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Riesz transforms on Rd

On Rd, Riesz transforms Rj , j = 1, · · · , d, are formally defined by

Rj = ∂j(−∆)−1/2.

The classical Calderón-Zygmund theory gives

‖Rjf‖p ≤ Cp‖f‖p.

The sharp inequality can be obtained by either analytic or probabilistic
approach.

Theorem (Iwaniec-Martin 1996, Bañuelos-Wang 1995)

‖Rjf‖p ≤ cot

(
π

2p∗

)
‖f‖p, ∀p > 1

where p∗ = max{p, p
p−1}.
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Riesz transforms in different geometric settings

The study of Riesz transforms in different geometric settings was
introduced by Stein (1970) on Lie groups and by Strichartz (1983) on
manifolds.

Singular integral techniques and heat kernel estimates See for
instance [Duong-McIntosh 1995], [Coulhon-Duong 1999],
[Auscher-Coulhon-Duong-Hofmann 2004], etc.

Probabilistic methods
I Martingale approach via Littlewood-Paley inequalities ([Bakry 1987])
I Martingale transforms, which allow us to have sharp or at least

dimension free estimates!
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Gundy-Varopoulos representation on Rd

In 1979, Gundy and Varopoulos proved the now classical representation of
Riesz transforms using “background radiation” process:

Rjf = −2 lim
y0→∞

Ey0
(∫ τ

0
Aj(∇, ∂y)TQf(βs, Bs)(dβs, dBs) | βτ = x

)
,

where

Aj = (aik) is a (d+ 1)× (d+ 1) matrix with a(d+1)j = 1 and
otherwise 0;

βt: Brownian motion on Rd with initial distribution dx;

Bt: Brownian motion on R with generator d2

dy2
starting from y0 > 0;

τ = inf{t > 0 : Bt = 0}: the stopping time;

Qf(x, y) = e−y
√
−∆f(x): the harmonic extension of f ∈ C∞0 (Rd).
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Sharp inequalities for martingales

(Ω,F ,P): a complete probability space;

X and Y : adapted, real-valued martingales which have right-continuous
paths with left-limits (càdlàg);

Y is differentially subordinate to X: |Y0| ≤ |X0| and 〈X〉t − 〈Y 〉t is a
nondecreasing and nonnegative function of t;

Xt and Yt are orthogonal: 〈X,Y 〉t = 0 for all t.
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Bañuelos and Wang proved the following sharp inequality extending the
classical results of Burkholder (1966).

Theorem (Bañuelos-Wang 1995)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X. Fix 1 < p <∞, then

‖Y ‖p ≤ (p∗ − 1)‖X‖p.

Furthermore, suppose the martingales X and Y are orthogonal. Then

‖Y ‖p ≤ cot

(
π

2p∗

)
‖X‖p.
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And afterwards

I Bañuelos-Wang 1995: sharp estimates for Rj ;

I Arcozzi 1998: sharp estimates on Lie group of compact type;

I X.-D. Li 2008-2014: dimension free estimates on Riemmanian
manifolds and on forms with curvature assumption;

I More recent:
[Bañuelos-Baudoin 2013] on second order Riesz transforms on Lie
groups of compact type,
[Bañuelos-Osȩkowski 2015] on sharp martingale inequalities and Riesz
transforms on manifolds, Lie groups and Gauss space,
[Dahmani-Domelevo-Petermichl 2018] on dimensionless weighted Lp

estimates for Riesz vectors on manifolds,
and so on.



And afterwards
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Scalar operators constructed from martingale transforms

M: smooth manifold with smooth measure µ.

X1, · · · , Xd: locally Lipschitz vector fields on M.

V : M→ R is a non-positive smooth potential. Consider the Schrödinger
operator

L = −
d∑
i=1

X∗iXi + V.

We can write

L =

d∑
i=1

X2
i +X0 + V,

for some locally Lipchitz vector field X0.
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Diffusion process

Let (Yt)t≥0 be the diffusion process on M with generator
d∑
i=1

X2
i +X0

starting from the distribution µ.

Via Stratonovitch stochastic differential equation,

dYt = X0(t)dt+

d∑
i=1

Xi(Yt) ◦ dβit,

where βt is the Brownian motion on Rd.

For f ∈ C∞0 (M), denote

QV f(x, y) = Pyf(x) = e−y
√
−Lf(x).
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Projection operators

Consider the operators

Ti =

∫ +∞

0
yPy

(√
−LXi −X∗i

√
−L
)
Pydy, ∀1 ≤ i ≤ d.

Theorem (Bañuelos-Baudoin-C. 2018)

For f ∈ S(M) and 1 ≤ i ≤ d,

Tif(x) = −1

2
lim
y0→∞

Ey0
(
e
∫ τ
0 V (Yv)dv

∫ τ

0
e−

∫ s
0 V (Yv)dvAi(∇, ∂y)TQf(Ys, Bs)(dβs, dBs) | Yτ = x

)
,

where ∇ = (X1, · · · , Xd), and Ai is a (d+ 1)× (d+ 1) matrix with
ai(d+1) = −1, a(d+1)i = 1 and otherwise 0.
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Sharp estimate of Bañuelos and Osȩkowski

Theorem (Bañuelos-Osȩkowski 2015)

Let X and Y be two martingales with continuous paths such that Y is
differentially subordinate to X. Consider the process

Zt = e
∫ t
0 Vsds

∫ t

0
e−

∫ s
0 VvdvdYs,

where (Vt)t≥0 is a non-positive adapted and continuous process.

