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Raphaël Danchin Navier-Stokes equations with variable density



Endpoint maximal regularity approach Classical maximal regularity approach Energy approach

The classical incompressible Navier-Stokes equations:

(NS) :


ut + div(u⊗ u)− µ∆u+∇P = 0 in R+ × Ω

divu = 0 in R+ × Ω

u = 0 on R+ × ∂Ω

u|t=0 = u0 in Ω.

Here u = u(t, x) ∈ Rd and P = P (t, x) ∈ R with t ≥ 0 and x ∈ Ω ⊂ Rd, d ≥ 2.

Energy balance:
1

2
‖u(t)‖2

L2 + µ

∫ t

0
‖∇u‖2

L2 dτ =
1

2
‖u0‖2L2 .

Scaling invariance: If Ω = Rd then the System (NS) is invariant (up to a
change of P and u0 ) by the family of dilations:

Tλu(t, x) := λu(λ2t, λx).
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Global weak solutions

The classical incompressible Navier-Stokes equations:

(NS) :


ut + div(u⊗ u)− µ∆u+∇P = 0 in R+ × Ω

divu = 0 in R+ × Ω

u = 0 on R+ × ∂Ω

u|t=0 = u0 in Ω.

Theorem (J. Leray, 1934)

Any divergence free u0 ∈ L2(Ω) generates at least one global weak solution of
(NS) satisfying the energy inequality:

1

2
‖u(t)‖2

L2 + µ

∫ t

0
‖∇u‖2

L2 dτ ≤
1

2
‖u0‖2L2 .

• The proof relies essentially on the energy balance and on compactness
arguments (or, equivalently, Schauder-Tikhonov theorem).

• Unless d = 2, uniqueness of Leray’s solutions is (still) an open question.

Raphaël Danchin Navier-Stokes equations with variable density



Endpoint maximal regularity approach Classical maximal regularity approach Energy approach

‘Mild solutions’ of NS equations

Let A = −µ∆u+∇P be the Stokes operator. Then, formally,

u(t) = e−tAu0︸ ︷︷ ︸
uL

−
∫ t

0
e−(t−τ)A(div(u⊗ u)(τ)) dτ︸ ︷︷ ︸

B(u,u)

.

Lemma (based on the fixed point theorem in a Banach spaces)

Let X be a Banach space and B : X ×X → X, a continuous bilinear map with

norm M . Then equation u = uL − B(u, u) has a unique solution in the closed

ball B(0, 2‖uL‖X) whenever
4M‖uL‖X < 1.

• The largest spaces in which one may expect B to be continuous are scaling
invariant by the family of dilations (Tλ)λ>0.

• Examples : small initial data in Sobolev spaces Ḣ
d
2
−1(Rd) (Fujita-Kato),

Lebesgue space Ld(Rd) (Giga- Kato), Besov spaces Ḃ
d
p
−1

p,r (Rd), etc.
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The inhomogeneous incompressible Navier-Stokes equations read:

(INS) :


(ρu)t + div(ρu⊗ u)− µ∆u+∇P = 0 in R+ × Ω

divu = 0 in R+ × Ω

ρt + div(ρu) = 0 in R+ × Ω.

Energy balance :
1

2
‖
√
ρ(t)u(t)‖2

L2 + µ

∫ t

0
‖∇u‖2

L2 dτ =
1

2
‖√ρ0 u0‖2L2 .

Conservation of Lp norms of functions of the density.

Scaling invariance if Ω = Rd :

ρ(t, x)→ ρ(λ2t, λx), u(t, x)→ λu(λ2t, λx), P (t, x)→ λ2P (λ2t, λx).

Global weak solutions with finite energy for any pair (ρ0, u0) such that
ρ0 ∈ L∞(Ω) with ρ0 ≥ 0 , and

√
ρ0u0 ∈ L2(Ω) with divu0 = 0 (Kazhikhov,

1974, J. Simon 1990, P.-L. Lions 1996).

Even if d = 2, uniqueness in the class of finite energy solutions is a widely
open question.

Strong solutions for smooth data (global if d = 2 and inf ρ0 > 0) :
Ladyzhenskaya and Solonnikov (1978).
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Is (INS) a good model for mixture of non-reacting fluids ?

