), u(t, z) — Au(A\2t, Ax), P(t,z) = N2P(\%t, \x).
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Endpoint maximal regularity approach

e Endpoint mazimal regularity for the Stokes system:

() uy — pAu+ VP =f in Ry x R4
divu =0 in Ry x R%.
We have for any s € R and p € [1,00]:
HUHLOO Ry ;B3 ) + H“tvﬂviu’ vaHLI(RJr;BS 1) s ”uOHBS_l + HfHLl(]RJr;BS DR

Scaling invariance pushes us to take s = £ — 1, and thus (u, VP) € E), with

.2 d_3
Ep = {(u,VP)€Cy(R1; B} )XL'(Ry;BY, ) with w, VZu e L' (Ry; B" )}

d
e Stability of the Besov space B:J by product if p < co:

. 2
vl g, Sluoul 4 S hl?
Bp~1 p 1 B:,l
o Multiplier spaces: ||al| d_, = sup laz]] a_, < oo.
MBE ) =l a_ ;=1 BP,

BP
p,1
e Estimates for the transport equation (deduced from the ones in Besov spaces)

t
Ay < ||a()|| d exp{C HVUH d dT}‘
MBFL ) MBSy ) 0 By

lla(?)
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Endpoint maximal regularity approach

Taking f = —au; — (1 + a)div(u ® u) in (S), we deduce that

[(w, VP&, < Nuoll a_y + o]l cay el 4
r LRy M(BPL ) LY (Ry;BY )
P, I P
+(1 4+ al ay )l
L (Ry;M(BP, )
Combining with
llall a_; <laoll  a_, expCll(w, VP)|E, ¢
. 1 .1 2
LRy M(BY ) M(BY )

one may close the estimates if both |lag]| a , and |luo|l a
4 i

_, are small.
P
J\/l(Bp_l ) BP’1
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Endpoint maximal regularity approach

Theorem (D & P.B. Mucha, 2012)

Assume that 1 < p < 2d. There exists a constant ¢ > 0 such that if

mlaoll 4, +lluoll a4 <cp (1)
M(BY, )NLee BYy
€1
then (INS) has a unique solution with (u, VP)€Ep and a€C(Ry; M(B); ).

The direct proof: NO CONTRACTING MAPPING ARGUMENT.
@ Constructing a sequence of approximate solutions and uniform estimates;
© Compactness;
© Uniqueness : loss of one derivative. PROBLEM HERE.

Corollary (The density patch problem)

Let D be a C' bounded domain. If ug fulfills (1) with d —1 < p < 2d and
po =cilp + calep with |c1 — ca| < 1 then (INS) has a unique global solution
as above, and p(t) = c1lp, + c2lep,. Furthermore Dy remains Q"
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Endpoint maximal regularity approach

Lagrangian coordinates: Assume Vu € L! (Ry; L) and set

loc

p(t,y) :== p(t,x), a(t,y):=u(t,z) and P(t,y):= P(t,x) with

where X is the flow of u defined by

t
X(t,y):y—&—A u(T, X(7,y)) dr.

(INS) in Lagrangian coordinates:

e p is time independent.
o (u, P) satisfies
TN potr — div(ATAVa) +TA- VP =0,
INS):
(INS) { div(Aa) =TA: Va =0,

with A = (DyX)~! = +Zoo(fl)k (/Of D, ~)dr> "

k=0
° (I/NTS') may be solved by means of the fized point theorem.

e Uniqueness may be proved at the level of Lagrangian coordinates.
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cal maximal regular: approach

II. An approach based on the classical maximal regularity

Consider a solution (u, VP) to

(9) ur — pAu+ VP = f in Ry x R4
’ divu =0 in Ry x RY,

Then, for all 1 < p,r < oo,

|(u, VP)HEZ’, = H(Ut,[LVZU,, VP)“L"(R+;LP) + ||’lt|| L2—2
L>*[R4;Bp,r")

Sllwoll o2 +IfllLr @y ser)-
By "

e Critical regularity for (INS) corresponds to

2 d
2——=—-—-1
r p
which gives us the constraint % <p<d.

e We want to apply this to f = —au; — (1 + a)u- Vu.
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Classical maximal regularity approach

