Gundy-Varopoulos martingale transforms and their projection operators on manifolds and vector bundles

Li CHEN joint with R. Bañuelos (Purdue) and F. Baudoin (UCONN)

University of Connecticut

CIRM, April 23, 2018

On \mathbb{R}^d , Riesz transforms R_j , $j = 1, \cdots, d$, are formally defined by

$$R_j = \partial_j (-\Delta)^{-1/2}$$

The classical Calderón-Zygmund theory gives

 $||R_jf||_p \le C_p ||f||_p.$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Theorem (Iwaniec-Martin 1996, Bañuelos-Wang 1995)

$$||R_j f||_p \le \cot\left(\frac{\pi}{2p^*}\right) ||f||_p, \quad \forall p > 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $p^* = \max\{p, \frac{p}{p-1}\}.$

On \mathbb{R}^d , Riesz transforms R_j , $j = 1, \cdots, d$, are formally defined by

$$R_j = \partial_j (-\Delta)^{-1/2}$$

The classical Calderón-Zygmund theory gives

 $||R_jf||_p \le C_p ||f||_p.$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Theorem (Iwaniec-Martin 1996, Bañuelos-Wang 1995)

$$||R_j f||_p \le \cot\left(\frac{\pi}{2p^*}\right) ||f||_p, \quad \forall p > 1$$

where $p^* = \max\{p, \frac{p}{p-1}\}.$

On \mathbb{R}^d , Riesz transforms R_j , $j = 1, \cdots, d$, are formally defined by

$$R_j = \partial_j (-\Delta)^{-1/2}$$

The classical Calderón-Zygmund theory gives

$$||R_jf||_p \le C_p ||f||_p.$$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Theorem (Iwaniec-Martin 1996, Bañuelos-Wang 1995) $\|R_j f\|_p \le \cot\left(\frac{\pi}{2p^*}\right) \|f\|_p, \quad \forall p > 1$ where $p^* = \max\{p, \frac{p}{p-1}\}.$

On \mathbb{R}^d , Riesz transforms R_j , $j = 1, \cdots, d$, are formally defined by

$$R_j = \partial_j (-\Delta)^{-1/2}$$

The classical Calderón-Zygmund theory gives

$$||R_jf||_p \le C_p ||f||_p.$$

The sharp inequality can be obtained by either analytic or probabilistic approach.

Theorem (Iwaniec-Martin 1996, Bañuelos-Wang 1995)

$$||R_j f||_p \le \cot\left(\frac{\pi}{2p^*}\right) ||f||_p, \quad \forall p > 1$$

where $p^* = \max\{p, \frac{p}{p-1}\}.$

• **Singular integral techniques and heat kernel estimates** See for instance [Duong-McIntosh 1995], [Coulhon-Duong 1999], [Auscher-Coulhon-Duong-Hofmann 2004], etc.

• Probabilistic methods

Martingale approach via Littlewood-Paley inequalities ([Bakry 1987])

- Singular integral techniques and heat kernel estimates See for instance [Duong-McIntosh 1995], [Coulhon-Duong 1999], [Auscher-Coulhon-Duong-Hofmann 2004], etc.
- Probabilistic methods
 - Martingale approach via Littlewood-Paley inequalities ([Bakry 1987])

• Singular integral techniques and heat kernel estimates See for instance [Duong-McIntosh 1995], [Coulhon-Duong 1999], [Auscher-Coulhon-Duong-Hofmann 2004], etc.

Probabilistic methods

Martingale approach via Littlewood-Paley inequalities ([Bakry 1987])

• Singular integral techniques and heat kernel estimates See for instance [Duong-McIntosh 1995], [Coulhon-Duong 1999], [Auscher-Coulhon-Duong-Hofmann 2004], etc.

Probabilistic methods

Martingale approach via Littlewood-Paley inequalities ([Bakry 1987])

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$R_j f = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^\tau A_j(\nabla, \partial_y)^{\mathrm{T}} Q f(\beta_s, B_s)(d\beta_s, dB_s) \mid \beta_\tau = x \right),$$

where

- $A_j = (a_{ik})$ is a $(d+1) \times (d+1)$ matrix with $a_{(d+1)j} = 1$ and otherwise 0;
- β_t : Brownian motion on \mathbb{R}^d with initial distribution dx;
- B_t : Brownian motion on \mathbb{R} with generator $\frac{d^2}{dy^2}$ starting from $y_0 > 0$;
- $\tau = \inf\{t > 0 : B_t = 0\}$: the stopping time;
- $Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$: the harmonic extension of $f \in C_0^{\infty}(\mathbb{R}^d)$.

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$R_j f = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^\tau A_j(\nabla, \partial_y)^{\mathrm{T}} Q f(\beta_s, B_s)(d\beta_s, dB_s) \mid \beta_\tau = x \right),$$

where

- $A_j = (a_{ik})$ is a $(d+1) \times (d+1)$ matrix with $a_{(d+1)j} = 1$ and otherwise 0;
- β_t : Brownian motion on \mathbb{R}^d with initial distribution dx;
- B_t : Brownian motion on \mathbb{R} with generator $\frac{d^2}{dy^2}$ starting from $y_0 > 0$;
- $\tau = \inf\{t > 0 : B_t = 0\}$: the stopping time;

• $Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$: the harmonic extension of $f \in C_0^{\infty}(\mathbb{R}^d)$.