1 Can we solve uniquely (INS) if ρ0 is discontinuous across an interface ?

2 Is the solution unique for such a ρ0 ?

3 Can we allow for vacuum regions ?

4 Is the regularity of interfaces preserved during the evolution ?

• We expect the interfaces to be transported by the flow of u. Hence, by
Cauchy-Lipschitz theorem, the minimal requirement for preserving their regularity
is ∇u ∈ L1(0, T ;L∞(Ω)).
It will be also needed for uniqueness.

• Even for d = 2 and for the heat equation, having just u0 ∈ L2(Ω) does not
ensure ∇u ∈ L1(0, T ;L∞(Ω)).
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Aim of the talk

Presenting three different (and complementary) approaches:

1 Critical functional framework and endpoint maximal regularity;

2 Classical maximal regularity;

3 Energy approach.
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I. An approach based on the endpoint maximal regularity

For simplicity, we assume that Ω = Rd (d ≥ 2) and that ρ→ 1 at ∞.

Set a := ρ− 1. System for (a, u, P ) reads:

(INS) :


ut − µ∆u+∇P = −aut − (1 + a)div(u⊗ u) in R+ × Rd

divu = 0 in R+ × Rd

at + u · ∇a = 0 in R+ × Rd.

Scaling invariance:

a(t, x)→ a(λ2t, λx), u(t, x)→ λu(λ2t, λx), P (t, x)→ λ2P (λ2t, λx).
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• Endpoint maximal regularity for the Stokes system:

(S) :

{
ut − µ∆u+∇P = f in R+ × Rd

divu = 0 in R+ × Rd.

We have for any s ∈ R and p ∈ [1,∞] :

‖u‖L∞(R+;Ḃs
p,1)

+ ‖ut, µ∇2
xu,∇xP‖L1(R+;Ḃs

p,1)
. ‖u0‖Ḃs

p,1
+ ‖f‖L1(R+;Ḃs

p,1)
.

Scaling invariance pushes us to take s = d
p
− 1 , and thus (u,∇P ) ∈ Ep with

Ep =
{

(u,∇P )∈Cb(R+; Ḃ
d
p
−1

p,1 )×L1(R+; Ḃ
d
p
−1

p,1 ) with ut,∇2u ∈ L1(R+; Ḃ
d
p
−1

p,1 )
}
·

• Stability of the Besov space Ḃ
d
p

p,1 by product if p <∞ :

‖div(u⊗ u)‖
Ḃ

d
p
−1

p,1

. ‖u⊗ u‖
Ḃ

d
p
p,1

. ‖u‖2
Ḃ

d
p
p,1

.

• Multiplier spaces: ‖a‖
M(Ḃ

d
p
−1

p,1 )

:= sup
‖z‖

Ḃ

d
p
−1

p,1

=1
‖az‖

Ḃ

d
p
−1

p,1

<∞.

• Estimates for the transport equation (deduced from the ones in Besov spaces):

‖a(t)‖
M(Ḃ

d
p
−1

p,1 )

≤ ‖a0‖
M(Ḃ

d
p
−1

p,1 )

exp

{
C

∫ t

0
‖∇u‖

Ḃ

d
p
p,1

dτ

}
·
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Taking f = −aut − (1 + a)div(u⊗ u) in (S), we deduce that

‖(u,∇P )‖Ep . ‖u0‖
Ḃ

d
p
−1

p,1

+ ‖a‖
L∞(R+;M(Ḃ

d
p
−1

p,1 ))

‖ut‖
L1(R+;Ḃ

d
p
−1

p,1 )

+
(
1 + ‖a‖

L∞(R+;M(Ḃ

d
p
−1

p,1 ))

)
‖u‖2Ep

.

Combining with

‖a‖
L∞(R+;M(Ḃ

d
p
−1

p,1 ))

≤ ‖a0‖
M(Ḃ

d
p
−1

p,1 )

exp
{
C‖(u,∇P )‖Ep

}
,

one may close the estimates if both ‖a0‖
M(Ḃ

d
p
−1

p,1 )

and ‖u0‖
Ḃ

d
p
−1

p,1

are small.
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Theorem (D & P.B. Mucha, 2012)

Assume that 1 ≤ p < 2d. There exists a constant c > 0 such that if

µ‖a0‖
M(Ḃ

d
p
−1

p,1 )∩L∞
+ ‖u0‖

Ḃ

d
p
−1

p,1

≤ cµ (1)

then (INS) has a unique solution with (u,∇P )∈Ep and a∈C(R+;M(Ḃ
d
p
−1

p,1 )).

