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Elliptic operators in divergence form

Ω ⊆ Rn open, A ∈ L∞(Ω→ Cn,n) a strictly elliptic matrix
function, i.e. ∃ λ,Λ > 0 s.t.

|〈A(x)ξ, η〉| 6 Λ |ξ| |η| , ∀ξ, η ∈ Cn

Re 〈A(x)ξ, ξ〉 > λ|ξ|2 , ∀ξ ∈ Cn

Denote the class of all such matrices by A(Ω)
Consider the operator

LA
2 := −div A∇

with Neumann boundary conditions on Ω:

LA
2 is the maximal accretive operator on L2(Ω) associated with

a(u, v) =
ˆ

Ω
〈A∇u,∇v〉Cn , D(a) = W 1,2(Ω)



• LA
2 is sectorial with

ω(LA
2 ) 6 ϑ∗2 < π/2,

where ϑ∗2 is the numerical range angle of a

• (T A
t )t>0 := (e−tLA

2 )t>0 analytic and contractive in Sϑ2

Sϑ2

ϑ∗2 = π/2− ϑ2



We are interested in:
• Contractivity, analiticity of (T A

t )t>0 in Lp(Ω) (p > 1)

We denote by LA
p its negative generator

• Bounded H∞-functional calculus for LA
p

• Maximal parabolic regularity for LA
p

We are interested in results that only depend on the algebraic
properties of the matrix A



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1.

For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic
• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0
• ∆p(A) = ∆q(A)
• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0
• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1. For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic
• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0
• ∆p(A) = ∆q(A)
• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0
• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1. For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic

• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0
• ∆p(A) = ∆q(A)
• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0
• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1. For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic
• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0

• ∆p(A) = ∆q(A)
• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0
• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1. For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic
• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0
• ∆p(A) = ∆q(A)

• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0
• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1. For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic
• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0
• ∆p(A) = ∆q(A)
• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0

• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



p-ellipticity (C.-Dragičević 2015)

For p > 1 define the R-linear map Jp : Cn → Cn by

Jp(ξ1 + iξ2) = ξ1
p + i ξ2

q
Here ξ1, ξ2 ∈ Rn and 1/p + 1/q = 1. For A ∈ A(Ω) set

∆p(A) := 2 ess inf
x∈Ω

min
|ξ|=1

Re 〈A(x)ξ,Jpξ〉Cn .

We say that A is p-elliptic if

∆p(A) > 0

• ∆2(A) > 0 ⇐⇒ A (uniform strict) elliptic
• |1− 2/p| < λ/Λ ⇒ ∆p(A) > 0
• ∆p(A) = ∆q(A)
• ∆p(A) > 0 ⇐⇒ ∆p(A∗) > 0
• ∆p(A) > 0 ∀p > 1 ⇐⇒ A is real-valued



Main result

Theorem (C.-Dragičević 2018)
Let Ω ⊆ Rn be any open set (n > 2). Let A ∈ A(Ω) and p > 1.
Suppose that ∆p(A) > 0. Then,

(i) (T A
t )t>0 is analytic and contractive in Lp(Ω)

(ii) LA
p has maximal parabolic regularity

I = {p ∈ (1,∞) : ∆p(A) > 0} is an open interval containing 2

p ∈ I ⇐⇒ q = p′ ∈ I



Maximal parabolic regularity

We say that LA
p has maximal parabolic regularity if for some r > 1,

all τ > 0 and all f ∈ Lr ((0, τ); Lp(Ω)), the unique mild solution

u(t) :=
ˆ t

0
T A

t−s f (s) ds, t ∈ (0, τ)

to the Cauchy problem {
u′ + LA

p u = f ;
u(0) = 0.

belongs to W 1,r (0, τ); Lp(Ω)) ∩ Lr ((0, τ); D(LA
p ))

Necessary condition: analiticity of (T A
t )t>0 in Lp(Ω)
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H∞ functional calculus

For ϑ > ω(LA
p ) and m ∈ H∞(Sϑ) one can define the closed d.d.