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$R_j f = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^\tau A_j(\nabla, \partial_y)^{\mathrm{T}} Q f(\beta_s, B_s)(d\beta_s, dB_s) \mid \beta_\tau = x \right),$$

where

- $A_j = (a_{ik})$ is a $(d+1) \times (d+1)$ matrix with $a_{(d+1)j} = 1$ and otherwise 0;
- β_t : Brownian motion on \mathbb{R}^d with initial distribution dx;
- B_t : Brownian motion on \mathbb{R} with generator $\frac{d^2}{dy^2}$ starting from $y_0 > 0$;
- $\tau = \inf\{t > 0 : B_t = 0\}$: the stopping time;

• $Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$: the harmonic extension of $f \in C_0^{\infty}(\mathbb{R}^d)$.

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$R_j f = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^\tau A_j(\nabla, \partial_y)^{\mathrm{T}} Q f(\beta_s, B_s)(d\beta_s, dB_s) \mid \beta_\tau = x \right),$$

where

- $A_j = (a_{ik})$ is a $(d+1) \times (d+1)$ matrix with $a_{(d+1)j} = 1$ and otherwise 0;
- β_t : Brownian motion on \mathbb{R}^d with initial distribution dx;
- B_t : Brownian motion on \mathbb{R} with generator $\frac{d^2}{du^2}$ starting from $y_0 > 0$;
- $\tau = \inf\{t > 0 : B_t = 0\}$: the stopping time;
- $Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$: the harmonic extension of $f \in C_0^{\infty}(\mathbb{R}^d)$.

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$R_j f = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^\tau A_j(\nabla, \partial_y)^{\mathrm{T}} Q f(\beta_s, B_s)(d\beta_s, dB_s) \mid \beta_\tau = x \right),$$

where

- $A_j = (a_{ik})$ is a $(d+1) \times (d+1)$ matrix with $a_{(d+1)j} = 1$ and otherwise 0;
- β_t : Brownian motion on \mathbb{R}^d with initial distribution dx;
- B_t : Brownian motion on \mathbb{R} with generator $\frac{d^2}{dy^2}$ starting from $y_0 > 0$;
- $\tau = \inf\{t > 0 : B_t = 0\}$: the stopping time;

• $Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$: the harmonic extension of $f \in C_0^{\infty}(\mathbb{R}^d)$.

In 1979, Gundy and Varopoulos proved the now classical representation of Riesz transforms using "background radiation" process:

$$R_j f = -2 \lim_{y_0 \to \infty} \mathbb{E}_{y_0} \left(\int_0^\tau A_j(\nabla, \partial_y)^{\mathrm{T}} Q f(\beta_s, B_s)(d\beta_s, dB_s) \mid \beta_\tau = x \right),$$

where

- $A_j = (a_{ik})$ is a $(d+1) \times (d+1)$ matrix with $a_{(d+1)j} = 1$ and otherwise 0;
- β_t : Brownian motion on \mathbb{R}^d with initial distribution dx;
- B_t : Brownian motion on \mathbb{R} with generator $\frac{d^2}{dy^2}$ starting from $y_0 > 0$;
- $\tau = \inf\{t > 0 : B_t = 0\}$: the stopping time;

• $Qf(x,y) = e^{-y\sqrt{-\Delta}}f(x)$: the harmonic extension of $f \in C_0^{\infty}(\mathbb{R}^d)$.

X and Y: adapted, real-valued martingales which have right-continuous paths with left-limits (càdlàg);

Y is differentially subordinate to X: $|Y_0| \leq |X_0|$ and $\langle X \rangle_t - \langle Y \rangle_t$ is a nondecreasing and nonnegative function of t;

X and Y: adapted, real-valued martingales which have right-continuous paths with left-limits (càdlàg);

Y is differentially subordinate to X: $|Y_0| \leq |X_0|$ and $\langle X \rangle_t - \langle Y \rangle_t$ is a nondecreasing and nonnegative function of t;

X and Y: adapted, real-valued martingales which have right-continuous paths with left-limits (càdlàg);

Y is differentially subordinate to X: $|Y_0| \leq |X_0|$ and $\langle X \rangle_t - \langle Y \rangle_t$ is a nondecreasing and nonnegative function of t;

X and Y: adapted, real-valued martingales which have right-continuous paths with left-limits (càdlàg);

Y is differentially subordinate to X: $|Y_0| \leq |X_0|$ and $\langle X \rangle_t - \langle Y \rangle_t$ is a nondecreasing and nonnegative function of t;

Bañuelos and Wang proved the following sharp inequality extending the classical results of Burkholder (1966).

Theorem (Bañuelos-Wang 1995)

Let X and Y be two martingales with continuous paths such that Y is differentially subordinate to X. Fix 1 , then

 $||Y||_p \le (p^* - 1) ||X||_p.$

Furthermore, suppose the martingales X and Y are orthogonal. Then

$$||Y||_p \le \cot\left(\frac{\pi}{2p^*}\right) ||X||_p.$$

Bañuelos and Wang proved the following sharp inequality extending the classical results of Burkholder (1966).

