Maximal parabolic regularity for divergence-form operators with Neumann boundary conditions in rough domains

A. Carbonaro (U. of Genova)

Based on a collaboration with O. Dragičević (U. of Ljubljana)

Harmonic Analysis of Elliptic and Parabolic Partial Differential Equations

CIRM Luminy April 23, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Elliptic operators in divergence form

 $\Omega \subseteq \mathbb{R}^n$ open, $A \in L^{\infty}(\Omega \to \mathbb{C}^{n,n})$ a strictly elliptic matrix function, i.e. $\exists \lambda, \Lambda > 0$ s.t.

$$\begin{split} |\langle A(x)\xi,\eta\rangle| &\leq \Lambda \, |\xi| \, |\eta| \,, \quad \forall \xi,\eta \in \mathbb{C}^n \\ \operatorname{Re} \langle A(x)\xi,\xi\rangle &\geq \lambda |\xi|^2 \,, \quad \forall \xi \in \mathbb{C}^n \end{split}$$

Denote the class of all such matrices by $\mathcal{A}(\Omega)$

Consider the operator

$$L_2^A := -\mathrm{div}\,A\nabla$$

with Neumann boundary conditions on Ω :

 L_2^A is the maximal accretive operator on $L^2(\Omega)$ associated with

$$\mathfrak{a}(u,v) = \int_{\Omega} \langle A \nabla u, \nabla v \rangle_{\mathbb{C}^n}, \quad \mathrm{D}(\mathfrak{a}) = W^{1,2}(\Omega)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• L₂^A is **sectorial** with

$$\omega(L_2^A) \leqslant \vartheta_2^* < \pi/2,$$

where ϑ_2^* is the numerical range angle of $\mathfrak a$

• $(T^A_t)_{t>0} := (e^{-tL^A_2})_{t>0}$ analytic and contractive in ${f S}_{artheta_2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\vartheta_2^* = \pi/2 - \vartheta_2$$

We are interested in:

• Contractivity, analiticity of $(T_t^A)_{t>0}$ in $L^p(\Omega)$ (p>1)

We denote by L_p^A its negative generator

- Bounded H^{∞} -functional calculus for L_{p}^{A}
- Maximal parabolic regularity for L_p^A

We are interested in results that **only depend** on the algebraic properties of the matrix A

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1, \xi_2 \in \mathbb{R}^n$ and 1/p + 1/q = 1.

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1,\xi_2\in\mathbb{R}^n$ and 1/p+1/q=1. For $A\in\mathcal{A}(\Omega)$ set

$$\Delta_{
ho}(\mathcal{A}):=2\mathop{\mathrm{ess\,inf}}_{x\in\Omega}\min_{|\xi|=1}\mathop{\mathrm{Re}}\langle\mathcal{A}(x)\xi,\mathcal{J}_{
ho}\xi
angle_{\mathbb{C}^n}.$$

We say that A is *p*-elliptic if

 $\Delta_p(A) > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1,\xi_2\in\mathbb{R}^n$ and 1/p+1/q=1. For $A\in\mathcal{A}(\Omega)$ set

$$\Delta_{
ho}(\mathcal{A}):=2\mathop{\mathrm{ess\,inf}}\limits_{x\in\Omega}\min_{|\xi|=1}\mathop{\mathrm{Re}}\left\langle\mathcal{A}(x)\xi,\mathcal{J}_{
ho}\xi
ight
angle_{\mathbb{C}^n}.$$

We say that A is *p*-elliptic if

 $\Delta_{\rho}(A) > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $\Delta_2(A) > 0 \iff A$ (uniform strict) elliptic

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1,\xi_2\in\mathbb{R}^n$ and 1/p+1/q=1. For $A\in\mathcal{A}(\Omega)$ set

$$\Delta_{
ho}(A) := 2 \operatorname*{ess\,inf}_{x\in\Omega} \min_{|\xi|=1} \operatorname{Re} \langle A(x)\xi, \mathcal{J}_{
ho}\xi
angle_{\mathbb{C}^n}.$$

We say that A is *p*-elliptic if

 $\Delta_p(A) > 0$

A D N A 目 N A E N A E N A B N A C N

- $\Delta_2(A) > 0 \iff A$ (uniform strict) elliptic
- $|1-2/p| < \lambda/\Lambda \Rightarrow \Delta_p(A) > 0$

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1,\xi_2\in\mathbb{R}^n$ and 1/p+1/q=1. For $A\in\mathcal{A}(\Omega)$ set

$$\Delta_{
ho}(\mathcal{A}):=2\mathop{\mathrm{ess\,inf}}_{x\in\Omega}\min_{|\xi|=1}\mathop{\mathrm{Re}}\langle\mathcal{A}(x)\xi,\mathcal{J}_{
ho}\xi
angle_{\mathbb{C}^n}.$$

We say that A is *p*-elliptic if

 $\Delta_p(A) > 0$

A D N A 目 N A E N A E N A B N A C N

- $\Delta_2(A) > 0 \iff A$ (uniform strict) elliptic
- $|1-2/p| < \lambda/\Lambda \Rightarrow \Delta_p(A) > 0$
- $\Delta_p(A) = \Delta_q(A)$

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1,\xi_2\in\mathbb{R}^n$ and 1/p+1/q=1. For $A\in\mathcal{A}(\Omega)$ set

$$\Delta_{
ho}(\mathcal{A}):=2\mathop{\mathrm{ess\,inf}}_{x\in\Omega}\min_{|\xi|=1}\mathop{\mathrm{Re}}\langle\mathcal{A}(x)\xi,\mathcal{J}_{
ho}\xi
angle_{\mathbb{C}^n}.$$

We say that A is *p*-elliptic if

 $\Delta_p(A) > 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\Delta_2(A) > 0 \iff A$ (uniform strict) elliptic
- $|1-2/p| < \lambda/\Lambda \Rightarrow \Delta_p(A) > 0$
- $\Delta_p(A) = \Delta_q(A)$
- $\Delta_{
 ho}(A) > 0 \iff \Delta_{
 ho}(A^*) > 0$

For p > 1 define the \mathbb{R} -linear map $\mathcal{J}_p : \mathbb{C}^n \to \mathbb{C}^n$ by

$$\mathcal{J}_p(\xi_1 + i\xi_2) = \frac{\xi_1}{p} + i\frac{\xi_2}{q}$$

Here $\xi_1, \xi_2 \in \mathbb{R}^n$ and 1/p + 1/q = 1. For $A \in \mathcal{A}(\Omega)$ set

$$\Delta_{
ho}(\mathcal{A}):=2\mathop{\mathrm{ess\,inf}}_{x\in\Omega}\min_{|\xi|=1}\mathop{\mathrm{Re}}\langle\mathcal{A}(x)\xi,\mathcal{J}_{
ho}\xi
angle_{\mathbb{C}^n}.$$

We say that A is *p*-elliptic if

 $\Delta_{\rho}(A) > 0$

- $\Delta_2(A) > 0 \iff A$ (uniform strict) elliptic
- $|1-2/p| < \lambda/\Lambda \Rightarrow \Delta_p(A) > 0$
- $\Delta_p(A) = \Delta_q(A)$
- $\Delta_{\rho}(A) > 0 \iff \Delta_{\rho}(A^*) > 0$
- $\Delta_p(A) > 0 \ \forall p > 1 \iff A$ is real-valued

Theorem (C.-Dragičević 2018)

Let $\Omega \subseteq \mathbb{R}^n$ be any open set $(n \ge 2)$. Let $A \in \mathcal{A}(\Omega)$ and p > 1. Suppose that $\Delta_p(A) > 0$. Then,

(i) $(T_t^A)_{t>0}$ is analytic and contractive in $L^p(\Omega)$

(ii) L_p^A has maximal parabolic regularity

 $\mathcal{I} = \{ p \in (1,\infty) : \Delta_{\rho}(A) > 0 \}$ is an open interval containing 2

