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On R?, Riesz transforms R;, j=1,---,d, are formally defined by
Rj = 0;(—A)"'2,

The classical Calderén-Zygmund theory gives

187 fllp < Cpll fllp-

The sharp inequality can be obtained by either analytic or probabilistic
approach.

Theorem (Iwaniec-Martin 1996, Bafiuelos-Wang 1995)

IR; fll, < cot ( ) 1fls Vo> 1

where p* = max{p, p%l}.
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Riesz transforms in different geometric settings

The study of Riesz transforms in different geometric settings was

introduced by Stein (1970) on Lie groups and by Strichartz (1983) on
manifolds.

o Singular integral techniques and heat kernel estimates See for
instance [Duong-MclIntosh 1995], [Coulhon-Duong 1999],
[Auscher-Coulhon-Duong-Hofmann 2004], etc.

o Probabilistic methods

» Martingale approach via Littlewood-Paley inequalities ([Bakry 1987])
» Martingale transforms, which allow us to have sharp or at least
dimension free estimates!
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Gundy-Varopoulos representation on R¢

In 1979, Gundy and Varopoulos proved the now classical representation of
Riesz transforms using “background radiation” process:

Yo—00

R;f =2 lm By, ( | A0 Qs (5 B d3.) | .= x)

where

o Aj = (aj)isa (d+1) x (d+ 1) matrix with a(411); = 1 and
otherwise 0;

@ [(3;: Brownian motion on R4 with initial distribution dz:
@ B;: Brownian motion on R with generator % starting from yo > 0;
o 7 =inf{t > 0: By = 0}: the stopping time;

o Qf(z,y) = e ¥V~2f(x): the harmonic extension of f € C§°(RY).
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(Q, F,P): a complete probability space;

X and Y': adapted, real-valued martingales which have right-continuous
paths with left-limits (cadlag);

Y is differentially subordinate to X: |Yp| < |Xo| and (X), — (Y), is a
nondecreasing and nonnegative function of ¢;

X¢ and Y; are orthogonal: (X,Y), =0 for all ¢.
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Bafiuelos and Wang proved the following sharp inequality extending the
classical results of Burkholder (1966).

Theorem (Bafiuelos-Wang 1995)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X. Fix 1 < p < oo, then

Yy < (0" = DIXp-

Furthermore, suppose the martingales X and Y are orthogonal. Then

T
¥l < cot (5 )1
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And afterwards

v

Bafiuelos-Wang 1995: sharp estimates for R;;

v

Arcozzi 1998: sharp estimates on Lie group of compact type;

X.-D. Li 2008-2014: dimension free estimates on Riemmanian
manifolds and on forms with curvature assumption;

v

» More recent:
[Bafiuelos-Baudoin 2013] on second order Riesz transforms on Lie
groups of compact type,
[Bafiuelos-Osekowski 2015] on sharp martingale inequalities and Riesz
transforms on manifolds, Lie groups and Gauss space,
[Dahmani-Domelevo-Petermichl 2018] on dimensionless weighted L
estimates for Riesz vectors on manifolds,
and so on.
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Scalar operators constructed from martingale transforms

M: smooth manifold with smooth measure p.
X1,-++, Xy locally Lipschitz vector fields on M.

V : M — R is a non-positive smooth potential. Consider the Schrodinger
operator

d
L=-) X;Xi+V.
=1

We can write
d

L=) X7+ Xo+V,
i=1
for some locally Lipchitz vector field Xj.
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Diffusion process

d
Let (Y;)i>0 be the diffusion process on M with generator > X2 + X
i=1
starting from the distribution .

Via Stratonovitch stochastic differential equation,
d .
dY; = Xo(t)dt + ) X;(Yi) 0 3},
i=1
where 3, is the Brownian motion on R?.

For f € C§°(M), denote

QY f(z,y) = Pyf(x) = e VL f(2).
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Projection operators

Consider the operators

“+oo
T = / yP, (x/—LXZ- - X;\@) Pydy, Y1<i<d.
0

Theorem (Bafiuelos-Baudoin-C. 2018)
For f € S(M) and 1 <i <d,

T.f(2) = -+ lim

Yo— 00

Ey, (efJV(Yv)d” / e fo VOI® 4,7 8,)TQf (Ya, Bs)(dBs, dBs) | Yy = o
0

where V = (X1, ,Xy), and A; is a (d+ 1) x (d + 1) matrix with
aig+1) = —1, agy1y; = 1 and otherwise 0.