The direct proof: NO CONTRACTING MAPPING ARGUMENT.

1 Constructing a sequence of approximate solutions and uniform estimates;

2 Compactness;

3 Uniqueness : loss of one derivative. PROBLEM HERE.

Corollary (The density patch problem)

Let D be a C1 bounded domain. If u0 fulfills (1) with d− 1 < p < 2d and
ρ0 = c11D + c21cD with |c1 − c2| � 1 then (INS) has a unique global solution
as above, and ρ(t) = c11Dt + c21cDt . Furthermore Dt remains C1.
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Lagrangian coordinates: Assume ∇u ∈ L1
loc(R+;L∞) and set

ρ̄(t, y) := ρ(t, x), ū(t, y) := u(t, x) and P̄ (t, y) := P (t, x) with x := X(t, y)

where X is the flow of u defined by

X(t, y) = y +

∫ t

0
u(τ,X(τ, y)) dτ.

(INS) in Lagrangian coordinates:

ρ̄ is time independent.

(ū, P̄ ) satisfies

(ĨNS) :

{
ρ0ūt − div(ATA∇ū) + TA · ∇P̄ = 0,

div(Aū) = TA : ∇ū = 0,

with A = (DyX)−1 =

+∞∑
k=0

(−1)k
(∫ t

0
Dū(τ, ·) dτ

)k
.

• (ĨNS) may be solved by means of the fixed point theorem.

• Uniqueness may be proved at the level of Lagrangian coordinates.
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II. An approach based on the classical maximal regularity

Consider a solution (u,∇P ) to

(S) :

{
ut − µ∆u+∇P = f in R+ × Rd

divu = 0 in R+ × Rd.

Then, for all 1 < p, r <∞,

|(u,∇P )‖Er
p

:= ‖(ut, µ∇2u,∇P )‖Lr(R+;Lp) + ‖u‖
L∞(R+;Ḃ

2− 2
r

p,r )

. ‖u0‖
Ḃ

2− 2
r

p,r

+ ‖f‖Lr(R+;Lp).

• Critical regularity for (INS) corresponds to

2−
2

r
=
d

p
− 1.

which gives us the constraint d
3
< p < d.

• We want to apply this to f = −aut − (1 + a)u · ∇u.
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So we have

‖(u,∇P )‖Er
p

:= ‖(ut, µ∇2u,∇P )‖Lr(R+;Lp) + ‖u‖
L∞(R+;Ḃ

2− 2
r

p,r )
. ‖u0‖

Ḃ
2− 2

r
p,r

+‖a‖L∞(R+×Rd)‖ut‖Lr(R+;Lp) + (1 + ‖a‖L∞(R+×Rd))‖u · ∇u‖Lr(R+;Lp).

Note that ‖a‖L∞(R+×Rd) = ‖a0‖L∞ . Hence, if ‖a0‖L∞ is small, then we get

‖(u,∇P )‖Er
p
. ‖u0‖

Ḃ
2− 2

r
p,r

+ ‖u · ∇u‖Lr(R+;Lp).

If critical regularity: 2− 2
r

= d
p
− 1 then we have

‖u · ∇u‖Lr(R+;Lp) ≤ ‖u‖
L2r(R+;L

dr
r−1 )

‖∇u‖
L2r(R+;L

dr
2r−1 )

and

‖u‖
L

dr
r−1

. ‖∇u‖
L

dr
2r−1

(Sobolev embedding)

‖∇u‖
L

dr
2r−1

. ‖∇2u‖
1
2
Lp‖u‖

1
2

Ḃ
2− 2

r
p,r

(Interpolation).

Hence
‖(u,∇P )‖Er

p
. ‖u0‖

Ḃ
2− 2

r
p,r

+ ‖(u,∇P )‖2Er
p
.
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Results

Theorem (Huang, Paicu & Zhang, 2013)

Let a0 ∈ L∞(Rd) and u0 ∈ Ḃ
−1+ d

p
p,r (Rd) with d ≥ 2, p := dr

3r−2
and r ∈ (1,∞).

There exists a positive constant c0 = c0(r, d) so that if

µ‖a0‖L∞ + ‖u0‖
Ḃ
−1+ d

p
p,r

≤ c0µ (2)

then (NSI) has a global solution (a, u,∇P ) satisfying ‖a(t)‖L∞ = ‖a0‖L∞ for
all t ≥ 0, and (u,∇P ) ∈ Erp .