 $p \in \mathcal{I} \iff q = p' \in \mathcal{I}$

Maximal parabolic regularity

We say that L_p^A has maximal parabolic regularity if for some r > 1, all $\tau > 0$ and all $f \in L^r((0, \tau); L^p(\Omega))$, the unique mild solution

$$u(t) := \int_0^t T^A_{t-s} f(s) \mathrm{d}s, \quad t \in (0,\tau)$$

to the Cauchy problem

$$\begin{cases} u' + L_p^A u = f; \\ u(0) = 0. \end{cases}$$

belongs to $W^{1,r}(0,\tau)$; $L^p(\Omega)) \cap L^r((0,\tau); D(L^A_p))$

Maximal parabolic regularity

We say that L_p^A has maximal parabolic regularity if for some r > 1, all $\tau > 0$ and all $f \in L^r((0, \tau); L^p(\Omega))$, the unique mild solution

$$u(t) := \int_0^t T^A_{t-s} f(s) \mathrm{d}s, \quad t \in (0, \tau)$$

to the Cauchy problem

$$\begin{cases} u' + L_p^A u = \mathbf{f}; \\ u(0) = 0. \end{cases}$$

belongs to $W^{1,r}(0,\tau)$; $L^p(\Omega)) \cap L^r((0,\tau); D(L^A_p))$

Necessary condition: analiticity of $(T_t^A)_{t>0}$ in $L^p(\Omega)$

For $\vartheta > \omega(L_p^A)$ and $m \in H^{\infty}(\mathbf{S}_{\vartheta})$ one can define the closed d.d. (possibly unbounded) linear operator $m(L_p^A)$:

$$m(L_p^A)f = \frac{1}{2\pi i} \int_{\partial^+ \mathbf{S}_{\vartheta}} m(z)(z - L_p^A)^{-1} f \, \mathrm{d}z$$

For $\vartheta > \omega(L_p^A)$ and $m \in H^{\infty}(\mathbf{S}_{\vartheta})$ one can define the closed d.d. (possibly unbounded) linear operator $m(L_p^A)$:

$$m(L_p^A)f = \frac{1}{2\pi i} \int_{\partial^+ \mathbf{S}_{\vartheta}} m(z)(z - L_p^A)^{-1} f \, \mathrm{d}z$$

We say that L_p^A has bounded $H^{\infty}(\mathbf{S}_{\vartheta})$ -calculus if

$$m(L_p^A) \in \mathcal{B}(L^p(\Omega)), \quad \forall m \in H^\infty(\mathbf{S}_\vartheta)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $\vartheta > \omega(L_p^A)$ and $m \in H^{\infty}(\mathbf{S}_{\vartheta})$ one can define the closed d.d. (possibly unbounded) linear operator $m(L_p^A)$:

$$m(L_p^A)f = \frac{1}{2\pi i}\int_{\partial^+\mathbf{S}_\vartheta} m(z)(z-L_p^A)^{-1}f\,\mathrm{d} z$$

We say that L_p^A has bounded $H^{\infty}(\mathbf{S}_{\vartheta})$ -calculus if

$$m(L_p^A) \in \mathcal{B}(L^p(\Omega)), \quad \forall m \in H^\infty(\mathbf{S}_\vartheta)$$

Functional calculus angle:

$$\omega_{H}(L_{p}^{A}) := \inf\{\vartheta : L_{p}^{A} \text{ has bounded } H^{\infty}(\mathbf{S}_{\vartheta})\text{-calculus}\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For $\vartheta > \omega(L_p^A)$ and $m \in H^{\infty}(\mathbf{S}_{\vartheta})$ one can define the closed d.d. (possibly unbounded) linear operator $m(L_p^A)$:

$$m(L_p^A)f = \frac{1}{2\pi i}\int_{\partial^+\mathbf{S}_{\vartheta}} m(z)(z-L_p^A)^{-1}f\,\mathrm{d}z$$

We say that L_p^A has bounded $H^{\infty}(\mathbf{S}_{\vartheta})$ -calculus if

$$m(L_p^A) \in \mathcal{B}(L^p(\Omega)), \quad \forall m \in H^\infty(\mathbf{S}_\vartheta)$$

Functional calculus angle:

$$\omega_{H}(L_{p}^{A}) := \inf\{\vartheta : L_{p}^{A} \text{ has bounded } H^{\infty}(\mathbf{S}_{\vartheta})\text{-calculus}\}$$

Theorem (Dore-Venni and Prüss-Shor; Kalton-Weis)

 $\omega_H(L_p^A) < \pi/2 \Rightarrow L_p^A$ has maximal parabolic regularity

Theorem (C.-Dragičević 2018)

Let $\Omega \subseteq \mathbb{R}^n$ be any open set $(n \ge 2)$. Let $A \in \mathcal{A}(\Omega)$ and p > 1. Suppose that $\Delta_p(A) > 0$. Then, (i) $(T_t^A)_{t>0}$ is analytic and contractive in $L^p(\Omega)$ (ii) $\omega_H(L_p^A) < \pi/2$

- No regularity of $\partial \Omega$, No Sobolev embeddings
- A result of Kunstmann shows that the range in the theorem is optimal for the class |Ω| < +∞, A ∈ A(Ω) (counterexamples for Δ_p(A) ≤ 0).

REAL COEFFICIENTS

 $\Omega \subseteq \mathbb{R}^n$, $A \in \mathcal{A}(\Omega)$, A real-valued

Ouhabaz (1992, 1996): $(T_t^A)_{t>0}$ is sub-Markovian

Kalton-Weis (2001) $\Rightarrow \omega_H(L_p^A) < \pi/2$, for all p > 1.

Define the Sobolev exponents $(n \ge 3)$

$$2_{\star} := \frac{2n}{n+2}, \quad 2^{\star} := \frac{2n}{n-2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\mathcal{I}(L^{A}) := \{ p \in [1,\infty] : \sup_{t>0} \|T_t^{A}\|_p < +\infty \}.$

Define the Sobolev exponents $(n \ge 3)$

$$2_{\star} := \frac{2n}{n+2}, \quad 2^{\star} := \frac{2n}{n-2}$$

 $\mathcal{I}(L^A) := \{ p \in [1, \infty] : \sup_{t>0} \|T_t^A\|_p < +\infty \}.$

(a) $\Omega = \mathbb{R}^n$, $A \in \mathcal{A}(\mathbb{R}^n)$

Auscher (2004): (2_{*} − ε, 2^{*} + ε) ⊆ I(L^A), where ε = ε(n, λ, Λ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Define the Sobolev exponents $(n \ge 3)$

$$2_{\star} := \frac{2n}{n+2}, \quad 2^{\star} := \frac{2n}{n-2}$$

 $\mathcal{I}(L^{\mathcal{A}}) := \{ p \in [1,\infty] : \sup_{t>0} \| T_t^{\mathcal{A}} \|_p < +\infty \}.$

(a) $\Omega = \mathbb{R}^n$, $A \in \mathcal{A}(\mathbb{R}^n)$

- Auscher (2004): (2_{*} − ε, 2^{*} + ε) ⊆ I(L^A), where ε = ε(n, λ, Λ)
- Hofmann-Mayboroda-McIntosh (2011): this range is sharp for complex A (counterexample for any p ∉ [2_{*}, 2^{*}])

A D N A 目 N A E N A E N A B N A C N

Define the Sobolev exponents $(n \ge 3)$

$$2_{\star} := \frac{2n}{n+2}, \quad 2^{\star} := \frac{2n}{n-2}$$

 $\mathcal{I}(L^{\mathcal{A}}) := \{ p \in [1,\infty] : \sup_{t>0} \| T_t^{\mathcal{A}} \|_p < +\infty \}.$

(a) $\Omega = \mathbb{R}^n$, $A \in \mathcal{A}(\mathbb{R}^n)$

- Auscher (2004): (2_{*} − ε, 2^{*} + ε) ⊆ I(L^A), where ε = ε(n, λ, Λ)
- Hofmann-Mayboroda-McIntosh (2011): this range is sharp for complex A (counterexample for any p ∉ [2_{*}, 2^{*}])

(b) $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz, $A \in \mathcal{A}(\Omega)$

• Egert (2017): $(2_{\star} - \varepsilon, 2^{\star} + \varepsilon) \subseteq \mathcal{I}(L^A)$, where $\varepsilon = \varepsilon(n, \lambda, \Lambda, \Omega)$

 $\Omega = \mathbb{R}^n$ or $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz. Then,

$$\omega_H(L^A_{\frac{p}{2}}) = \omega(L^A_{\frac{2}{2}}) < \pi/2$$

for all $p \in \mathcal{I}(L^A)^{\circ}$

 $\Omega = \mathbb{R}^n$ or $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz. Then,

$$\omega_H(L^A_{\frac{p}{2}}) = \omega(L^A_{\frac{2}{2}}) < \pi/2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $p \in \mathcal{I}(L^A)^{\circ} \supset (2_{\star} - \varepsilon, 2^{\star} + \varepsilon).$

 $\Omega = \mathbb{R}^n$ or $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz. Then,

$$\omega_H(L^A_{\frac{p}{2}}) = \omega(L^A_{\frac{2}{2}}) < \pi/2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for all $p \in \mathcal{I}(L^A)^{\circ} \supset (2_{\star} - \varepsilon, 2^{\star} + \varepsilon).$

Also: mixed boundary conditions, systems, Riesz transforms...