Theorem (Bañuelos-Wang 1995)

Let X and Y be two martingales with continuous paths such that Y is differentially subordinate to X. Fix 1 , then

$$||Y||_p \le (p^* - 1) ||X||_p.$$

Furthermore, suppose the martingales X and Y are orthogonal. Then

$$||Y||_p \le \cot\left(\frac{\pi}{2p^*}\right) ||X||_p.$$

Bañuelos-Wang 1995: sharp estimates for R_j;

- Arcozzi 1998: sharp estimates on Lie group of compact type;
- X.-D. Li 2008-2014: dimension free estimates on Riemmanian manifolds and on forms with curvature assumption;

► More recent:

[Bañuelos-Baudoin 2013] on second order Riesz transforms on Lie groups of compact type,

[Bañuelos-Osekowski 2015] on sharp martingale inequalities and Riesz transforms on manifolds, Lie groups and Gauss space,

[Dahmani-Domelevo-Petermichl 2018] on dimensionless weighted L^p estimates for Riesz vectors on manifolds,

and so on.

- Bañuelos-Wang 1995: sharp estimates for R_j;
- Arcozzi 1998: sharp estimates on Lie group of compact type;
- X.-D. Li 2008-2014: dimension free estimates on Riemmanian manifolds and on forms with curvature assumption;
- More recent:

[Bañuelos-Baudoin 2013] on second order Riesz transforms on Lie groups of compact type, [Bañuelos-Osekowski 2015] on sharp martingale inequalities and Riesz transforms on manifolds, Lie groups and Gauss space, [Dahmani-Domelevo-Petermichl 2018] on dimensionless weighted L^p estimates for Riesz vectors on manifolds, and so on

- Bañuelos-Wang 1995: sharp estimates for R_j;
- Arcozzi 1998: sharp estimates on Lie group of compact type;
- X.-D. Li 2008-2014: dimension free estimates on Riemmanian manifolds and on forms with curvature assumption;

► More recent:

[Bañuelos-Baudoin 2013] on second order Riesz transforms on Lie groups of compact type, [Bañuelos-Osekowski 2015] on sharp martingale inequalities and Riesz transforms on manifolds, Lie groups and Gauss space, [Dahmani-Domelevo-Petermichl 2018] on dimensionless weighted L^p

and so on.

- Bañuelos-Wang 1995: sharp estimates for R_j;
- Arcozzi 1998: sharp estimates on Lie group of compact type;
- X.-D. Li 2008-2014: dimension free estimates on Riemmanian manifolds and on forms with curvature assumption;
- More recent:

[Bañuelos-Baudoin 2013] on second order Riesz transforms on Lie groups of compact type, [Bañuelos-Osekowski 2015] on sharp martingale inequalities and Riesz transforms on manifolds, Lie groups and Gauss space, [Dahmani-Domelevo-Petermichl 2018] on dimensionless weighted L^p estimates for Riesz vectors on manifolds, and so on.

\mathbb{M} : smooth manifold with smooth measure μ .

X_1, \cdots, X_d : locally Lipschitz vector fields on M.

 $V:\mathbb{M}\to\mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

$$L = -\sum_{i=1}^{d} X_i^* X_i + V.$$

We can write

$$L = \sum_{i=1}^{d} X_i^2 + X_0 + V,$$

Scalar operators constructed from martingale transforms

\mathbb{M} : smooth manifold with smooth measure μ .

X_1, \cdots, X_d : locally Lipschitz vector fields on \mathbb{M} .

 $V:\mathbb{M}\to\mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

$$L = -\sum_{i=1}^{a} X_i^* X_i + V.$$

We can write

$$L = \sum_{i=1}^{d} X_i^2 + X_0 + V,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Scalar operators constructed from martingale transforms

 \mathbb{M} : smooth manifold with smooth measure μ .

 X_1, \cdots, X_d : locally Lipschitz vector fields on \mathbb{M} .

 $V:\mathbb{M}\to\mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

$$L = -\sum_{i=1}^{d} X_i^* X_i + V.$$

We can write

$$L = \sum_{i=1}^{d} X_i^2 + X_0 + V,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Scalar operators constructed from martingale transforms

 \mathbb{M} : smooth manifold with smooth measure μ .

 X_1, \cdots, X_d : locally Lipschitz vector fields on \mathbb{M} .

 $V:\mathbb{M}\rightarrow\mathbb{R}$ is a non-positive smooth potential. Consider the Schrödinger operator

$$L = -\sum_{i=1}^{d} X_i^* X_i + V.$$

We can write

$$L = \sum_{i=1}^{d} X_i^2 + X_0 + V,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $(Y_t)_{t\geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^d X_i^2 + X_0$ starting from the distribution μ .

Via Stratonovitch stochastic differential equation,

$$dY_t = X_0(t)dt + \sum_{i=1}^d X_i(Y_t) \circ d\beta_t^i$$

where β_t is the Brownian motion on \mathbb{R}^d .

For $f \in C_0^{\infty}(\mathbb{M})$, denote

$$Q^V f(x,y) = P_y f(x) = e^{-y\sqrt{-L}} f(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $(Y_t)_{t\geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^d X_i^2 + X_0$ starting from the distribution μ .

Via Stratonovitch stochastic differential equation,

$$dY_t = X_0(t)dt + \sum_{i=1}^d X_i(Y_t) \circ d\beta_t^i,$$

where β_t is the Brownian motion on \mathbb{R}^d .

For $f \in C_0^{\infty}(\mathbb{M})$, denote

$$Q^V f(x,y) = P_y f(x) = e^{-y\sqrt{-L}} f(x).$$

Let $(Y_t)_{t\geq 0}$ be the diffusion process on \mathbb{M} with generator $\sum_{i=1}^d X_i^2 + X_0$ starting from the distribution μ .