Since r > 1 and p < d , we do not have ∇u ∈ L1
loc(R+;L∞) which precludes our

using Lagrangian coordinates for proving uniqueness.

Theorem (Huang, Paicu & Zhang, 2013)

If, in addition, u0 ∈ Ḃ
−1+ d

p

p̃,r
for some d < p̃ ≤ dr

r−1
, then (u,∇P ) also belongs to

Erp̃ , and the solution (a, u,∇P ) is unique in the space L∞(R+×Rd)×
(
Erp ∩Erp̃

)
·
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Comments on the first two approaches

• Adaptable to more general domains : half-space, bounded smooth domain and
exterior smooth domain (more tricky);

• Local in time results are provable, but, still, a0 has to be small for some suitable
norm since our approach relies on the Stokes system with constant coefficients.

• We get nothing special for d = 2 even though global existence is expected with
no smallness condition at all.

• The viscosity coefficient has to be independent of the density.
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An approach based on energy estimates

• The basic energy balance:

1

2
‖
√
ρ(t)u(t)‖2

L2 + µ

∫ t

0
‖∇u‖2

L2 dτ =
1

2
‖√ρ0 u0‖2L2 .

• All Lp norms of the functions of the density are preserved through the
evolution.

However, even if d = 2, those relations are far from being enough to ensure
uniqueness and conservation of geometric structures like interfaces between
different densities.

In dimension 2, critical regularity is u0 ∈ L2. What if one starts with u0 ∈ H1 ?
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Theorem (D & P.B. Mucha, 2017)

Consider any data (ρ0, u0) in L∞(T2)×H1(T2) with ρ0 ≥ 0 and divu0 = 0.

Then System (INS) supplemented with (ρ0, u0) admits a unique global
solution (ρ, u,∇P ) that satisfies the energy equality, the conservation of total
mass and momentum,

ρ ∈ L∞(R+;L∞), u ∈ L∞(R+;H1),
√
ρut,∇2u,∇P ∈ L2(R+;L2)

and also, for all 1 ≤ r < 2, 1 ≤ m <∞ and T ≥ 0,

∇(
√
tP ), ∇2(

√
tu) ∈ L∞(0, T ;Lr) ∩ L2(0, T ;Lm).

Furthermore, we have
√
ρu ∈ C(R+;L2) and ρ ∈ C(R+;Lp) for all p <∞.

Corollary (The density patch problem)

If u0 ∈ H1(T2) and ρ0 = c11D + c21cD with c1, c2 ≥ 0 arbitrary and D a
C1,α open set with α < 1, then (INS) has a unique global solution as above, and
ρ(t) = c11Dt + c21cDt . Furthermore Dt remains C1,α.
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Main steps of the proof:

1 Global-in-time estimates for Sobolev regularity of u .

2 Sobolev regularity of ut and time weights.

3 Shift of regularity and integrability : from time to space variable.

4 The existence scheme.

5 Lagrangian coordinates and uniqueness.

Assume with no loss of generality that∫
T2
ρ0 dx = µ = 1 and

∫
T2
ρ0u0 dx = 0.
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Step 1: global-in-time Sobolev estimates

• Take the L2 scalar product of ρ(ut + u · ∇u)−∆u+∇P = 0 with ut :

1

2

d

dt

∫
T2
|∇u|2dx+

∫
T2
ρ|ut|2 dx ≤

1

2

∫
T2
ρ|ut|2 dx+

1

2

∫
T2
ρ|u · ∇u|2 dx.

Let ρ∗ := ‖ρ‖L∞ . As −∆u+∇P = −ρut − ρu · ∇u and div∆u = 0 , we get

‖∇2u‖2
L2 +‖∇P‖2

L2 = ‖ρ(∂tu+u·∇u)‖2
L2 ≤ 2ρ∗

(∫
T2
ρ|ut|2 dx+

∫
T2
ρ|u · ∇u|2 dx

)
·

Hence

d

dt

∫
T2
|∇u|2dx+

1

2

∫
T2
ρ|ut|2 dx+

1

4ρ∗
(
‖∇2u‖2

L2 +‖∇P‖2
L2

)
≤

3

2

∫
T2
ρ|u · ∇u|2 dx.