 $\Omega = \mathbb{R}^n$ or $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz. Then,

$$\omega_H(L^A_{p}) = \omega(L^A_2) < \pi/2$$

for all $p \in \mathcal{I}(L^A)^{\circ} \supset (2_{\star} - \varepsilon, 2^{\star} + \varepsilon).$

- Earlier results by Blunck and Kunstmann
- Fundamental tool: modification of Blunck-Kunstmann weak type (*p*, *p*) criterion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\Omega = \mathbb{R}^n$ or $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz. Then,

$$\omega_H(L^A_{p}) = \omega(L^A_2) < \pi/2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all $p \in \mathcal{I}(L^A)^{\circ} \supset (2_{\star} - \varepsilon, 2^{\star} + \varepsilon).$

Our result

Let $\Omega \subseteq \mathbb{R}^n$ be any open set. Then $\omega_H(L_p^A) < \pi/2$, for all $p \in (1, \infty)$ s.t. $\Delta_p(A) > 0$.

 $\Omega = \mathbb{R}^n$ or $\Omega \subset \mathbb{R}^n$ bounded and weakly Lipschitz. Then,

$$\omega_H(L^A_{p}) = \omega(L^A_2) < \pi/2$$

for all $p \in \mathcal{I}(L^A)^{\circ} \supset (2_{\star} - \varepsilon, 2^{\star} + \varepsilon).$

The proof requires Sobolev embeddings: true because one has Sobolev extension operators, in this case

Our result

Let
$$\Omega \subseteq \mathbb{R}^n$$
 be any open set. Then $\omega_H(L_p^A) < \pi/2$, for all $p \in (1, \infty)$ s.t. $\Delta_p(A) > 0$.

No Sobolev embeddings and $\omega_H(L_p^A)$ depends on p, in general

An example by Kunstmann

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\Delta^{\Omega_{lpha}}:=L^{I}$ the Neumann Laplacian on Ω_{lpha}

An example by Kunstmann

 $\Delta^{\Omega_{lpha}}:=L'$ the Neumann Laplacian on Ω_{lpha}

 Evans and Harris (1989): The resolvent is not compact: No Sobolev embedding of W^{1,2}(Ω_α) into L^q(Ω_α), q > 2

An example by Kunstmann

 $\Delta^{\Omega_{lpha}}:=L^{\prime}$ the Neumann Laplacian on Ω_{lpha}

- Evans and Harris (1989): The resolvent is not compact: No Sobolev embedding of W^{1,2}(Ω_α) into L^q(Ω_α), q > 2
- Davies and Simon (1992): Study of $\sigma(\Delta_2^{\Omega_{\alpha}})$ by means of a reduction to the Dirichlet operator

$$-D^2 + \alpha D$$
, on $L^2([0, +\infty); e^{-\alpha x} dx)$

• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{lpha}}), \ p>1$

$$\{0\} \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha} \subseteq \sigma(\Delta_{\boldsymbol{p}}^{\Omega_{\alpha}}) \subseteq [0,\alpha^2/4) \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha}$$

where $\mathbf{Q}_{\pmb{p},\alpha}=\alpha^2\mathbf{Q}_{\pmb{p}}$ and

$$\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{lpha}}), \ p>1$

$$\{0\} \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha} \subseteq \sigma(\Delta_{\boldsymbol{p}}^{\Omega_{\alpha}}) \subseteq [0,\alpha^2/4) \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha}$$

where $\mathbf{Q}_{\pmb{p},\alpha}=\alpha^2\mathbf{Q}_{\pmb{p}}$ and

$$\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$$

$$\phi_p^* = \arcsin |1 - 2/p|$$

• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{lpha}}), \ p>1$

$$\{0\} \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha} \subseteq \sigma(\Delta_{\boldsymbol{p}}^{\Omega_{\alpha}}) \subseteq [0,\alpha^2/4) \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha}$$

where $\mathbf{Q}_{\pmb{p},\alpha}=\alpha^2\mathbf{Q}_{\pmb{p}}$ and

$$\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$$

A D > A P > A B > A B >

E 990

$$\phi_p^* = \arcsin |1 - 2/p|$$
• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{lpha}}), \ p>1$

$$\{0\} \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha} \subseteq \sigma(\Delta_{\boldsymbol{p}}^{\Omega_{\alpha}}) \subseteq [0,\alpha^2/4) \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha}$$

where $\mathbf{Q}_{\pmb{p},\alpha}=\alpha^2\mathbf{Q}_{\pmb{p}}$ and

$$\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$$

ヘロト 人間ト 人間ト 人間ト

$$\phi_p^* = \arcsin |1 - 2/p|$$

• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{lpha}}), \ p>1$

$$\{0\} \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha} \subseteq \sigma(\Delta_{\boldsymbol{p}}^{\Omega_{\alpha}}) \subseteq [0,\alpha^2/4) \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha}$$

where $\mathbf{Q}_{\pmb{p},\alpha}=\alpha^2\mathbf{Q}_{\pmb{p}}$ and

$$\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$$

$$\phi_p^* = \arcsin |1 - 2/p|$$

• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{lpha}}), \ p>1$

$$\{0\} \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha} \subseteq \sigma(\Delta_{\boldsymbol{p}}^{\Omega_{\alpha}}) \subseteq [0,\alpha^2/4) \cup \partial \mathbf{Q}_{\boldsymbol{p},\alpha}$$

where $\mathbf{Q}_{p,\alpha} = \alpha^2 \mathbf{Q}_p$ and

$$\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$$

$$\phi_{\textit{p}}^{*} = \arcsin |1-2/\textit{p}|$$

• Kunstmann (2002): $\exists \ \Omega_{\max} \subset \mathbb{R}^2$ of finite measure s.t. $\sigma(\Delta_p^{\Omega_{\max}}) = \overline{\mathbf{S}}_{\phi_p^*}, \ 1$

• Kunstmann (2002): Study of $\sigma_{ess}(\Delta_p^{\Omega_{\alpha}}), p > 1$ $\{0\} \cup \partial \mathbf{Q}_{p,\alpha} \subseteq \sigma(\Delta_p^{\Omega_\alpha}) \subseteq [0, \alpha^2/4) \cup \partial \mathbf{Q}_{p,\alpha}$ where $\mathbf{Q}_{p,\alpha} = \alpha^2 \mathbf{Q}_p$ and $\mathbf{Q}_{p} = \left\{ x + iy : x > \frac{p^{2}}{(p-2)^{2}}y^{2} + \frac{p-1}{p^{2}} \right\}$ $\overline{\mathsf{S}}_{\phi_p^*}$ $\phi_p^* = \arcsin \left| 1 - 2/p \right|$

• Kunstmann (2002): $\exists \ \Omega_{\max} \subset \mathbb{R}^2$ of finite measure s.t. $\sigma(\Delta_p^{\Omega_{\max}}) = \overline{\mathbf{S}}_{\phi_p^*}$, 1 . This is the maximal $<math>L^p$ -spectrum in the class of generators of symmetric contraction semigroups

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|$$
, $\phi_{p}=\pi/2-\phi_{p}^{*}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|$$
, $\phi_{p}=\pi/2-\phi_{p}^{*}$

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

Theorem (C.-Dragičević 2013)

Let p > 1. Then $\omega_H(\mathcal{L}_p) \leqslant \phi_p^*$, for every generator of s.c.s.

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|$$
, $\phi_{p}=\pi/2-\phi_{p}^{*}$

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

Theorem (C.-Dragičević 2013)

Let p > 1. Then $\omega_H(\mathcal{L}_p) \leqslant \phi_p^*$, for every generator of s.c.s.

Hence
$$\omega_H(\Delta_p^{\Omega_{\max}}) = \phi_p^*$$

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|,\ \phi_{p}=\pi/2-\phi_{p}^{*}$$

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

Theorem (C.-Dragičević 2013)

Let p > 1. Then $\omega_H(\mathcal{L}_p) \leqslant \phi_p^*$, for every generator of s.c.s.