Via Stratonovitch stochastic differential equation,

$$dY_t = X_0(t)dt + \sum_{i=1}^d X_i(Y_t) \circ d\beta_t^i,$$

where β_t is the Brownian motion on \mathbb{R}^d .

For $f \in C_0^\infty(\mathbb{M})$, denote

$$Q^V f(x,y) = P_y f(x) = e^{-y\sqrt{-L}} f(x).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Projection operators

Consider the operators

$$T_i = \int_0^{+\infty} y P_y \left(\sqrt{-L} X_i - X_i^* \sqrt{-L} \right) P_y dy, \quad \forall 1 \le i \le d.$$

Theorem (Bañuelos-Baudoin-C. 2018)
For
$$f \in S(\mathbb{M})$$
 and $1 \le i \le d$,
 $T_i f(x) = -\frac{1}{2} \lim_{y_0 \to \infty}$
 $\mathbb{E}_{y_0} \left(e^{\int_0^{\tau} V(Y_v) dv} \int_0^{\tau} e^{-\int_0^s V(Y_v) dv} A_i(\nabla, \partial_y)^{\mathrm{T}} Q f(Y_s, B_s) (d\beta_s, dB_s) \mid Y_{\tau} = x \right)$
where $\nabla = (X_1, \cdots, X_d)$, and A_i is a $(d+1) \times (d+1)$ matrix with

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Projection operators

Consider the operators

$$T_i = \int_0^{+\infty} y P_y \left(\sqrt{-L} X_i - X_i^* \sqrt{-L} \right) P_y dy, \quad \forall 1 \le i \le d.$$

Theorem (Bañuelos-Baudoin-C. 2018)
For
$$f \in S(\mathbb{M})$$
 and $1 \le i \le d$,
 $T_i f(x) = -\frac{1}{2} \lim_{y_0 \to \infty}$
 $\mathbb{E}_{y_0} \left(e^{\int_0^{\tau} V(Y_v) dv} \int_0^{\tau} e^{-\int_0^s V(Y_v) dv} A_i(\nabla, \partial_y)^{\mathrm{T}} Q f(Y_s, B_s) (d\beta_s, dB_s) \mid Y_{\tau} = x \right)$
where $\nabla = (X_1, \dots, X_d)$, and A_i is a $(d+1) \times (d+1)$ matrix with
 $a_{i(d+1)} = -1$, $a_{(d+1)i} = 1$ and otherwise 0.

Theorem (Bañuelos-Osękowski 2015)

Let X and Y be two martingales with continuous paths such that Y is differentially subordinate to X. Consider the process

$$Z_t = e^{\int_0^t V_s ds} \int_0^t e^{-\int_0^s V_v dv} dY_s,$$

where $(V_t)_{t\geq 0}$ is a non-positive adapted and continuous process.

$$||Z||_p \le (p^* - 1) ||X||_p.$$

Main result

Theorem (Bañuelos-Baudoin-C. 2018)

Fix $1 . Then for every <math>f \in \mathcal{S}(\mathbb{M})$,

$$||T_i f||_p \le \left(\frac{3}{2}\right) (p^* - 1) ||f||_p.$$

If the potential $V \equiv 0$, then

$$||T_i f||_p \le \frac{1}{2} \cot\left(\frac{\pi}{2p^*}\right) ||f||_p.$$

 Applications: Lie group of compact type, Heisenberg groups, SU(2), etc.

Main result

Theorem (Bañuelos-Baudoin-C. 2018)

Fix $1 . Then for every <math>f \in \mathcal{S}(\mathbb{M})$,

$$||T_i f||_p \le \left(\frac{3}{2}\right) (p^* - 1) ||f||_p.$$

If the potential $V \equiv 0$, then

$$||T_i f||_p \le \frac{1}{2} \cot\left(\frac{\pi}{2p^*}\right) ||f||_p.$$

► Applications: Lie group of compact type, Heisenberg groups, SU(2), etc.

G: Lie group of compact type with a bi-invariant Riemannian structure.

 X_1,\cdots,X_d : an orthonormal basis of \mathfrak{g} .

$$L = \sum_{i=1}^{d} X_i^2$$
 : the Laplace-Beltrami operator.

We observe

$$T_i = \int_0^{+\infty} y P_y \left(\sqrt{-L} X_i - X_i^* \sqrt{-L} \right) P_y dy = \frac{1}{2} X_i (\sqrt{-L})^{-1}.$$

Proposition

$$||X_i(\sqrt{-L})^{-1}||_{L^p \to L^p} \le \cot\left(\frac{\pi}{2p^*}\right).$$

G: Lie group of compact type with a bi-invariant Riemannian structure. X_1, \cdots, X_d : an orthonormal basis of g.

$$L = \sum_{i=1}^{d} X_i^2$$
 : the Laplace-Beltrami operator.

We observe

$$T_i = \int_0^{+\infty} y P_y \left(\sqrt{-L} X_i - X_i^* \sqrt{-L} \right) P_y dy = \frac{1}{2} X_i (\sqrt{-L})^{-1}.$$

Proposition

$$||X_i(\sqrt{-L})^{-1}||_{L^p \to L^p} \le \cot\left(\frac{\pi}{2p^*}\right).$$

G: Lie group of compact type with a bi-invariant Riemannian structure. X_1, \cdots, X_d : an orthonormal basis of g.

$$L = \sum_{i=1}^{d} X_i^2$$
: the Laplace-Beltrami operator.