Sharp estimate of Banuelos and Osekowski

Theorem (Bafiuelos-Osekowski 2015)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X . Consider the process

t
L s
Z; = efo Vsds/ e fO Vud'udjfS7
0

where (V;)i>0 is a non-positive adapted and continuous process.

12]lp < (" = DIIX[p-
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Main result

Theorem (Bafiuelos-Baudoin-C. 2018)
Fix 1 <p < oo. Then for every f € S(M),

1551 < (3) " = D,

If the potential V = 0, then

Wﬂu_ﬂm< )wm

» Applications: Lie group of compact type, Heisenberg groups, SU(2),
etc.
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Example: Lie group of compact type

G: Lie group of compact type with a bi-invariant Riemannian structure.
X1, -+, Xg: an orthonormal basis of g.
d
L =3 X?: the Laplace-Beltrami operator.
i=1
We observe

+oo 1
T, = / yP, <\/—LXZ- - X;k\/—L) Pydy = 5X:(V=1) ™"
0

Proposition

[T\ — ™
||XZ( —L) IHLPHLP S COt(Qp*) .

This inequality was first proved by [Accozzi 1998].
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Example: Heisenberg groups

H" = {(2,y,2) : ¢ € R*,y € R*, 2 € R}

endowed with the group law

(x,y,2)- (2", 9/, 2') = (ﬂf Lyt e+ (3 YV )an = (¥ x'>Rn)) :

2

Let
| .
X; =0y, — %ﬂaz, Yj =0y, + 0. Z=0,

We observe
[Xj’Yk] = ij‘

The complex gradient
W; = X; +14Y}.
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The sublaplacian
n

L=) (X7+Y}).
j=1
By spectral decomposition of the sublaplacian,

(Wj,V=LIf =2iT;Zf, VfeSH")

where

400
T = / yPy(W;V =L+ vV —LW;)P,dy.
0

Proposition

Let1<j<mnandfeSH"). Then we have

| W, V=LIf llp < V2(p* = DI Zf]l,.
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Riesz transform on vector bundles

M: d-dimensional smooth complete Riemannian manifold.
& finite-dimensional vector bundle over M

I'(M, &): the space of smooth sections of this bundle.

V: metric connection on £.

We consider an operator on I'(M] &)

d
L=F+Vo+) Vi,
i=1
where F is a smooth symmetric and non positive potential (that is a
smooth section of the bundle End(&)).
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Consider a first order differential operator d, on I'(M &)

d
da =Y a;Vx,,
i=1

where a1, -, aq are smooth sections of the bundle End(&).

Assume
doLn = Ldsn, neT(M,E),

and

d
danll®> < CY IVxnl?, neT(M,E).

=1

Theorem (Bafiuelos-Baudoin-C. 2018)
Let n e TP (M, E). Then for1 < p < oo,

lda(=£)""?1ll, < 6C (" — 1)lInll-
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Gundy-Varopoulos type representation of Riesz transform

Consider the stochastic parallel transport along Y3, 6; : &y, — &y, and the
multiplicative functional (M});>0, solution of the equation

dM;
dt

= M0, F0;, My =1d.

Let n € T (M, E). For almost all = € M, we have

do(=L)*n(x)

= =2 lim Ky, (0;1M;k-/ (M:)_lﬁsdan(Ys,Bs)st | Y = x> .
Yo—00 0

» Applications: Riesz transforms on forms, spinors.
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Riesz transform on forms

M: d-dimensional smooth, oriented, complete and stochastically complete
Riemannian manifold.

Fermionic construction on the tangent spaces of M.

e;. local orthonormal frame; 6;: its dual frame.

d=> aiV,

The curvature endomorphism (Weitzenbock curvature) is then defined by

The exterior derivative

F=- Z (R(ej, ex)er, i) ajajaga
ijkl

with R Riemannian curvature of M.
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The Hodge-DeRham Laplacian: £ = —dd* — d*d.
The Bochner Laplacian: A = Zle(veivei —Vv,e)

The celebrated Weitzenbock formula writes

L=A-F.

Theorem
Assume F > 0, then

ld(—L£)"2nll, < 6" — 1)l




Thanks very much!