Hence
$$\omega_H(\Delta_p^{\Omega_{\max}}) = \phi_p^*$$

$$\omega_{\mathcal{H}}\left(L_{p}^{e^{i\vartheta}I}\right) = \omega_{\mathcal{H}}\left(e^{i\vartheta}\Delta_{p}^{\Omega_{\max}}\right) < \pi/2 \iff |\vartheta| < \phi_{p}$$

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|,\ \phi_{p}=\pi/2-\phi_{p}^{*}$$

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

Theorem (C.-Dragičević 2013)

Let p > 1. Then $\omega_H(\mathcal{L}_p) \leqslant \phi_p^*$, for every generator of s.c.s.

Hence
$$\omega_H(\Delta_p^{\Omega_{\max}})=\phi_p^*$$

$$\omega_{\mathcal{H}}\left(L_{p}^{e^{i\vartheta}I}\right) = \omega_{\mathcal{H}}\left(e^{i\vartheta}\Delta_{p}^{\Omega_{\max}}\right) < \pi/2 \iff |\vartheta| < \phi_{p}$$

 $\Delta_{p}(e^{i\vartheta}I) = \cos\vartheta - \cos\phi_{p}$

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|,\ \phi_{p}=\pi/2-\phi_{p}^{*}$$

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

Theorem (C.-Dragičević 2013)

Let p > 1. Then $\omega_H(\mathcal{L}_p) \leqslant \phi_p^*$, for every generator of s.c.s.

Hence
$$\omega_H(\Delta_p^{\Omega_{\max}})=\phi_p^*$$

$$\omega_{H}\left(L_{p}^{\boldsymbol{e^{i\vartheta}}\boldsymbol{l}}\right) = \omega_{H}\left(\boldsymbol{e^{i\vartheta}}\Delta_{p}^{\Omega_{\max}}\right) < \pi/2 \iff \Delta_{p}(\boldsymbol{e^{i\vartheta}}\boldsymbol{l}) > 0$$

 $\Delta_{p}(e^{i\vartheta}I) = \cos\vartheta - \cos\phi_{p}$

$$\phi_{p}^{*}=rcsin\left|1-2/p
ight|$$
, $\phi_{p}=\pi/2-\phi_{p}^{*}$

Every symmetric contraction semigroup $(\exp(-t\mathcal{L}))_{t>0}$ is L^p -contractive in \mathbf{S}_{ϕ_p} . In particular, $\sigma(\mathcal{L}_p) \subseteq \overline{\mathbf{S}}_{\phi_p^*}$ for all p > 1.

Theorem (C.-Dragičević 2013)

Let p > 1. Then $\omega_H(\mathcal{L}_p) \leqslant \phi_p^*$, for every generator of s.c.s.

Hence
$$\omega_H(\Delta_p^{\Omega_{\max}}) = \phi_p^*$$

$$\omega_{H}\left(L_{p}^{e^{i\vartheta}I}\right) = \omega_{H}\left(e^{i\vartheta}\Delta_{p}^{\Omega_{\max}}\right) < \pi/2 \iff \Delta_{p}(e^{i\vartheta}I) > 0$$

 $\Delta_{p}(e^{i\vartheta}I) = \cos\vartheta - \cos\phi_{p}$

Our target: $\Delta_p(A) > 0 \Rightarrow \omega_H(L_p^A) < \pi/2$ (for all Ω and all A) The example above shows that this range is sharp

Genesis of *p*-ellipticity

We discovered *p*-ellipticity by studying "convexity" of power functions

$$F_s(\zeta) = |\zeta|^s, \quad \zeta \in \mathbb{R}^2$$

Motivation: Our interest in "convexity" of the Nazarov-Treil (1995) Bellman function Q which comprises linear combinations of tensor products of power functions

$$\mathcal{Q}(\zeta,\eta) := |\zeta|^{p} + |\eta|^{q} + \delta \begin{cases} |\zeta|^{2} |\eta|^{2-q} & ; \ |\zeta|^{p} \leq |\eta|^{q} \\ \frac{2}{p} |\zeta|^{p} + \left(\frac{2}{q} - 1\right) |\eta|^{q} & ; \ |\zeta|^{p} \geq |\eta|^{q} \end{cases}$$

where p > 2, q = p/(p-1) and $\delta > 0$.

Genesis of *p*-ellipticity

We discovered *p*-ellipticity by studying "convexity" of power functions

$$F_s(\zeta) = |\zeta|^s, \quad \zeta \in \mathbb{R}^2$$

Motivation: Our interest in "convexity" of the Nazarov-Treil (1995) Bellman function Q which comprises linear combinations of tensor products of power functions

$$\mathcal{Q}(\zeta,\eta) := |\zeta|^{p} + |\eta|^{q} + \delta \begin{cases} |\zeta|^{2} |\eta|^{2-q} & ; \ |\zeta|^{p} \leq |\eta|^{q} \\ \frac{2}{p} |\zeta|^{p} + \left(\frac{2}{q} - 1\right) |\eta|^{q} & ; \ |\zeta|^{p} \geq |\eta|^{q} \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where p > 2, q = p/(p-1) and $\delta > 0$.

• For small δ the function $\mathcal Q$ is uniformly convex

Genesis of *p*-ellipticity

We discovered *p*-ellipticity by studying "convexity" of power functions

$$F_s(\zeta) = |\zeta|^s, \quad \zeta \in \mathbb{R}^2$$

Motivation: Our interest in "convexity" of the Nazarov-Treil (1995) Bellman function Q which comprises linear combinations of tensor products of power functions

$$\mathcal{Q}(\zeta,\eta) := |\zeta|^{p} + |\eta|^{q} + \delta \begin{cases} |\zeta|^{2} |\eta|^{2-q} & ; \ |\zeta|^{p} \leq |\eta|^{q} \\ \frac{2}{p} |\zeta|^{p} + \left(\frac{2}{q} - 1\right) |\eta|^{q} & ; \ |\zeta|^{p} \geq |\eta|^{q} \end{cases}$$

where p > 2, q = p/(p-1) and $\delta > 0$.

- For small δ the function ${\cal Q}$ is uniformly convex
- We are interested in a different type of convexity related to *p*-ellipticity: Generalized convexity...later

Independently of us, Dindoš and Pipher discovered the *p*-ellipticity condition and realized it could be used for a new regularity theory for weak solutions to complex coefficient operators

A "replacement" for the De Giorgi-Nash-Moser regularity theory for real coefficients

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Independently of us, Dindoš and Pipher discovered the *p*-ellipticity condition and realized it could be used for a new regularity theory for weak solutions to complex coefficient operators

A "replacement" for the De Giorgi-Nash-Moser regularity theory for real coefficients

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Application: solvability of the L^p Dirichlet boundary value problem for $\operatorname{div}(A\nabla)$

Theorem 1 (Reverse Hölder inequality)

If $u \in W_{loc}^{1,2}(\Omega)$ is a weak solution to $\operatorname{div}(A\nabla u) = 0$ in Ω and $p_0 := \inf\{p > 1 : A \text{ is } p\text{-elliptic}\}$ then, for any $B_{4r}(x) \subset \Omega$ and $p, q \in (p_0, p'_0 n/(n-2)),$ $\langle |u|^p \rangle_{B_r(x)}^{1/p} \lesssim \langle |u|^q \rangle_{B_{2r}(x)}^{1/q} + (E.T.)$

Constants depend only on n, p_0, Λ .

For elliptic A: counterexample by Mayboroda for q = 2 and any p > 2n/(n-2)

Theorem 2 (Caccioppoli estimate)

If $u \in W^{1,2}_{\mathit{loc}}(\Omega)$ is a weak solution to $\operatorname{div}(A
abla u) = 0$ in Ω and

 $p_0 := \inf\{p > 1 : A \text{ is } p - \text{elliptic}\}$

then, for any $B_{4r}(x) \subset \Omega$ and $p \in (p_0, p_0')$,

$$\int_{B_r(x)} |\nabla u|^2 |u|^{p-2} \lesssim r^{-2} \int_{B_{2r}(x)} |u|^p + (E.T.)$$

Constants depend only on n, p_0, Λ .

Theorem 2 (Caccioppoli estimate)

If $u \in W^{1,2}_{loc}(\Omega)$ is a weak solution to $\operatorname{div}(A \nabla u) = 0$ in Ω and

 $p_0 := \inf\{p > 1 : A \text{ is } p - \text{elliptic}\}$

then, for any $B_{4r}(x) \subset \Omega$ and $p \in (p_0, p_0')$,

$$\int_{B_r(x)} |\nabla u|^2 |u|^{p-2} \lesssim r^{-2} \int_{B_{2r}(x)} |u|^p + (E.T.)$$

Constants depend only on n, p_0, Λ .