We observe

$$T_i = \int_0^{+\infty} y P_y \left(\sqrt{-L} X_i - X_i^* \sqrt{-L} \right) P_y dy = \frac{1}{2} X_i (\sqrt{-L})^{-1}.$$

Proposition

$$\|X_i(\sqrt{-L})^{-1}\|_{L^p \to L^p} \le \cot\left(\frac{\pi}{2p^*}\right).$$

G: Lie group of compact type with a bi-invariant Riemannian structure. X_1, \dots, X_d : an orthonormal basis of g.

$$L = \sum_{i=1}^{d} X_i^2$$
 : the Laplace-Beltrami operator.

We observe

$$T_{i} = \int_{0}^{+\infty} y P_{y} \left(\sqrt{-L} X_{i} - X_{i}^{*} \sqrt{-L} \right) P_{y} dy = \frac{1}{2} X_{i} (\sqrt{-L})^{-1}$$

Proposition

$$||X_i(\sqrt{-L})^{-1}||_{L^p \to L^p} \le \cot\left(\frac{\pi}{2p^*}\right).$$

$$\mathbb{H}^n = \{(x, y, z) : x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}\}$$

endowed with the group law

$$(x, y, z) \cdot (x', y', z') = \left(x + x', y + y', z + z' + \frac{1}{2} \left(\left\langle x, y' \right\rangle_{\mathbb{R}^n} - \left\langle y, x' \right\rangle_{\mathbb{R}^n} \right) \right)$$

Let

$$X_j = \partial_{x_j} - \frac{y_j}{2}\partial_z, \quad Y_j = \partial_{y_j} + \frac{x_j}{2}\partial_z, \quad Z = \partial_z.$$

We observe

$$[X_j, Y_k] = \delta_{jk} Z.$$

The complex gradient

$$W_j = X_j + iY_j.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathbb{H}^n = \{(x, y, z) : x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}\}$$

endowed with the group law

$$(x, y, z) \cdot (x', y', z') = \left(x + x', y + y', z + z' + \frac{1}{2} \left(\left\langle x, y' \right\rangle_{\mathbb{R}^n} - \left\langle y, x' \right\rangle_{\mathbb{R}^n} \right) \right)$$

.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let

$$X_j = \partial_{x_j} - \frac{y_j}{2}\partial_z, \quad Y_j = \partial_{y_j} + \frac{x_j}{2}\partial_z, \quad Z = \partial_z,$$

We observe

$$[X_j, Y_k] = \delta_{jk} Z.$$

The complex gradient

$$W_j = X_j + iY_j.$$

$$\mathbb{H}^n = \{(x, y, z) : x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}\}$$

endowed with the group law

$$(x, y, z) \cdot (x', y', z') = \left(x + x', y + y', z + z' + \frac{1}{2} \left(\left\langle x, y' \right\rangle_{\mathbb{R}^n} - \left\langle y, x' \right\rangle_{\mathbb{R}^n} \right) \right)$$

.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let

$$X_j = \partial_{x_j} - \frac{y_j}{2}\partial_z, \quad Y_j = \partial_{y_j} + \frac{x_j}{2}\partial_z, \quad Z = \partial_z,$$

We observe

$$[X_j, Y_k] = \delta_{jk} Z.$$

The complex gradient

$$W_j = X_j + iY_j.$$

$$\mathbb{H}^n = \{(x, y, z) : x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}\}$$

endowed with the group law

$$(x, y, z) \cdot (x', y', z') = \left(x + x', y + y', z + z' + \frac{1}{2} \left(\left\langle x, y' \right\rangle_{\mathbb{R}^n} - \left\langle y, x' \right\rangle_{\mathbb{R}^n} \right) \right)$$

Let

$$X_j = \partial_{x_j} - \frac{y_j}{2}\partial_z, \quad Y_j = \partial_{y_j} + \frac{x_j}{2}\partial_z, \quad Z = \partial_z,$$

We observe

$$[X_j, Y_k] = \delta_{jk} Z.$$

The complex gradient

$$W_j = X_j + iY_j.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The sublaplacian

$$L = \sum_{j=1}^{n} \left(X_{j}^{2} + Y_{j}^{2} \right).$$

By spectral decomposition of the sublaplacian,

$$[W_j, \sqrt{-L}]f = 2i \mathcal{T}_j Z f, \quad \forall f \in \mathcal{S}(\mathbb{H}^n)$$

where

$$\mathcal{T}_j = \int_0^{+\infty} y P_y (W_j \sqrt{-L} + \sqrt{-L} W_j) P_y dy$$

Proposition

Let $1 \leq j \leq n$ and $f \in \mathcal{S}(\mathbb{H}^n)$. Then we have

$$|| [W_j, \sqrt{-L}]f ||_p \le \sqrt{2}(p^* - 1) ||Zf||_p.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

The sublaplacian

$$L = \sum_{j=1}^{n} \left(X_{j}^{2} + Y_{j}^{2} \right).$$

By spectral decomposition of the sublaplacian,

$$[W_j, \sqrt{-L}]f = 2i \mathcal{T}_j Z f, \quad \forall f \in \mathcal{S}(\mathbb{H}^n)$$

where

$$\mathcal{T}_j = \int_0^{+\infty} y P_y (W_j \sqrt{-L} + \sqrt{-L} W_j) P_y dy$$