(possibly unbounded) linear operator m(LA
p ):

m(LA
p )f = 1

2πi

ˆ
∂+Sϑ

m(z)(z − LA
p )−1f dz

We say that LA
p has bounded H∞(Sϑ)-calculus if

m(LA
p ) ∈ B(Lp(Ω)), ∀m ∈ H∞(Sϑ)

Functional calculus angle:

ωH(LA
p ) := inf{ϑ : LA

p has bounded H∞(Sϑ)-calculus}

Theorem (Dore-Venni and Prüss-Shor; Kalton-Weis)
ωH(LA

p ) < π/2 ⇒ LA
p has maximal parabolic regularity
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Reformulation of the main result

Theorem (C.-Dragičević 2018)
Let Ω ⊆ Rn be any open set (n > 2). Let A ∈ A(Ω) and p > 1.
Suppose that ∆p(A) > 0. Then,

(i) (T A
t )t>0 is analytic and contractive in Lp(Ω)

(ii) ωH(LA
p ) < π/2

• No regularity of ∂Ω, No Sobolev embeddings

• A result of Kunstmann shows that the range in the theorem is
optimal for the class |Ω| < +∞, A ∈ A(Ω) (counterexamples
for ∆p(A) 6 0).



Previous results

REAL COEFFICIENTS

Ω ⊆ Rn, A ∈ A(Ω), A real-valued

Ouhabaz (1992, 1996): (T A
t )t>0 is sub-Markovian

Kalton-Weis (2001) ⇒ ωH(LA
p ) < π/2, for all p > 1.



COMPLEX COEFFICIENTS

Define the Sobolev exponents (n > 3)

2? := 2n
n + 2 , 2? := 2n

n − 2

I(LA) := {p ∈ [1,∞] : supt>0 ‖T A
t ‖p < +∞}.

(a) Ω = Rn, A ∈ A(Rn)

• Auscher (2004): (2? − ε, 2? + ε) ⊆ I(LA), where ε = ε(n, λ,Λ)

• Hofmann-Mayboroda-McIntosh (2011): this range is sharp for
complex A (counterexample for any p /∈ [2?, 2?])

(b) Ω ⊂ Rn bounded and weakly Lipschitz, A ∈ A(Ω)

• Egert (2017): (2?− ε, 2? + ε) ⊆ I(LA), where ε = ε(n, λ,Λ,Ω)
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Theorem (Auscher; Egert)
Ω = Rn or Ω ⊂ Rn bounded and weakly Lipschitz. Then,

ωH(LA
p ) = ω(LA

2 ) < π/2

for all p ∈ I(LA)◦

⊃ (2? − ε, 2? + ε).
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ωH(LA
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Also: mixed boundary conditions, systems, Riesz transforms...



Theorem (Auscher; Egert)
Ω = Rn or Ω ⊂ Rn bounded and weakly Lipschitz. Then,

ωH(LA
p ) = ω(LA

2 ) < π/2

for all p ∈ I(LA)◦ ⊃ (2? − ε, 2? + ε).

• Earlier results by Blunck and Kunstmann
• Fundamental tool: modification of Blunck-Kunstmann weak
type (p, p) criterion
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p ∈ (1,∞) s.t. ∆p(A) > 0.



Theorem (Auscher; Egert)
Ω = Rn or Ω ⊂ Rn bounded and weakly Lipschitz. Then,

ωH(LA
p ) = ω(LA

2 ) < π/2

for all p ∈ I(LA)◦ ⊃ (2? − ε, 2? + ε).

The proof requires Sobolev embeddings: true because one has
Sobolev extension operators, in this case

Our result
Let Ω ⊆ Rn be any open set. Then ωH(LA

p ) < π/2, for all
p ∈ (1,∞) s.t. ∆p(A) > 0.