Consequence:

$$\left[\Delta_{\rho}(A)>0,\, u\in W^{1,2}_{loc}(\Omega) \text{ s.t. } \operatorname{div}\left(A\nabla u\right)=0\right]\Rightarrow |u|^{\frac{p-2}{2}}u\in W^{1,2}_{loc}(\Omega)$$

Cialdea-Maz'ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea and Maz'ya for studying contractivity of Dirichlet semigroups

Several papers and a book on this subject

Theorem (Cialdea-Maz'ya)

 $\Omega \subset \mathbb{R}^n$ bounded of class, say, C^2 , $A \in C^1(\overline{\Omega})$. Let p > 1. Suppose that for all $x \in \Omega$ and $\alpha, \beta \in \mathbb{R}^n$

$$\frac{4}{pq} \langle \operatorname{Re} A(x)\alpha, \alpha \rangle + \langle \operatorname{Re} A(x)\beta, \beta \rangle \\ + 2 \langle \left(\frac{1}{p} \operatorname{Im} A(x) + \frac{1}{q} \operatorname{Im} A^*(x)\right) \alpha, \beta \rangle \ge 0$$

Then the Dirichlet semigroup $(e^{t \operatorname{div}(A\nabla)})_{t>0}$ is contractive in L^p

Cialdea-Maz'ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea and Maz'ya for studying contractivity of Dirichlet semigroups

Several papers and a book on this subject

Theorem (Cialdea-Maz'ya)

 $\Omega \subset \mathbb{R}^n$ bounded of class, say, C^2 , $A \in C^1(\overline{\Omega})$. Let p > 1. Suppose that for all $x \in \Omega$ and $\alpha, \beta \in \mathbb{R}^n$

$$\frac{4}{pq} \langle \operatorname{Re} A(x)\alpha, \alpha \rangle + \langle \operatorname{Re} A(x)\beta, \beta \rangle \\ + 2 \langle \left(\frac{1}{p} \operatorname{Im} A(x) + \frac{1}{q} \operatorname{Im} A^*(x)\right) \alpha, \beta \rangle \ge 0$$

Then the Dirichlet semigroup $(e^{t \operatorname{div}(A\nabla)})_{t>0}$ is contractive in L^p

 $\Delta_{\rho}(A) \geqslant 0 \iff$ Cialdea-Maz'ya condition above

<ロ>

Cialdea-Maz'ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea and Maz'ya for studying contractivity of Dirichlet semigroups

Several papers and a book on this subject

Theorem (Cialdea-Maz'ya)

 $\Omega \subset \mathbb{R}^n$ bounded of class, say, C^2 , $A \in C^1(\overline{\Omega})$. Let p > 1. Suppose that for all $x \in \Omega$ and $\alpha, \beta \in \mathbb{R}^n$

$$\frac{4}{pq} \langle \operatorname{Re} A(x)\alpha, \alpha \rangle + \langle \operatorname{Re} A(x)\beta, \beta \rangle \\ + 2 \langle \left(\frac{1}{p} \operatorname{Im} A(x) + \frac{1}{q} \operatorname{Im} A^*(x)\right) \alpha, \beta \rangle \ge 0$$

Then the Dirichlet semigroup $(e^{t \operatorname{div}(A\nabla)})_{t>0}$ is contractive in L^p

C.-Dragičević 2015. $\Delta_p(A) \ge 0$ can be interpreted in terms of generalized convexity of the power function $F_{p_{\Box}, A} = 0$

Generalized convexity

Identify \mathbb{C}^n with $\mathbb{R}^n \times \mathbb{R}^n$ by

 $\mathcal{V}(\xi_1+i\xi_2)=(\xi_1,\xi_2),\quad \xi_1,\xi_2\in\mathbb{R}^n$

Given $A \in \mathbb{C}^{n,n}$, consider its real form

$$\mathcal{M}(A) := \mathcal{V}A\mathcal{V}^{-1} = \left(egin{array}{cc} \operatorname{Re} A & -\operatorname{Im} A \ \operatorname{Im} A & \operatorname{Re} A \end{array}
ight)$$

Fix $\Phi \in C^2(\mathbb{R}^{2k}; \mathbb{R})$. Let $A_1, \ldots, A_k \in \mathbb{C}^{n,n}$.

Generalized Hessian of Φ with respect to A_1, \ldots, A_k :

$$H^{(A_1,...,A_k)}_{\Phi}(\omega) := \left(\mathcal{M}(A_1)\oplus\cdots\oplus\mathcal{M}(A_k)
ight)^T\cdot\left((d^2\Phi)(\omega)\otimes I_{\mathbb{R}^n}
ight)$$

Definition

We say that Φ is (A_1, \ldots, A_k) -convex if

$$H^{(A_1,...,A_k)}_{\Phi}[\omega;X] := \langle H^{(A_1,...,A_k)}_{\Phi}(\omega)X,X
angle_{\mathbb{R}^{2kn}} \geqslant 0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for all $X \in \mathbb{R}^{2kn}$ and all $\omega \in \mathbb{R}^{2k}$.

Definition

We say that Φ is (A_1, \ldots, A_k) -convex if

$$H^{(A_1,...,A_k)}_{\Phi}[\omega;X] := \langle H^{(A_1,...,A_k)}_{\Phi}(\omega)X,X
angle_{\mathbb{R}^{2kn}} \geqslant 0,$$

for all $X \in \mathbb{R}^{2kn}$ and all $\omega \in \mathbb{R}^{2k}$.

Example: Generalized convexity of power functions $F_p(\zeta) = |\zeta|^p$ Let $A \in \mathbb{C}^{n,n}$ and p > 1. Then $H^A_{F_p}[\zeta; \mathcal{V}(\xi)] = p^2 |\zeta|^{p-2} \operatorname{Re} \left\langle A\left(e^{-i \operatorname{arg}(\zeta)} \xi\right), \mathcal{J}_q\left(e^{-i \operatorname{arg}(\zeta)} \xi\right) \right\rangle_{\mathbb{C}^n}$ $\Delta_p(A) \ge 0 \iff F_p$ is A-convex

 $\frac{p^2}{2}|\zeta|^{p-2}\Delta_p(A) = \min.$ eigenvalue of $(H^A_{F_p}(\zeta) + H^A_{F_p}(\zeta)^T)/2$

Heat-flow monotonicity

Let $\Omega \subseteq \mathbb{R}^n$, $A_1, \ldots, A_k \in \mathcal{A}(\Omega)$ and $\Phi \in C^2(\mathbb{R}^{2k}; \mathbb{R}_+)$.

For $f_1, \ldots, f_k \in (L^p \cap L^q)(\Omega)$, define

$$\mathcal{E}(t) := \int_{\Omega} \Phi\left(T_t^{A_1}f_1, \ldots, T_t^{A_k}f_k\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here we identify $T_t^{A_j} f_j$ with (Re $T_t^{A_j} f_j$, Im $T_t^{A_j} f_j$)

Heat-flow monotonicity

Let
$$\Omega \subseteq \mathbb{R}^n$$
, $A_1, \ldots, A_k \in \mathcal{A}(\Omega)$ and $\Phi \in C^2(\mathbb{R}^{2k}; \mathbb{R}_+)$.

For $f_1, \ldots, f_k \in (L^p \cap L^q)(\Omega)$, define

$$\mathcal{E}(t) := \int_{\Omega} \Phi\left(T_t^{A_1}f_1, \ldots, T_t^{A_k}f_k\right)$$

Here we identify $T_t^{A_j} f_j$ with $(\operatorname{Re} T_t^{A_j} f_j, \operatorname{Im} T_t^{A_j} f_j)$

In applications $\Phi = F_p$ or Q: We need to know a priori that $(T_t^{A_j})_{t>0}$ are analytic in L^p and L^q

Heat-flow monotonicity

Let
$$\Omega \subseteq \mathbb{R}^n$$
, $A_1, \ldots, A_k \in \mathcal{A}(\Omega)$ and $\Phi \in C^2(\mathbb{R}^{2k}; \mathbb{R}_+)$.