Proposition

Let $1 \leq j \leq n$ and $f \in \mathcal{S}(\mathbb{H}^n)$. Then we have

$$|| [W_j, \sqrt{-L}]f ||_p \le \sqrt{2}(p^* - 1) ||Zf||_p.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The sublaplacian

$$L = \sum_{j=1}^{n} \left(X_{j}^{2} + Y_{j}^{2} \right).$$

By spectral decomposition of the sublaplacian,

$$[W_j, \sqrt{-L}]f = 2i \mathcal{T}_j Z f, \quad \forall f \in \mathcal{S}(\mathbb{H}^n)$$

where

$$\mathcal{T}_j = \int_0^{+\infty} y P_y (W_j \sqrt{-L} + \sqrt{-L} W_j) P_y dy$$

Proposition

Let $1 \leq j \leq n$ and $f \in \mathcal{S}(\mathbb{H}^n)$. Then we have

$$\| [W_j, \sqrt{-L}] f \|_p \le \sqrt{2} (p^* - 1) \| Z f \|_p.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

\mathbb{M} : *d*-dimensional smooth complete Riemannian manifold.

 $\mathcal{E}:$ finite-dimensional vector bundle over $\mathbb M$

 $\Gamma(\mathbb{M},\mathcal{E})$: the space of smooth sections of this bundle.

 ∇ : metric connection on \mathcal{E} .

We consider an operator on $\Gamma(\mathbb{M}, \mathcal{E})$

$$\mathcal{L} = \mathcal{F} + \nabla_0 + \sum_{i=1}^d \nabla_{X_i}^2,$$

where \mathcal{F} is a smooth symmetric and non positive potential (that is a smooth section of the bundle $\mathbf{End}(\mathcal{E})$).

Riesz transform on vector bundles

\mathbb{M} : *d*-dimensional smooth complete Riemannian manifold.

$\mathcal{E}:$ finite-dimensional vector bundle over $\mathbb M$

 $\Gamma(\mathbb{M}, \mathcal{E})$: the space of smooth sections of this bundle.

 ∇ : metric connection on \mathcal{E} .

We consider an operator on $\Gamma(\mathbb{M},\mathcal{E})$

$$\mathcal{L} = \mathcal{F} + \nabla_0 + \sum_{i=1}^d \nabla_{X_i}^2,$$

where \mathcal{F} is a smooth symmetric and non positive potential (that is a smooth section of the bundle $\mathbf{End}(\mathcal{E})$).

Riesz transform on vector bundles

 \mathbb{M} : *d*-dimensional smooth complete Riemannian manifold.

 $\mathcal{E} {:}$ finite-dimensional vector bundle over $\mathbb M$

 $\Gamma(\mathbb{M},\mathcal{E})$: the space of smooth sections of this bundle.

 ∇ : metric connection on \mathcal{E} .

We consider an operator on $\Gamma(\mathbb{M},\mathcal{E})$

$$\mathcal{L} = \mathcal{F} + \nabla_0 + \sum_{i=1}^d \nabla_{X_i}^2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where ${\mathcal F}$ is a smooth symmetric and non positive potential (that is a smooth section of the bundle ${f End}({\mathcal E})$).

Riesz transform on vector bundles

 \mathbb{M} : *d*-dimensional smooth complete Riemannian manifold.

 $\mathcal{E}:$ finite-dimensional vector bundle over $\mathbb M$

 $\Gamma(\mathbb{M}, \mathcal{E})$: the space of smooth sections of this bundle.

 ∇ : metric connection on \mathcal{E} .

We consider an operator on $\Gamma(\mathbb{M},\mathcal{E})$

$$\mathcal{L} = \mathcal{F} + \nabla_0 + \sum_{i=1}^d \nabla_{X_i}^2,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where ${\mathcal F}$ is a smooth symmetric and non positive potential (that is a smooth section of the bundle ${f End}({\mathcal E})$).

 \mathbb{M} : *d*-dimensional smooth complete Riemannian manifold.

 $\mathcal{E}:$ finite-dimensional vector bundle over $\mathbb M$

 $\Gamma(\mathbb{M}, \mathcal{E})$: the space of smooth sections of this bundle.

 ∇ : metric connection on \mathcal{E} .

We consider an operator on $\Gamma(\mathbb{M}, \mathcal{E})$

$$\mathcal{L} = \mathcal{F} + \nabla_0 + \sum_{i=1}^d \nabla_{X_i}^2,$$

where \mathcal{F} is a smooth symmetric and non positive potential (that is a smooth section of the bundle $\operatorname{End}(\mathcal{E})$).

Consider a first order differential operator d_a on $\Gamma(\mathbb{M}, \mathcal{E})$

$$d_a = \sum_{i=1}^d a_i \nabla_{X_i},$$

where a_1, \cdots, a_d are smooth sections of the bundle $\operatorname{End}(\mathcal{E}).$ Assume

 $d_a \mathcal{L}\eta = \mathcal{L} d_a \eta, \quad \eta \in \Gamma(\mathbb{M}, \mathcal{E}),$

and

$$\|d_a\eta\|^2 \le C \sum_{i=1}^d \|\nabla_{X_i}\eta\|^2, \quad \eta \in \Gamma(\mathbb{M}, \mathcal{E}).$$

Let $n \in \Gamma^{\infty}_{\infty}(\mathbb{M} | \mathcal{E})$ Then for $1 < n < \infty$