No Sobolev embeddings and ωH(LA
p ) depends on p, in general



An example by Kunstmann

Ωα =
{

(x , y) ∈ R2 : x > 0, |y | < e−αx}

Ωα

∆Ωα := LI the Neumann Laplacian on Ωα

• Evans and Harris (1989): The resolvent is not compact:
No Sobolev embedding of W 1,2(Ωα) into Lq(Ωα), q > 2

• Davies and Simon (1992): Study of σ(∆Ωα
2 ) by means of a

reduction to the Dirichlet operator

−D2 + αD, on L2([0,+∞); e−αxdx)
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• Kunstmann (2002): Study of σess(∆Ωα
p ), p > 1

{0} ∪ ∂Qp,α ⊆ σ(∆Ωα
p ) ⊆ [0, α2/4) ∪ ∂Qp,α

where Qp,α = α2Qp and

Qp =
{

x + iy : x > p2

(p − 2)2 y2 + p − 1
p2

}

∂Qp,α

α2

4
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• Kunstmann (2002): ∃ Ωmax ⊂ R2 of finite measure s.t.
σ(∆Ωmax

p ) = Sφ∗
p , 1 < p <∞. This is the maximal

Lp-spectrum in the class of generators of symmetric
contraction semigroups



φ∗p = arcsin |1− 2/p|, φp = π/2− φ∗p

Theorem (Bakry ’89; Liskevich and Perelmuter ’95; Kriegler 2011)
Every symmetric contraction semigroup (exp(−tL))t>0 is
Lp-contractive in Sφp . In particular, σ(Lp) ⊆ Sφ∗

p for all p > 1.

Theorem (C.-Dragičević 2013)
Let p > 1. Then ωH(Lp) 6 φ∗p, for every generator of s.c.s.

Hence ωH(∆Ωmax
p ) = φ∗p

ωH
(
LeiϑI

p

)
= ωH

(
eiϑ∆Ωmax

p

)
< π/2 ⇐⇒

∆p(eiϑI) = cosϑ− cosφp
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Every symmetric contraction semigroup (exp(−tL))t>0 is
Lp-contractive in Sφp . In particular, σ(Lp) ⊆ Sφ∗
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Our target: ∆p(A) > 0⇒ ωH(LA
p ) < π/2 (for all Ω and all A)

The example above shows that this range is sharp



Genesis of p-ellipticity

We discovered p-ellipticity by studying “convexity” of power
functions

Fs(ζ) = |ζ|s , ζ ∈ R2

Motivation: Our interest in “convexity” of the Nazarov-Treil
(1995) Bellman function Q which comprises linear combinations of
tensor products of power functions

Q(ζ, η) := |ζ|p + |η|q + δ


|ζ|2|η|2−q ; |ζ|p 6 |η|q

2
p |ζ|

p +
(2

q − 1
)
|η|q ; |ζ|p > |η|q

where p > 2, q = p/(p − 1) and δ > 0.

• For small δ the function Q is uniformly convex
• We are interested in a different type of convexity related to

p-ellipticity: Generalized convexity...later
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Dindoš and Pipher (2016)

Independently of us, Dindoš and Pipher discovered the p-ellipticity
condition and realized it could be used for a new regularity theory
for weak solutions to complex coefficient operators

A “replacement” for the De Giorgi-Nash-Moser regularity theory
for real coefficients

Application: solvability of the Lp Dirichlet boundary value
problem for div (A∇)
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Dindoš and Pipher (2016)

Theorem 1 (Reverse Hölder inequality)

If u ∈W 1,2
loc (Ω) is a weak solution to div(A∇u) = 0 in Ω and

p0 := inf{p > 1 : A is p−elliptic}

then, for any B4r (x) ⊂ Ω and p, q ∈ (p0, p′0n/(n − 2)),

〈|u|p〉1/p
Br (x) . 〈|u|

q〉1/q
B2r (x) + (E .T .)

Constants depend only on n, p0,Λ.

For elliptic A: counterexample by Mayboroda
for q = 2 and any p > 2n/(n − 2)



Dindoš and Pipher (2016)

Theorem 2 (Caccioppoli estimate)

If u ∈W 1,2
loc (Ω) is a weak solution to div(A∇u) = 0 in Ω and

p0 := inf{p > 1 : A is p−elliptic}

then, for any B4r (x) ⊂ Ω and p ∈ (p0, p′0),
ˆ

Br (x)
|∇u|2|u|p−2 . r−2

ˆ
B2r (x)

|u|p + (E .T .)

Constants depend only on n, p0,Λ.