• Apply Hölder and Gagliardo-Nirenberg inequality, and use ρ ≤ ρ∗ := ‖ρ0‖L∞ :∫
T2
ρ|u · ∇u|2 dx ≤ ρ∗‖u‖2

L4‖∇u‖2L4 ≤ Cρ∗‖u‖L2‖∇u‖2L2‖∇2u‖L2

≤
1

12ρ∗
‖∇2u‖2

L2 + C(ρ∗)3‖u‖2
L2‖∇u‖2L2‖∇u‖2L2 .

• If ρ ≥ ρ∗ > 0, then ‖u‖2
L2 ≤ ρ−1

∗ ‖
√
ρu‖2

L2 . Combine the basic energy
inequality with Gronwall lemma.

Raphaël Danchin Navier-Stokes equations with variable density



Endpoint maximal regularity approach Classical maximal regularity approach Energy approach

Step 1: global-in-time Sobolev estimates (continued)

Lemma (B. Desjardins, 1997)

If
∫
T2 ρ dx = 1 and

∫
T2 ρz dx = 0 then

(∫
T2
ρz4 dx

) 1
2

≤ C‖√ρz‖L2‖∇z‖L2 log
1
2

(
e+ ‖ρ− 1‖2

L2 +
ρ∗‖∇z‖2

L2

‖√ρz‖2
L2

)
· (3)

• Write

∫
T2
ρ|u · ∇u|2dx ≤

√
ρ∗
(∫

T2
ρ|u|4 dx

) 1
2

‖∇u‖2
L4

and use (3) with z = u, energy balance and ab ≤ a2/2 + b2/2 :∫
T2
ρ|u · ∇u|2dx ≤

1

12ρ∗
‖∇2u‖2

L2

+C(ρ∗)2‖√ρ0 u0‖2L2‖∇u‖2L2‖∇u‖2L2 log

(
e+‖ρ0 − 1‖2

L2 + ρ∗
‖∇u‖2

L2

‖√ρ0 u0‖2L2

)
·
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Step 1: global-in-time Sobolev estimates (continued)

We eventually get
d

dt
X ≤ fX log(e+X),

with f(t) := C0‖∇u(t)‖2
L2 for some suitable C0 = C(ρ0, u0) and

X(t) :=

∫
T2
|∇u(t)|2 dx+

1

2

∫
T2

(
ρ|ut|2 +

1

4ρ∗
(
|∇2u|2 + |∇P |2

))
dx.

Hence

(e+X(t)) ≤ (e+X(0))exp(
∫ t
0 f(τ) dτ) ≤ (e+X(0))

exp (C0‖
√
ρ0u0‖2L2 )·

• However X <∞ does not imply ∇u ∈ L1
loc(R+;L∞(T2)).
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Step 2: Sobolev regularity of ut

Take the L2 scalar product of ρ(ut + u · ∇u)−∆u+∇P = 0 with utt :

1

2

d

dt

∫
T2
ρ|ut|2 dx+

∫
T2
|∇ut|2 dx =

∫
T2

(
ρtut − ρtu · ∇u− ρut · ∇u

)
· ut dx.

• For (
√
ρut)|t=0 to be defined, we need the compatibility condition

−∆u0 =
√
ρ0g −∇P0 with g ∈ L2. (4)

• Condition (4) is not needed if we compensate the singularity at time 0 by some
power of t : take the scalar product of ρ(ut + u · ∇u)−∆u+∇P = 0 with tutt :

‖
√
ρt ut‖L2 +

∫ t

0
‖∇
√
τ ut‖2L2 dτ ≤ h(t),

where h is a nondecreasing nonnegative function with h(0) = 0 (use Step 1 and
energy identity).
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Step 3: Shift of regularity from time to space variable

Step 1 gives ∇u ∈ L∞(R+;L2), ∇u ∈ L2(R+;H1), ∇P,√ρut∈L2(R+×T2).

Step 2 gives
√
ρt ut ∈ L∞loc(R+;L2) and ∇

√
t ut ∈ L2

loc(R+;L2).

Step 3: Use Stokes equation:{
−∆
√
t u+∇

√
t P = −

√
t ρut −

√
t ρu · ∇u,

div
√
t u = 0.

Steps 1,2 + embedding imply that for all T > 0, the right-hand side is
almost in L2(0, T ;L∞). Hence so do ∇2

√
t u and ∇

√
t P.

• This implies that ∇u ∈ L1
loc(0, T ;L∞) from which one may go to Lagrangian

coordinates and prove uniqueness.
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