For $f_1, \ldots, f_k \in (L^p \cap L^q)(\Omega)$, define

$$\mathcal{E}(t) := \int_{\Omega} \Phi\left(T_t^{A_1}f_1, \ldots, T_t^{A_k}f_k\right)$$

Here we identify $T_t^{A_j} f_j$ with $(\operatorname{Re} T_t^{A_j} f_j, \operatorname{Im} T_t^{A_j} f_j)$

In applications $\Phi = F_p$ or Q: We need to know a priori that $(T_t^{A_j})_{t>0}$ are analytic in L^p and L^q

Set
$$\zeta^j = \zeta_1^j + i\zeta_2^j$$
, $j = 1, ..., k$ and
 $\partial_{\zeta^j} = \frac{1}{2} \left(\partial_{\zeta_1^j} - i \partial_{\zeta_2^j} \right)$

$$-\mathcal{E}'(t) = \int_{\Omega} 2 \operatorname{Re} \left[\sum_{j=1}^{k} (\partial_{\zeta^{j}} \Phi) \left(T_{t}^{A_{1}} f_{1}, \ldots, T_{t}^{A_{k}} f_{k} \right) L_{2}^{A_{j}} T_{t}^{A_{j}} f_{j} \right]$$

$$-\mathcal{E}'(t) = \int_{\Omega} 2\operatorname{Re}\left[\sum_{j=1}^{k} (\partial_{\zeta^{j}} \Phi) \left(T_{t}^{A_{1}}f_{1}, \ldots, T_{t}^{A_{k}}f_{k}\right) L_{2}^{A_{j}}T_{t}^{A_{j}}f_{j}\right]$$

b) **Suppose** that

$$(\partial_{\zeta^j}\Phi)(T_t^{A_1}f_1,\ldots,T_t^{A_k}f_k)\in W^{1,2}(\Omega)$$

Then the right hand side equals

$$\int_{\Omega} H_{\Phi}^{(A_1,\ldots,A_k)} \left[\left(T_t^{A_1} f_1, \ldots, T_t^{A_k} f_k \right); \left(\nabla T_t^{A_1} f_1, \ldots, \nabla T_t^{A_k} f_k \right) \right]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$-\mathcal{E}'(t) = \int_{\Omega} 2\operatorname{Re}\left[\sum_{j=1}^{k} (\partial_{\zeta^{j}} \Phi) \left(T_{t}^{A_{1}}f_{1}, \ldots, T_{t}^{A_{k}}f_{k}\right) L_{2}^{A_{j}}T_{t}^{A_{j}}f_{j}\right]$$

b) **Suppose** that

$$(\partial_{\zeta^j}\Phi)(T_t^{A_1}f_1,\ldots,T_t^{A_k}f_k)\in W^{1,2}(\Omega)$$

Then the right hand side equals

$$\int_{\Omega} H_{\Phi}^{(A_1,\ldots,A_k)} \left[\left(T_t^{A_1} f_1, \ldots, T_t^{A_k} f_k \right); \left(\nabla T_t^{A_1} f_1, \ldots, \nabla T_t^{A_k} f_k \right) \right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In this case

$$\Phi \text{ is } (A_1, \ldots, A_k) \text{-convex } \implies \mathcal{E} \searrow \text{ in } (0, +\infty)$$

$$-\mathcal{E}'(t) = \int_{\Omega} 2 \operatorname{Re}\left[\sum_{j=1}^{k} (\partial_{\zeta^{j}} \Phi) \left(T_{t}^{A_{1}} f_{1}, \ldots, T_{t}^{A_{k}} f_{k}\right) L_{2}^{A_{j}} T_{t}^{A_{j}} f_{j}\right]$$

b) **Suppose** that

$$(\partial_{\zeta^j}\Phi)(T_t^{A_1}f_1,\ldots,T_t^{A_k}f_k)\in W^{1,2}(\Omega)$$

Then the right hand side equals

$$\int_{\Omega} H_{\Phi}^{(A_1,\ldots,A_k)} \left[\left(T_t^{A_1} f_1, \ldots, T_t^{A_k} f_k \right); \left(\nabla T_t^{A_1} f_1, \ldots, \nabla T_t^{A_k} f_k \right) \right]$$

Example $\Phi = F_p = |\cdot|^p$, p > 1

Assume that $(T_t^A)_{t>0}$ is analytic in $L^p(\Omega)$.

$$f \in L^p(\Omega) \text{ s.t. } (\partial_{\zeta} F_p)(T_t^A f) = p |T_t^A f|^{p-2} \overline{T_t^A f} \in W^{1,2}(\Omega)?$$

$$-\mathcal{E}'(t) = \int_{\Omega} 2 \operatorname{Re} \left[\sum_{j=1}^{k} (\partial_{\zeta^{j}} \Phi) \left(T_{t}^{A_{1}} f_{1}, \ldots, T_{t}^{A_{k}} f_{k} \right) L_{2}^{A_{j}} T_{t}^{A_{j}} f_{j} \right]$$

b) Suppose that

$$(\partial_{\zeta^j}\Phi)(T_t^{\mathcal{A}_1}f_1,\ldots,T_t^{\mathcal{A}_k}f_k)\in W^{1,2}(\Omega)$$

Then the right hand side equals

$$\int_{\Omega} H_{\Phi}^{(A_1,\ldots,A_k)} \left[\left(T_t^{A_1} f_1, \ldots, T_t^{A_k} f_k \right); \left(\nabla T_t^{A_1} f_1, \ldots, \nabla T_t^{A_k} f_k \right) \right]$$

 $D(L_p^A)$ is unknown, in general. This is a technical problem for us

Semigroup contractivity and analiticity

Target: Prove that given any open $\Omega \subset \mathbb{R}^n$ and any $A \in \mathcal{A}(\Omega)$ $\Delta_p(A) > 0 \Rightarrow (T_t^A)_{t>0}$ analytic and contractive in $L^p(\Omega)$

Semigroup contractivity and analiticity

Target: Prove that given any open $\Omega \subset \mathbb{R}^n$ and any $A \in \mathcal{A}(\Omega)$ $\Delta_p(A) > 0 \Rightarrow (T_t^A)_{t>0}$ analytic and contractive in $L^p(\Omega)$

The proof follows from a result by Nittka.

Ouhabaz's invariance criterion

$$B_{p} := \{ u \in L^{2} \cap L^{p} : \|u\|_{p} \leq 1 \}, \quad P_{p} : L^{2} \to B_{p} \perp \text{projection}$$

 $(\mathcal{T}_t^A)_{t>0}$ contr. in $L^p(\Omega)$ iff $P_p(W^{1,2}(\Omega)) \subseteq W^{1,2}(\Omega)$ and $\operatorname{Re} \int_{\Omega} \langle A \nabla P_p u, \nabla (u - P_p u) \rangle \ge 0$

for all $u \in W^{1,2}(\Omega)$

Theorem (Nittka 2012)

 $\|\mathcal{T}^{\mathcal{A}}_t\|_{p}\leqslant 1$ if and only if

$$\int_{\Omega} \operatorname{Re} \langle A \nabla u, \nabla (|u|^{p-2}u) \rangle_{\mathbb{C}^n} \geq 0$$

for all $u \in W^{1,2}(\Omega)$ s.t. $|u|^{p-2}u \in W^{1,2}(\Omega)$

Key tool: Nittka's implicit formula for $P_p: L^2 \to B_p$ (no explicit formula, unless $p = 2, \infty$)
$\|T_t^A\|_p \leqslant 1$ if and only if

$$\int_{\Omega} \operatorname{Re} \langle A \nabla u, \nabla (|u|^{p-2}u) \rangle_{\mathbb{C}^n} \geq 0$$

for all $u \in W^{1,2}(\Omega)$ s.t. $|u|^{p-2}u \in W^{1,2}(\Omega)$

Key tool: Nittka's implicit formula for $P_p: L^2 \to B_p$ (no explicit formula, unless $p = 2, \infty$)

p-ellipticity implies contractivity: Suppose that $\Delta_p(A) > 0$.