Consequence:[
∆p(A) > 0, u ∈W 1,2

loc (Ω) s.t. div (A∇u) = 0
]
⇒ |u|

p−2
2 u ∈W 1,2

loc (Ω)
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Cialdea-Maz’ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea
and Maz’ya for studying contractivity of Dirichlet semigroups

Several papers and a book on this subject

Theorem (Cialdea-Maz’ya)
Ω ⊂ Rn bounded of class, say, C2, A ∈ C1(Ω). Let p > 1.
Suppose that for all x ∈ Ω and α, β ∈ Rn

4
pq 〈Re A(x)α, α〉+ 〈Re A(x)β, β〉

+ 2〈
(1

p Im A(x) + 1
q Im A∗(x)

)
α, β〉 > 0

Then the Dirichlet semigroup (etdiv (A∇))t>0 is contractive in Lp
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∆p(A) > 0 ⇐⇒ Cialdea-Maz’ya condition above



Cialdea-Maz’ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea
and Maz’ya for studying contractivity of Dirichlet semigroups
Several papers and a book on this subject

Theorem (Cialdea-Maz’ya)
Ω ⊂ Rn bounded of class, say, C2, A ∈ C1(Ω). Let p > 1.
Suppose that for all x ∈ Ω and α, β ∈ Rn

4
pq 〈Re A(x)α, α〉+ 〈Re A(x)β, β〉

+ 2〈
(1

p Im A(x) + 1
q Im A∗(x)

)
α, β〉 > 0

Then the Dirichlet semigroup (etdiv (A∇))t>0 is contractive in Lp

C.-Dragičević 2015. ∆p(A) > 0 can be interpreted in terms of
generalized convexity of the power function Fp



Generalized convexity

Identify Cn with Rn × Rn by

V(ξ1 + iξ2) = (ξ1, ξ2), ξ1, ξ2 ∈ Rn

Given A ∈ Cn,n, consider its real form

M(A) := VAV−1 =

 Re A −Im A

Im A Re A



Fix Φ ∈ C2(R2k ;R). Let A1, . . . ,Ak ∈ Cn,n.

Generalized Hessian of Φ with respect to A1, . . . ,Ak :

H(A1,...,Ak )
Φ (ω) := (M(A1)⊕ · · · ⊕M(Ak))T ·

(
(d2Φ)(ω)⊗ IRn

)



Definition
We say that Φ is (A1, . . . ,Ak)-convex if

H(A1,...,Ak )
Φ [ω; X ] := 〈H(A1,...,Ak )

Φ (ω)X ,X 〉R2kn > 0,

for all X ∈ R2kn and all ω ∈ R2k .

Example: Generalized convexity of power functions Fp(ζ) = |ζ|p

Let A ∈ Cn,n and p > 1. Then

HA
Fp [ζ;V(ξ)] = p2|ζ|p−2Re

〈
A
(
e−i arg(ζ)ξ

)
,Jq

(
e−i arg(ζ)ξ

)〉
Cn

∆p(A) > 0⇐⇒ Fp is A-convex

p2

2 |ζ|
p−2∆p(A) = min. eigenvalue of (HA

Fp
(ζ) + HA

Fp
(ζ)T )/2
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Heat-flow monotonicity

Let Ω ⊆ Rn, A1, . . . ,Ak ∈ A(Ω) and Φ ∈ C2(R2k ;R+).

For f1, . . . , fk ∈ (Lp ∩ Lq)(Ω), define

E(t) :=
ˆ

Ω
Φ
(
T A1

t f1, . . . ,T Ak
t fk

)
Here we identify T Aj

t fj with (Re T Aj
t fj , Im T Aj

t fj)

In applications Φ = Fp or Q: We need to know a priori that
(T Aj

t )t>0 are analytic in Lp and Lq

Set ζ j = ζ j
1 + iζ j

2, j = 1, . . . , k and

∂ζ j = 1
2
(
∂
ζ j

1
− i∂

ζ j
2

)
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a) Suppose that we can interchange derivative and integral:

−E ′(t) =
ˆ

Ω
2Re

 k∑
j=1

(∂ζ j Φ)
(
T A1

t f1, . . . ,T Ak
t fk

)
LAj

2 T Aj
t fj



b) Suppose that

(∂ζ j Φ)(T A1
t f1, . . . ,T Ak

t fk) ∈W 1,2(Ω)

Then the right hand side equals
ˆ

Ω
H(A1,...,Ak )

Φ

[(
T A1

t f1, . . . ,T Ak
t fk

)
;
(
∇T A1

t f1, . . . ,∇T Ak
t fk

)]
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)
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In this case

Φ is (A1, . . . ,Ak)−convex =⇒ E ↘ in (0,+∞)



a) Suppose that we can interchange derivative and integral:

−E ′(t) =
ˆ

Ω
2Re

 k∑
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b) Suppose that

(∂ζ j Φ)(T A1
t f1, . . . ,T Ak

t fk) ∈W 1,2(Ω)

Then the right hand side equalsˆ
Ω

H(A1,...,Ak )
Φ

[(
T A1

t f1, . . . ,T Ak
t fk

)
;
(
∇T A1

t f1, . . . ,∇T Ak
t fk

)]

Example Φ = Fp = | · |p, p > 1

Assume that (T A
t )t>0 is analytic in Lp(Ω).

f ∈ Lp(Ω) s.t. (∂ζFp)(T A
t f ) = p|T A

t f |p−2T A
t f ∈W 1,2(Ω)?



a) Suppose that we can interchange derivative and integral:
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D(LA
p ) is unknown, in general. This is a technical problem for us



Semigroup contractivity and analiticity

Target: Prove that given any open Ω ⊂ Rn and any A ∈ A(Ω)
∆p(A) > 0 ⇒ (T A

t )t>0 analytic and contractive in Lp(Ω)

The proof follows from a result by Nittka.

Ouhabaz’s invariance criterion

Bp := {u ∈ L2 ∩ Lp : ‖u‖p 6 1}, Pp : L2 → Bp ⊥ projection

(T A
t )t>0 contr. in Lp(Ω) iff Pp

(
W 1,2(Ω)

)
⊆W 1,2(Ω) and

Re
ˆ

Ω
〈A∇Ppu,∇(u − Ppu)〉 > 0

for all u ∈W 1,2(Ω)
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Theorem (Nittka 2012)
‖T A

t ‖p 6 1 if and only if
ˆ

Ω
Re 〈A∇u,∇(|u|p−2u)〉Cn > 0

for all u ∈W 1,2(Ω) s.t. |u|p−2u ∈W 1,2(Ω)

Key tool: Nittka’s implicit formula for Pp : L2 → Bp
(no explicit formula, unless p = 2,∞)

.



Theorem (Nittka 2012)
‖T A

t ‖p 6 1 if and only if
ˆ

Ω
Re 〈A∇u,∇(|u|p−2u)〉Cn > 0

for all u ∈W 1,2(Ω) s.t. |u|p−2u ∈W 1,2(Ω)

Key tool: Nittka’s implicit formula for Pp : L2 → Bp
(no explicit formula, unless p = 2,∞)

p-ellipticity implies contractivity: Suppose that ∆p(A) > 0.



Theorem (Nittka 2012)
‖T A

t ‖p 6 1 if and only if
ˆ

Ω
Re 〈A∇u,∇(|u|p−2u)〉Cn > 0

for all u ∈W 1,2(Ω) s.t. |u|p−2u ∈W 1,2(Ω)

Key tool: Nittka’s implicit formula for Pp : L2 → Bp
(no explicit formula, unless p = 2,∞)

p-ellipticity implies contractivity: Suppose that ∆p(A) > 0.

pRe 〈A∇v ,∇(|u|p−2u)〉Cn = HA
Fp [u;∇u]



Theorem (Nittka 2012)
‖T A

t ‖p 6 1 if and only if
ˆ

Ω
Re 〈A∇u,∇(|u|p−2u)〉Cn > 0

for all u ∈W 1,2(Ω) s.t. |u|p−2u ∈W 1,2(Ω)

Key tool: Nittka’s implicit formula for Pp : L2 → Bp
(no explicit formula, unless p = 2,∞)

p-ellipticity implies contractivity: Suppose that ∆p(A) > 0.