 $\|d_a(-\mathcal{L})^{-1/2}\eta\|_p \le 6C(p^*-1)\|\eta\|_p$

Consider a first order differential operator d_a on $\Gamma(\mathbb{M}, \mathcal{E})$

$$d_a = \sum_{i=1}^d a_i \nabla_{X_i},$$

where a_1, \cdots, a_d are smooth sections of the bundle $\mathbf{End}(\mathcal{E})$. Assume

$$d_a \mathcal{L}\eta = \mathcal{L} d_a \eta, \quad \eta \in \Gamma(\mathbb{M}, \mathcal{E}),$$

and

$$||d_a\eta||^2 \le C \sum_{i=1}^d ||\nabla_{X_i}\eta||^2, \quad \eta \in \Gamma(\mathbb{M}, \mathcal{E}).$$

Let $\eta \in \Gamma_0^{\infty}(\mathbb{M}, \mathcal{E})$. Then for 1 ,

 $\|d_a(-\mathcal{L})^{-1/2}\eta\|_p \le 6C(p^*-1)\|\eta\|_p.$

・ロット (雪) (日) (日) (日)

Consider a first order differential operator d_a on $\Gamma(\mathbb{M}, \mathcal{E})$

$$d_a = \sum_{i=1}^d a_i \nabla_{X_i},$$

where a_1, \cdots, a_d are smooth sections of the bundle $\mathbf{End}(\mathcal{E})$. Assume

$$d_a \mathcal{L}\eta = \mathcal{L} d_a \eta, \quad \eta \in \Gamma(\mathbb{M}, \mathcal{E}),$$

and

$$||d_a\eta||^2 \le C \sum_{i=1}^d ||\nabla_{X_i}\eta||^2, \quad \eta \in \Gamma(\mathbb{M}, \mathcal{E}).$$

Theorem (Bañuelos-Baudoin-C. 2018) Let $\eta \in \Gamma_0^{\infty}(\mathbb{M}, \mathcal{E})$. Then for 1 , $<math>\|d_a(-\mathcal{L})^{-1/2}\eta\|_p \le 6C(p^*-1)\|\eta\|_p.$

Gundy-Varopoulos type representation of Riesz transform

Consider the stochastic parallel transport along Y_t , $\theta_t : \mathcal{E}_{Y_t} \to \mathcal{E}_{Y_0}$ and the multiplicative functional $(\mathcal{M}_t)_{t\geq 0}$, solution of the equation

$$\frac{d\mathcal{M}_t}{dt} = \mathcal{M}_t \theta_t \mathcal{F} \theta_t^{-1}, \quad \mathcal{M}_0 = \mathbf{Id}.$$

Let $\eta \in \Gamma_0^{\infty}(\mathbb{M}, \mathcal{E})$. For almost all $x \in \mathbb{M}$, we have

$$d_a(-\mathcal{L})^{-1/2}\eta(x) = -2\lim_{y_0\to\infty} \mathbb{E}_{y_0}\left(\theta_\tau^{-1}\mathcal{M}_\tau^*\int_0^\tau (\mathcal{M}_s^*)^{-1}\theta_s d_a Qf(Y_s, B_s)dB_s \mid Y_\tau = x\right).$$

• **Applications**: Riesz transforms on forms, spinors.

Gundy-Varopoulos type representation of Riesz transform

Consider the stochastic parallel transport along Y_t , $\theta_t : \mathcal{E}_{Y_t} \to \mathcal{E}_{Y_0}$ and the multiplicative functional $(\mathcal{M}_t)_{t\geq 0}$, solution of the equation

$$\frac{d\mathcal{M}_t}{dt} = \mathcal{M}_t \theta_t \mathcal{F} \theta_t^{-1}, \quad \mathcal{M}_0 = \mathbf{Id}.$$

Let $\eta \in \Gamma_0^\infty(\mathbb{M}, \mathcal{E})$. For almost all $x \in \mathbb{M}$, we have

$$d_a(-\mathcal{L})^{-1/2}\eta(x) = -2\lim_{y_0\to\infty} \mathbb{E}_{y_0}\left(\theta_\tau^{-1}\mathcal{M}_\tau^* \int_0^\tau (\mathcal{M}_s^*)^{-1}\theta_s d_a Qf(Y_s, B_s) dB_s \mid Y_\tau = x\right).$$

• **Applications**: Riesz transforms on forms, spinors.

Gundy-Varopoulos type representation of Riesz transform

Consider the stochastic parallel transport along Y_t , $\theta_t : \mathcal{E}_{Y_t} \to \mathcal{E}_{Y_0}$ and the multiplicative functional $(\mathcal{M}_t)_{t\geq 0}$, solution of the equation

$$\frac{d\mathcal{M}_t}{dt} = \mathcal{M}_t \theta_t \mathcal{F} \theta_t^{-1}, \quad \mathcal{M}_0 = \mathbf{Id}.$$

Let $\eta \in \Gamma_0^\infty(\mathbb{M}, \mathcal{E})$. For almost all $x \in \mathbb{M}$, we have

$$d_a(-\mathcal{L})^{-1/2}\eta(x) = -2\lim_{y_0\to\infty} \mathbb{E}_{y_0}\left(\theta_\tau^{-1}\mathcal{M}_\tau^*\int_0^\tau (\mathcal{M}_s^*)^{-1}\theta_s d_a Qf(Y_s, B_s)dB_s \mid Y_\tau = x\right).$$

• Applications: Riesz transforms on forms, spinors.