 $\|T_t^A\|_p \leqslant 1$ if and only if

$$\int_{\Omega} \operatorname{Re} \langle A \nabla u, \nabla (|u|^{p-2}u) \rangle_{\mathbb{C}^n} \geq 0$$

for all $u \in W^{1,2}(\Omega)$ s.t. $|u|^{p-2}u \in W^{1,2}(\Omega)$

Key tool: Nittka's implicit formula for $P_p: L^2 \to B_p$ (no explicit formula, unless $p = 2, \infty$)

p-ellipticity implies contractivity: Suppose that $\Delta_p(A) > 0$.

$$ho ext{Re} \langle A
abla v,
abla (|u|^{
ho-2}u)
angle_{\mathbb{C}^n} = H^A_{F_p}[u;
abla u]$$

 $\|T_t^A\|_p \leqslant 1$ if and only if

$$\int_{\Omega} \operatorname{Re} \langle A \nabla u, \nabla (|u|^{p-2}u) \rangle_{\mathbb{C}^n} \geq 0$$

for all $u \in W^{1,2}(\Omega)$ s.t. $|u|^{p-2}u \in W^{1,2}(\Omega)$

Key tool: Nittka's implicit formula for $P_p: L^2 \to B_p$ (no explicit formula, unless $p = 2, \infty$)

p-ellipticity implies contractivity: Suppose that $\Delta_p(A) > 0$.

$$\Delta_{\rho}(A) \ge 0 \Rightarrow
ho \operatorname{Re} \langle A \nabla v, \nabla (|u|^{
ho-2}u) \rangle_{\mathbb{C}^n} \ge 0$$

 $\|T_t^A\|_p \leqslant 1$ if and only if

$$\int_{\Omega} \operatorname{Re} \langle A \nabla u, \nabla (|u|^{p-2}u) \rangle_{\mathbb{C}^n} \geq 0$$

for all $u \in W^{1,2}(\Omega)$ s.t. $|u|^{p-2}u \in W^{1,2}(\Omega)$

Key tool: Nittka's implicit formula for $P_p: L^2 \to B_p$ (no explicit formula, unless $p = 2, \infty$)

p-ellipticity implies contractivity: Suppose that $\Delta_p(A) > 0$.

$$\Delta_{\rho}(A) \ge 0 \Rightarrow \rho \operatorname{Re} \langle A \nabla v, \nabla (|u|^{\rho-2}u) \rangle_{\mathbb{C}^n} \ge 0$$

Analiticity: By continuity in ϑ , $\Delta_p(A) > 0$ self-improves into $\Delta_p(e^{i\vartheta}A) > 0$ (for small ϑ)

Back to H^{∞} -calculus

Target: Prove that given any open $\Omega \subset \mathbb{R}^n$ and any $A \in \mathcal{A}(\Omega)$

$$\Delta_p(A) > 0 \implies \omega_H(L_p^A) < \pi/2,$$

where $\omega_H(L_p^A)$ is the functional calculus angle of L_p^A

Target: Prove that given any open $\Omega \subset \mathbb{R}^n$ and any $A \in \mathcal{A}(\Omega)$

$$\Delta_{\rho}(A) > 0 \implies \omega_{H}(L_{\rho}^{A}) < \pi/2,$$

where $\omega_H(L_p^A)$ is the functional calculus angle of L_p^A

Theorem (Cowling, Doust, McIntosh and Yagi 1996) Suppose that for some $\vartheta \in (0, \frac{\pi}{2})$ we have

$$\int_0^\infty \int_\Omega \left| \nabla T_t^{e^{\pm i\vartheta}A} f(x) \right| \left| \nabla T_t^{e^{\pm i\vartheta}A^*} g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \lesssim \|f\|_p \|g\|_q$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $f, g \in (L^p \cap L^q)(\Omega)$. Then $\omega_H(L_p^A) < \pi/2$

For $A, B \in \mathcal{A}(\Omega)$ and p > 1, define

$$\Delta_p(A,B) := \min\{\Delta_p(A), \Delta_p(B)\}$$

Theorem (C.-Dragičević 2018)

Let $A, B \in \mathcal{A}(\Omega)$ and p > 1. Suppose that $\Delta_p(A, B) > 0$. Then

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f(x) \right| \left| \nabla T_t^B g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \lesssim \|f\|_p \|g\|_q,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for all $f, g \in (L^p \cap L^q)(\Omega)$.

For $A, B \in \mathcal{A}(\Omega)$ and p > 1, define

$$\Delta_p(A,B) := \min\{\Delta_p(A), \Delta_p(B)\}$$

Theorem (C.-Dragičević 2018)

Let $A, B \in \mathcal{A}(\Omega)$ and p > 1. Suppose that $\Delta_p(A, B) > 0$. Then

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f(x) \right| \left| \nabla T_t^B g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \lesssim \|f\|_p \|g\|_q$$

for all $f,g \in (L^p \cap L^q)(\Omega)$.

The functional calculus result follows from the case $B = A^*$

For $A, B \in \mathcal{A}(\Omega)$ and p > 1, define

$$\Delta_p(A,B) := \min\{\Delta_p(A), \Delta_p(B)\}$$

Theorem (C.-Dragičević 2018)

Let $A, B \in \mathcal{A}(\Omega)$ and p > 1. Suppose that $\Delta_p(A, B) > 0$. Then

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f(x) \right| \left| \nabla T_t^B g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \lesssim \|f\|_p \|g\|_q$$

for all $f, g \in (L^p \cap L^q)(\Omega)$.

The functional calculus result follows from the case $B = A^*$ Recall:

•
$$\Delta_{
ho}(A) > 0 \iff \Delta_{
ho}(A^*) > 0$$

• $\Delta_{\rho}(A) > 0$ self-improves into $\Delta_{\rho}(e^{i\vartheta}A) > 0$ (for small ϑ)

Bilinear integrals are dominated by square functions

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f(x) \right| \left| \nabla T_t^B g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \leq \left\| \mathbf{G}_{\mathbf{L}^A}(f) \right\|_p \left\| \mathbf{G}_{\mathbf{L}^B}(g) \right\|_q$$

$$G_{L^A}(f)(x) := \left(\int_0^\infty \left|\nabla T_t^A f(x)\right|^2 \, \mathrm{d}t\right)^{1/2}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Bilinear integrals are dominated by square functions

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f(x) \right| \left| \nabla T_t^B g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \leqslant \|\mathcal{G}_{L^A}(f)\|_p \|\mathcal{G}_{L^B}(g)\|_q$$

$$\mathcal{G}_{L^A}(f)(x) := \left(\iint_{|x-y| < \sqrt{t}} \left| \nabla T^A_t f(y) \right|^2 \frac{\mathrm{d} y \, \mathrm{d} t}{t^{n/2}} \right)^{1/2}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Bilinear integrals are dominated by square functions

$$\int_{0}^{\infty} \int_{\Omega} \left| \nabla T_{t}^{A} f(x) \right| \left| \nabla T_{t}^{B} g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \leq \left\| \mathcal{G}_{L^{A}}(f) \right\|_{p} \left\| \mathcal{G}_{L^{B}}(g) \right\|_{q}$$

$$\mathcal{G}_{L^A}(f)(x) := \left(\iint_{|x-y| < \sqrt{t}} \left| \nabla T_t^A f(y) \right|^2 \frac{\mathrm{d}y \, \mathrm{d}t}{t^{n/2}} \right)^{1/2}$$

- Auscher (2004) $\Omega = \mathbb{R}^n$: $\|G_{L^A}\|_p < \infty$ for $p \in (q_-(L^A), q_+(L^A))$
- Auscher, Hofmann, Martell (2012) $\Omega = \mathbb{R}^n$: $\|\mathcal{G}_{L^A}\|_p < \infty$ for $p > p_-(L^A)$, where $(p_-(L^A), p_+(L^A)) = \mathcal{I}(L^A)$

Bilinear integrals are dominated by square functions

$$\int_{0}^{\infty} \int_{\Omega} \left| \nabla T_{t}^{A} f(x) \right| \left| \nabla T_{t}^{B} g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \leq \left\| \mathcal{G}_{L^{A}}(f) \right\|_{\rho} \left\| \mathcal{G}_{L^{B}}(g) \right\|_{q}$$

$$\mathcal{G}_{L^A}(f)(x) := \left(\iint_{|x-y| < \sqrt{t}} \left| \nabla T_t^A f(y) \right|^2 \frac{\mathrm{d}y \, \mathrm{d}t}{t^{n/2}} \right)^{1/2}$$

- Auscher (2004) $\Omega = \mathbb{R}^n$: $\|G_{L^A}\|_p < \infty$ for $p \in (q_-(L^A), q_+(L^A))$
- Auscher, Hofmann, Martell (2012) $\Omega = \mathbb{R}^n$: $\|\mathcal{G}_{L^A}\|_p < \infty$ for $p > p_-(L^A)$, where $(p_-(L^A), p_+(L^A)) = \mathcal{I}(L^A)$

Under our assumptions boundedness of square functions (vertical/conical) on $L^{p}(\Omega)$ is unknown.