‖Z‖p ≤ (p∗ − 1)‖X‖p.



Main result

Theorem (Bañuelos-Baudoin-C. 2018)

Fix 1 < p <∞. Then for every f ∈ S(M),

‖Tif‖p ≤
(

3

2

)
(p∗ − 1)‖f‖p.

If the potential V ≡ 0, then

‖Tif‖p ≤
1

2
cot

(
π

2p∗

)
‖f‖p.

I Applications: Lie group of compact type, Heisenberg groups, SU(2),
etc.



Main result
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Example: Lie group of compact type

G: Lie group of compact type with a bi-invariant Riemannian structure.

X1, · · · , Xd: an orthonormal basis of g.

L =
d∑
i=1

X2
i : the Laplace-Beltrami operator.

We observe

Ti =

∫ +∞

0
yPy

(√
−LXi −X∗i

√
−L
)
Pydy =

1

2
Xi(
√
−L)−1.

Proposition

‖Xi(
√
−L)−1‖Lp→Lp ≤ cot

(
π

2p∗

)
.

This inequality was first proved by [Accozzi 1998].
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Example: Heisenberg groups

Hn = {(x, y, z) : x ∈ Rn, y ∈ Rn, z ∈ R}

endowed with the group law

(x, y, z)·(x′, y′, z′) =

(
x+ x′, y + y′, z + z′ +

1

2

(〈
x, y′

〉
Rn −

〈
y, x′

〉
Rn
))

.

Let
Xj = ∂xj −

yj
2
∂z, Yj = ∂yj +

xj
2
∂z, Z = ∂z,

We observe
[Xj , Yk] = δjkZ.

The complex gradient
Wj = Xj + iYj .
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The sublaplacian

L =

n∑
j=1

(
X2
j + Y 2

j

)
.

By spectral decomposition of the sublaplacian,

[Wj ,
√
−L]f = 2i TjZf, ∀f ∈ S(Hn)

where

Tj =

∫ +∞

0
yPy(Wj

√
−L+

√
−LWj)Pydy.

Proposition

Let 1 ≤ j ≤ n and f ∈ S(Hn). Then we have

‖ [Wj ,
√
−L]f ‖p ≤

√
2(p∗ − 1)‖Zf‖p.
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Riesz transform on vector bundles

M: d-dimensional smooth complete Riemannian manifold.

E : finite-dimensional vector bundle over M

Γ(M, E): the space of smooth sections of this bundle.

∇: metric connection on E .

We consider an operator on Γ(M, E)

L = F +∇0 +

d∑
i=1

∇2
Xi ,

where F is a smooth symmetric and non positive potential (that is a
smooth section of the bundle End(E)).
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Consider a first order differential operator da on Γ(M, E)

da =

d∑
i=1

ai∇Xi ,

where a1, · · · , ad are smooth sections of the bundle End(E).

Assume
daLη = Ldaη, η ∈ Γ(M, E),

and

‖daη‖2 ≤ C
d∑
i=1

‖∇Xiη‖2, η ∈ Γ(M, E).

Theorem (Bañuelos-Baudoin-C. 2018)

Let η ∈ Γ∞0 (M, E). Then for 1 < p <∞,

‖da(−L)−1/2η‖p ≤ 6C(p∗ − 1)‖η‖p.
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Gundy-Varopoulos type representation of Riesz transform

Consider the stochastic parallel transport along Yt, θt : EYt → EY0 and the
multiplicative functional (Mt)t≥0, solution of the equation

dMt

dt
=MtθtFθ−1

t , M0 = Id.

Let η ∈ Γ∞0 (M, E). For almost all x ∈M, we have

da(−L)−1/2η(x)

= −2 lim
y0→∞

Ey0
(
θ−1
τ M∗τ

∫ τ

0
(M∗s)−1θsdaQf(Ys, Bs)dBs | Yτ = x

)
.

I Applications: Riesz transforms on forms, spinors.
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Riesz transform on forms

M: d-dimensional smooth, oriented, complete and stochastically complete
Riemannian manifold.

Fermionic construction on the tangent spaces of M.

ei: local orthonormal frame; θi: its dual frame.

The exterior derivative
d =

∑
i

a∗i∇ei .

The curvature endomorphism (Weitzenböck curvature) is then defined by

F = −
∑
ijkl

〈R(ej , ek)el, ei〉 a∗i aja∗kal

with R Riemannian curvature of M.
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The Hodge-DeRham Laplacian: L = −dd∗ − d∗d.

The Bochner Laplacian: ∆ =
∑d

i=1(∇ei∇ei −∇∇eiei).

The celebrated Weitzenböck formula writes

L = ∆−F .

Theorem

Assume F ≥ 0, then

‖d(−L)−1/2η‖p ≤ 6(p∗ − 1)‖η‖p
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Thanks very much!