So we have

I(w, VP) g5 o= [l(ut, u¥%u, VP) || Lr gy r) + H“HLOO -2 Sluoll o 2
+3:Bp,r D,

Hlall oo gy xrayllutllLr ey oey + @+ llall poo my xray)llu - Vullr @, ;oe)-
Note that ||aHL°°(R+><Rd) = ||lao||Lo=. Hence, if ||ag||pe~ is small, then we get

(w, VP) gy S lluoll o2 +[lu-Vullpr@, ey
By "

If critical regularity: 2 — f =2 _ 1 then we have

P
llu-VullLr@, ey < HUHLZP(R%LW(EH ) I u||L27-(R+;L Firy )
and
lull ar SAIVull _ax (Sobolev embedding)
Lr—1 L2r—1
1 1
IVul| ar S HVQUHEPHUW 5 (Interpolation).
L2r—1 BQ*;
P
Hence

I(w, VP)Igy < lluoll 52 + [I(u, V)|
p B T P
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cal maximal regularity approach

Results

d n =12
Let ag € L>®(R%) and ug € By ”(
There exists a positive constant co = co(r,d) so that if

RY) with d > 2, p:= 3%

5 and 7 € (1,00).

mllaollzee + lluoll _,1a < cop (2)

p,T

then (NSI) has a global solution (a,w,VP) satisfying ||a(t)|| L~ = |lao||ree for
all t >0, and (u, VP) € Ey.

Since 7 > 1 and p < d, we do not have Vu € L} (R;L°) which precludes our
using Lagrangian coordinates for proving uniqueness.

Theorem (Huang, Paicu & Zhang, 2013)

o =il e
If, in addition, ug € Bﬁ . U for some d<p < ar_ then (u, VP) also belongs to

,,,71 b
EI% and the solution (a,u,VP) is unique in the space L (R, x R%) x (E; QE%)
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Classical maximal regularity approach

Comments on the first two approaches

o Adaptable to more general domains : half-space, bounded smooth domain and
exterior smooth domain (more tricky);

e Local in time results are provable, but, still, ap has to be small for some suitable
norm since our approach relies on the Stokes system with constant coefficients.

o We get nothing special for d = 2 even though global existence is expected with

no smallness condition at all.

e The wiscosity coefficient has to be independent of the density.
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Energy approach

An approach based on energy estimates

e The basic energy balance:

1 t

Sl p(t) u(t)|72 +u/ [VullF2 dr = *II\/ |72
e All LP norms of the functions of the density are preserved through the
evolution.
However, even if d = 2, those relations are far from being enough to ensure
uniqueness and conservation of geometric structures like interfaces between

different densities.

In dimension 2, critical regularity is ug € L2. What if one starts with ug € H! ?
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Energy approach

Theorem (D & P.B. Mucha, 2017)

Consider any data (po,ug) in L>®(T?) x HY(T?) with po > 0 and divug = 0.

Then System (INS) supplemented with (po,uo) admits a unique global
solution (p,u, VP) that satisfies the energy equality, the conservation of total

mass and momentum,
pEL®[R1;L>®), we L®Ry; HY), /pus, Viu, VP € L2(Ry; L?)
and also, for all 1 <r <2, 1<m< oo and T >0,
V(VtP), V2(\/tu) € L=(0,T; L") N L2(0, T; L™).

Furthermore, we have \/pu € C(R4; L?) and p € C(R4; LP) for all p < occ.

Corollary (The density patch problem)

If ug € H(T?) and po = c11p + calep with c1,co > 0 arbitrary and D a
Ch% open set with o < 1, then (INS) has a unique global solution as above, and
p(t) = c1lp, + calep,. Furthermore Dy remains cLe,
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Energy approach

Main steps of the proof:

@ Global-in-time estimates for Sobolev regularity of w.

@ Sobolev regularity of u: and time weights.

© Shift of regularity and integrability : from time to space variable.
@ The existence scheme.

@ Lagrangian coordinates and uniqueness.