∆p(A) > 0⇒ pRe 〈A∇v ,∇(|u|p−2u)〉Cn > 0



Theorem (Nittka 2012)
‖T A

t ‖p 6 1 if and only if
ˆ

Ω
Re 〈A∇u,∇(|u|p−2u)〉Cn > 0

for all u ∈W 1,2(Ω) s.t. |u|p−2u ∈W 1,2(Ω)

Key tool: Nittka’s implicit formula for Pp : L2 → Bp
(no explicit formula, unless p = 2,∞)

p-ellipticity implies contractivity: Suppose that ∆p(A) > 0.

∆p(A) > 0⇒ pRe 〈A∇v ,∇(|u|p−2u)〉Cn > 0

Analiticity: By continuity in ϑ, ∆p(A) > 0 self-improves into
∆p(eiϑA) > 0 (for small ϑ)



Back to H∞-calculus

Target: Prove that given any open Ω ⊂ Rn and any A ∈ A(Ω)

∆p(A) > 0 =⇒ ωH(LA
p ) < π/2,

where ωH(LA
p ) is the functional calculus angle of LA

p

Theorem (Cowling, Doust, McIntosh and Yagi 1996)
Suppose that for some ϑ ∈ (0, π2 ) we have

ˆ ∞
0

ˆ
Ω

∣∣∣∇T e±iϑA
t f (x)

∣∣∣ ∣∣∣∇T e∓iϑA∗
t g(x)

∣∣∣ dx dt . ‖f ‖p‖g‖q

for all f , g ∈ (Lp ∩ Lq)(Ω). Then ωH(LA
p ) < π/2
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p > p−(LA), where (p−(LA), p+(LA)) = I(LA)
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• Auscher (2004) Ω = Rn: ‖GLA‖p <∞ for
p ∈ (q−(LA), q+(LA))

• Auscher, Hofmann, Martell (2012) Ω = Rn: ‖GLA‖p <∞ for
p > p−(LA), where (p−(LA), p+(LA)) = I(LA)

Under our assumptions boundedness of square functions
(vertical/conical) on Lp(Ω) is unknown.



Bellman-function-heat-flow method

We use a variant of the Bellman-function-heat-flow method
introduced by Petermichl and Volberg (2002)

Our method consists in studying the strict monotonicity of

E(t) :=
ˆ

Ω
Q(T A

t f ,T B
t g) (Φ = Q)

where Q = Qp,q,δ is the Nazarov-Treil function, p > 2, q = p′

Let p > 2. Suppose that ∆p(A,B) > 0. We want to prove that
ˆ

Ω

∣∣∣∇T A
t f
∣∣∣ ∣∣∣∇T B

t g
∣∣∣ . − E ′(t)

for all f , g ∈ (Lp ∩ Lq)(Ω).
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We use a variant of the Bellman-function-heat-flow method
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Our method consists in studying the strict monotonicity of
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In principle, this follows from (uniform) generalized convexity of Q



Generalized convexity of Q

∆p(A,B) := min{∆p(A),∆p(B)}

Theorem (C.-Dragičević 2016)
Let p > 2 and A,B ∈ A(Ω). Suppose that ∆p(A,B) > 0
Then ∃δ > 0 s.t. Q is (A,B)-convex in R4 \Υ: for a.e. x ∈ Ω

H(A(x),B(x))
Q [ω; (α, β)]& |α||β| ,

for every ω ∈ R4 \Υ and α, β ∈ R2n.

Q =


Fp ⊗ 1 + 1⊗ Fq + δF2 ⊗ F2−q, if |ζ|p 6 |η|q

c1Fp ⊗ 1 + c21⊗ Fq, if |ζ|p > |η|q
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∆p(A,B) := min{∆p(A),∆p(B)}

Theorem (C.-Dragičević 2016)
Let p > 2 and A,B ∈ A(Ω). Suppose that ∆p(A,B) > 0
Then ∃δ > 0 s.t. Q is (A,B)-convex in R4 \Υ: for a.e. x ∈ Ω

H(A(x),B(x))
Q?ϕν [ω; (α, β)]& |α||β| ,

for every ω = (ζ, η) ∈ R4 and α, β ∈ R2n.