Riesz transform on forms

$\mathbb{M}:\ d\text{-dimensional smooth, oriented, complete and stochastically complete Riemannian manifold.}$

Fermionic construction on the tangent spaces of M.

 e_i : local orthonormal frame; θ_i : its dual frame.

The exterior derivative

$$d = \sum_{i} a_i^* \nabla_{e_i}.$$

The curvature endomorphism (Weitzenböck curvature) is then defined by

$$\mathcal{F} = -\sum_{ijkl} \left\langle R(e_j, e_k) e_l, e_i \right\rangle a_i^* a_j a_k^* a_l$$

Riesz transform on forms

 $\mathbb{M}:$ d-dimensional smooth, oriented, complete and stochastically complete Riemannian manifold.

Fermionic construction on the tangent spaces of \mathbb{M} .

 e_i : local orthonormal frame; θ_i : its dual frame.

The exterior derivative

$$d = \sum_{i} a_i^* \nabla_{e_i}.$$

The curvature endomorphism (Weitzenböck curvature) is then defined by

$$\mathcal{F} = -\sum_{ijkl} \left\langle R(e_j, e_k) e_l, e_i \right\rangle a_i^* a_j a_k^* a_l$$

 $\mathbb{M}:\ d\text{-dimensional smooth, oriented, complete and stochastically complete Riemannian manifold.}$

Fermionic construction on the tangent spaces of \mathbb{M} .

 e_i : local orthonormal frame; θ_i : its dual frame.

The exterior derivative

$$d = \sum_{i} a_i^* \nabla_{e_i}.$$

The curvature endomorphism (Weitzenböck curvature) is then defined by

$$\mathcal{F} = -\sum_{ijkl} \left\langle R(e_j, e_k) e_l, e_i \right\rangle a_i^* a_j a_k^* a_l$$

 $\mathbb{M}:$ d-dimensional smooth, oriented, complete and stochastically complete Riemannian manifold.

Fermionic construction on the tangent spaces of \mathbb{M} .

 e_i : local orthonormal frame; θ_i : its dual frame.

The exterior derivative

$$d = \sum_{i} a_i^* \nabla_{e_i}.$$

The curvature endomorphism (Weitzenböck curvature) is then defined by

$$\mathcal{F} = -\sum_{ijkl} \left\langle R(e_j, e_k) e_l, e_i \right\rangle a_i^* a_j a_k^* a_l$$

 $\mathbb{M}:$ d-dimensional smooth, oriented, complete and stochastically complete Riemannian manifold.

Fermionic construction on the tangent spaces of \mathbb{M} .

 e_i : local orthonormal frame; θ_i : its dual frame.

The exterior derivative

$$d = \sum_{i} a_i^* \nabla_{e_i}.$$

The curvature endomorphism (Weitzenböck curvature) is then defined by

$$\mathcal{F} = -\sum_{ijkl} \left\langle R(e_j, e_k) e_l, e_i \right\rangle a_i^* a_j a_k^* a_l$$

The Hodge-DeRham Laplacian: $\mathcal{L} = -dd^* - d^*d$.

The Bochner Laplacian: $\Delta = \sum_{i=1}^{d} (\nabla_{e_i} \nabla_{e_i} - \nabla_{\nabla_{e_i} e_i}).$

The celebrated Weitzenböck formula writes

$$\mathcal{L} = \Delta - \mathcal{F}.$$

Theorem

Assume $\mathcal{F} \geq 0$, then

$$\|d(-\mathcal{L})^{-1/2}\eta\|_p \le 6(p^*-1)\|\eta\|_p$$

The Hodge-DeRham Laplacian: $\mathcal{L} = -dd^* - d^*d$. The Bochner Laplacian: $\Delta = \sum_{i=1}^d (\nabla_{e_i} \nabla_{e_i} - \nabla_{\nabla_{e_i} e_i})$.

The celebrated Weitzenböck formula writes

$$\mathcal{L} = \Delta - \mathcal{F}.$$

Theorem

Assume $\mathcal{F} \geq 0$, then

$$\|d(-\mathcal{L})^{-1/2}\eta\|_p \le 6(p^*-1)\|\eta\|_p$$

The Hodge-DeRham Laplacian: $\mathcal{L} = -dd^* - d^*d$. The Bochner Laplacian: $\Delta = \sum_{i=1}^{d} (\nabla_{e_i} \nabla_{e_i} - \nabla_{\nabla_{e_i} e_i})$. The celebrated Weitzenböck formula writes

$$\mathcal{L} = \Delta - \mathcal{F}.$$

Theorem

Assume $\mathcal{F} \geq 0$, then

$$\|d(-\mathcal{L})^{-1/2}\eta\|_p \le 6(p^*-1)\|\eta\|_p$$

The Hodge-DeRham Laplacian: $\mathcal{L} = -dd^* - d^*d$. The Bochner Laplacian: $\Delta = \sum_{i=1}^d (\nabla_{e_i} \nabla_{e_i} - \nabla_{\nabla_{e_i} e_i})$. The celebrated Weitzenböck formula writes

$$\mathcal{L} = \Delta - \mathcal{F}.$$

Theorem

Assume $\mathcal{F} \geq 0$, then

$$\|d(-\mathcal{L})^{-1/2}\eta\|_p \le 6(p^*-1)\|\eta\|_p$$

Thanks very much!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>