Assume with no loss of generality that

/pod:r:uzl and /pouodxzo.
T2 T2

Raphaél Danchin Navier-Stokes equations with variable density



Energy approach

Step 1: global-in-time Sobolev estimates

e Take the L? scalar product of p(u; +u-Vu) — Au+ VP =0 with u;:

1d 1 17/
7—/ |Vu|?da +/ plu)? de < = / plut|? dz + 7/ plu - Vu|? da.
2 dt T2 T2 2 T2 2 T2

Let p* :=||p||lpee. As ‘ —Au+ VP =—pus — pu-Vu and divAu =0 ‘, we get

IVl 4 I9PIZ: = Io(Orutuvu)Ee < 20 ([ sl ot [ ol ul? o)
T J T+

Hence

d
& [Livulde e [ ol

. 3 .
0 (Hvzun L +VP|2,) < Z/T plu - Vul? da.

e Apply Holder and Gagliardo-Nirenberg inequality, and use p < p* := ||po|| L= :

' 2 2 2 * 2 2
/Tr2 plu-Vul"de < p*llull 4 [Vullzs < Co*llull 2 IVullp2 [VZull g2

<1, *HV%HLz +CE) Il 2l Vullg 2 1 Vull 72

o If p > p. >0, then HuHQLQ < p;lH\/ﬁuHQLQ. Combine the basic energy
inequality with Gronwall lemma.
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Energy approach

Step 1: global-in-time Sobolev estimates (continued)

Lemma (B. Desjardins, 1997)
If [r2pde=1 and [5 pzde =0 then

3 P*IV2I17

4 4 2 L2
pz da:) < CllVpzl 211Vl 210g2<e+||p—1 + ) (3
(/11-2 veEl = HLZ H\ﬁzHiz )

1
bl
° Write/ plu - Vul?dz < /p* (/ plul? dT> HVu||2L4
T2 T2

and use (3) with z = u, energy balance and ab < a?/2 + b?/2 :
/. plu - Vul?dz < L||V2u||22
T2 — 12p* L

2
+C(p")2IIV/Po uoll? 2 | Vull 32 [ Vul|F 2 log <6+||Po — 1017, + P*LHQQ)
llv/po uoll
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Energy approach

Step 1: global-in-time Sobolev estimates (continued)

We eventually get

d
X < fXlog(e +X),

with f(t) := CoHVu(t)HZL2 for some suitable Cy = C(po,uo) and

: 1 , 1 ‘
X(1) ;:/ |Vau(t)|? da + 7/ (p\ut|2 + (V22 + \VP\Q))dm.
T2 2 Jr2 4p*

Hence

(6+X(t)) < (6 _‘_X(O))exp(f(g f(r)dr) < (e+X(O))EXP(COH\/%UUHiz),

e However X < oo does not imply Vu € L} (Ry; L>(T?)).

loc
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Energy approach

Step 2: Sobolev regularity of wu;

Take the L? scalar product of plut +u-Vu) — Au+ VP =0 with ug:

1d

- — p|u,g|2 dx +/ \Vut|2 dr = / (ptut — ptu - Vu — puy - Vu) cup dx.
2 dt Jr2 T2 T2

e For (\/put)|t=o0 to be defined, we need the compatibility condition

— Aug = +/pog — VFPy with g€ L2 (4)

e Condition (4) is not needed if we compensate the singularity at time 0 by some
power of t: take the scalar product of p(u¢ + u-Vu) — Au+ VP =0 with tu:

t
IWotullze + [ IVvFuls dr < ho),
0

where h is a nondecreasing nonnegative function with h(0) =0 (use Step 1 and
energy identity).
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Energy approach

Step 3: Shift of regularity from time to space variable

o Step 1 gives Vu € L®(Ry; L?), Vu € L?(R4; HY), VP, /pus € L?(Ry x T?).

o Step 2 gives v/pluy € LS (Ry;L?) and Vvtus € L2 (Ry; L?).

e Step 3: Use Stokes equation:
—AViu+VVEP = —\/iput - \/ipu - Vu,
divyv/tu = 0.
Steps 1,2 + embedding imply that for all 7" > 0, the right-hand side is
almost in L2(0,7; L°>°). Hence so do V?v/tu and V+/t P.

e This implies that Vu € L} (0,7; L°>°) from which one may go to Lagrangian

loc
coordinates and prove uniqueness.
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