H(A,B)
Q [ω; (α, β)] =


HA

Fp
[ζ;α] + HB

Fq
[η;β] + δH(A,B)

F2⊗F2−q
[ω; (α, β)]

c1HA
Fp

[ζ;α] + c2HB
Fq

[η;β]
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A = B real, Ω = Rn (Dragičević−Volberg 2011)

Standard convexity of Q
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A = B real, Ω = Rn (Dragičević−Volberg 2011)
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Related to our universal multiplier theorem
for symmetric contractions



Bilinear embedding - earlier results

A = B real, Ω = Rn (Dragičević−Volberg 2011)
A,B = e±iϑI (C.−Dragičević 2013)
A,B = e±iϑC , C real (C.−Dragičević 2015)

Related to our sharp functional calculus result
for nonsymmetric OU operators

∆p(eiϑC) > 0 ⇐⇒ |ϑ| < arccot

√
(p − 2)2 + p2(tanϑC )2

2
√

p − 1

ϑC := Numerical range angle of C
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Bilinear embedding - earlier results

A = B real, Ω = Rn (Dragičević−Volberg 2011)
A,B = e±iϑI (C.−Dragičević 2013)
A,B = e±iϑC , C real (C.−Dragičević 2015)
A,B complex, Ω = Rn (C.−Dragičević 2016)

Our 2016 proof does not extend to arbitrary open Ω ⊂ Rn

In this case a modification of our method is needed

Major difficulties in the case Ω 6= Rn

• D(LA
p ) is unknown

• No estimates for the kernel of T A
t

• T A
t : (((((((((L∞(Ω)→ L∞(Ω)



“Proof” of the bilinear embedding: ∆p(A, B) > 0, p > 2

ˆ ∞
0

ˆ
Ω

∣∣∣∇T A
t f (x)

∣∣∣ ∣∣∣∇T B
t g(x)

∣∣∣ dx dt . ‖f ‖p‖g‖q,

for all f , g ∈ (Lp ∩ Lq)(Ω).



“Proof” of the bilinear embedding: ∆p(A, B) > 0, p > 2

By the heat-flow method applied to E(t) =
´

ΩQ(T A
t f ,T B

t g)
we reduce to prove
ˆ

Ω
|∇u| |∇v | .Re

ˆ
Ω

(∂ζQ)(u, v)LA
2 u + (∂ηQ)(u, v)LB

2 v (1)

for all u ∈ D(LA
p ) ∩D(LA

q ) and v ∈ D(LB
p ) ∩D(LB

q )
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Remark
Inequality (1) implies dissipativity:

(∂ζQ)(u, 0) = C |u|p−2ū; (∂ηQ)(0, v) = C ′|v |q−2v̄
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• In this case the integration by parts in (1) is trivial
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ˆ
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H(A,B)
Rn

[(u, v); (∇u,∇v)]

Approximation of Q by a sequence (Rn) s.t.

• dRn → dQ and the limit of the integral exists
• ∂ζRn(u, v), ∂ηRn(u, v) ∈W 1,2(Ω)

• d2Rn → d2Q a.e.

• Each Rn must be (A,B)-convex
(positivity of the function inside the integral)



The general case Ω ⊂ Rn. Replace the Bellman function Q with
a sequence of functions (Rn) s.t.

1 Rn ∈ C2(R4)

2 Rn is (A,B)-convex

3 d2Rn ∈ L∞(R4;R4,4)

4 ‖dRn(ω)‖ 6 C(n)|ω|

5 ‖dRn(ω)‖ 6 C(|ω|p−1 + |ω|q−1)

6 dRn → dQ and d2Rn → d2Q a.e. in R4

Rn depends on A,B and p. The construction of (Rn) is based on
elementary methods but it requires some effort, because
(A,B)-convexity is a rigid property.
First step: study of gen. convexity of multivariable power functions
(related to (non) contractivity of (T A

t ,T B
t ) on Lp(Ω;C2))
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Thank you for your attention!