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

Our method consists in studying the strict monotonicity of

$$\mathcal{E}(t) := \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g) \qquad (\Phi = \mathcal{Q})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{Q}=\mathcal{Q}_{p,q,\delta}$ is the Nazarov-Treil function, p> 2, q=p'

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

Our method consists in studying the strict monotonicity of

$$\mathcal{E}(t) := \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g) \qquad (\Phi = \mathcal{Q})$$

where $\mathcal{Q}=\mathcal{Q}_{p,q,\delta}$ is the Nazarov-Treil function, p> 2, q=p'

Let p > 2. Suppose that $\Delta_p(A, B) > 0$. We want to prove that

$$\int_{\Omega} \left|
abla T^{A}_{t} f \right| \left|
abla T^{B}_{t} g \right| \lesssim - \mathcal{E}'(t)$$

for all $f,g \in (L^p \cap L^q)(\Omega)$.

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

Our method consists in studying the strict monotonicity of

$$\mathcal{E}(t) := \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g) \qquad (\Phi = \mathcal{Q})$$

where $\mathcal{Q}=\mathcal{Q}_{p,q,\delta}$ is the Nazarov-Treil function, p> 2, q=p'

Let p > 2. Suppose that $\Delta_p(A, B) > 0$. We want to prove that

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f \right| \left| \nabla T_t^B g \right| \lesssim \int_0^\infty -\mathcal{E}'(t) \lesssim \|f\|_p^p + \|g\|_q^q$$
for all $f, g \in (L^p \cap L^q)(\Omega)$.

for

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

Our method consists in studying the strict monotonicity of

$$\mathcal{E}(t) := \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g) \qquad (\Phi = \mathcal{Q})$$

where $\mathcal{Q}=\mathcal{Q}_{p,q,\delta}$ is the Nazarov-Treil function, p> 2, q=p'

Let p > 2. Suppose that $\Delta_p(A, B) > 0$. We want to prove that

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f \right| \left| \nabla T_t^B g \right| \lesssim \int_0^\infty -\mathcal{E}'(t) \lesssim \|f\|_p \|g\|_q$$

all $f,g \in (L^p \cap L^q)(\Omega)$.

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

Our method consists in studying the strict monotonicity of

$$\mathcal{E}(t) := \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g) \qquad (\Phi = \mathcal{Q})$$

where $\mathcal{Q}=\mathcal{Q}_{p,q,\delta}$ is the Nazarov-Treil function, p> 2, q=p'

Let p > 2. Suppose that $\Delta_p(A, B) > 0$. We want to prove that

$$\int_{\Omega} \left|
abla T^{A}_{t} f \right| \left|
abla T^{B}_{t} g \right| \lesssim - \mathcal{E}'(t)$$

for all $f,g \in (L^p \cap L^q)(\Omega)$.

We use a variant of the Bellman-function-heat-flow method introduced by **Petermichl and Volberg (2002)**

Our method consists in studying the strict monotonicity of

$$\mathcal{E}(t) := \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g) \qquad (\Phi = \mathcal{Q})$$

where $\mathcal{Q}=\mathcal{Q}_{p,q,\delta}$ is the Nazarov-Treil function, p> 2, q=p'

Let p > 2. Suppose that $\Delta_p(A, B) > 0$. We want to prove that

$$\int_{\Omega} \left| \nabla T_t^A f \right| \left| \nabla T_t^B g \right| \lesssim - \mathcal{E}'(t)$$

for all $f,g \in (L^p \cap L^q)(\Omega)$.

In principle, this follows from (uniform) generalized convexity of Q

Generalized convexity of ${\mathcal Q}$

$$\Delta_{\rho}(A,B) := \min\{\Delta_{\rho}(A), \Delta_{\rho}(B)\}$$

Theorem (C.-Dragičević 2016)

Let $p \ge 2$ and $A, B \in \mathcal{A}(\Omega)$. Suppose that $\Delta_p(A, B) > 0$ Then $\exists \delta > 0$ s.t. \mathcal{Q} is (A, B)-convex in $\mathbb{R}^4 \setminus \Upsilon$: for a.e. $x \in \Omega$

 $H_{\mathcal{Q}}^{(A(x),B(x))}[\omega;(\alpha,\beta)] \gtrsim |\alpha||\beta|,$

for every $\omega \in \mathbb{R}^4 \setminus \Upsilon$ and $\alpha, \beta \in \mathbb{R}^{2n}$.

$$\mathcal{Q} = \begin{cases} F_p \otimes \mathbf{1} + \mathbf{1} \otimes F_q + \delta F_2 \otimes F_{2-q}, & \text{if } |\zeta|^p \leq |\eta|^q \\ \\ c_1 F_p \otimes \mathbf{1} + c_2 \mathbf{1} \otimes F_q, & \text{if } |\zeta|^p \geq |\eta|^q \end{cases}$$

Generalized convexity of ${\mathcal Q}$

$$\Delta_{\rho}(A,B) := \min\{\Delta_{\rho}(A), \Delta_{\rho}(B)\}$$

Theorem (C.-Dragičević 2016)

Let $p \ge 2$ and $A, B \in \mathcal{A}(\Omega)$. Suppose that $\Delta_p(A, B) > 0$ Then $\exists \delta > 0$ s.t. \mathcal{Q} is (A, B)-convex in $\mathbb{R}^4 \setminus \Upsilon$: for a.e. $x \in \Omega$

 $H_{\mathcal{Q}\star\varphi_{\nu}}^{(A(x),B(x))}[\omega;(\alpha,\beta)] \gtrsim |\alpha||\beta|,$

for every $\omega = (\zeta, \eta) \in \mathbb{R}^4$ and $\alpha, \beta \in \mathbb{R}^{2n}$.

$$\mathcal{Q} = \begin{cases} F_p \otimes \mathbf{1} + \mathbf{1} \otimes F_q + \delta F_2 \otimes F_{2-q}, & \text{if } |\zeta|^p \leq |\eta|^q \\ \\ c_1 F_p \otimes \mathbf{1} + c_2 \mathbf{1} \otimes F_q, & \text{if } |\zeta|^p \geq |\eta|^q \end{cases}$$

Generalized convexity of ${\mathcal Q}$

$$\Delta_{\rho}(A,B) := \min\{\Delta_{\rho}(A), \Delta_{\rho}(B)\}$$

Theorem (C.-Dragičević 2016)

Let $p \ge 2$ and $A, B \in \mathcal{A}(\Omega)$. Suppose that $\Delta_p(A, B) > 0$ Then $\exists \delta > 0$ s.t. \mathcal{Q} is (A, B)-convex in $\mathbb{R}^4 \setminus \Upsilon$: for a.e. $x \in \Omega$

 $H_{\mathcal{Q}\star\varphi_{\nu}}^{(A(x),B(x))}[\omega;(\alpha,\beta)] \gtrsim |\alpha||\beta|,$

for every $\omega = (\zeta, \eta) \in \mathbb{R}^4$ and $\alpha, \beta \in \mathbb{R}^{2n}$.

$$H_{Q}^{(A,B)}[\omega;(\alpha,\beta)] = \begin{cases} H_{F_{p}}^{A}[\zeta;\alpha] + H_{F_{q}}^{B}[\eta;\beta] + \delta H_{F_{2}\otimes F_{2-q}}^{(A,B)}[\omega;(\alpha,\beta)] \\ c_{1}H_{F_{p}}^{A}[\zeta;\alpha] + c_{2}H_{F_{q}}^{B}[\eta;\beta] \end{cases}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

$$A = B \text{ real}, \ \Omega = \mathbb{R}^n$$
 (Dragičević – Volberg 2011)

Standard convexity of ${\cal Q}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$A = B \text{ real}, \ \Omega = \mathbb{R}^n \qquad \text{(Dragičević - Volberg 2011)}$$
$$A, B = e^{\pm i\vartheta} I \qquad \text{(C. - Dragičević 2013)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Related to our universal multiplier theorem for symmetric contractions

$$\begin{aligned} A &= B \text{ real}, \ \Omega &= \mathbb{R}^n \\ A, B &= e^{\pm i\vartheta} I \\ A, B &= e^{\pm i\vartheta} C, \ C \text{ real} \end{aligned} \qquad \begin{array}{l} & (\text{Dragičević} - \text{Volberg 2011}) \\ & (\text{C.} - \text{Dragičević 2013}) \\ & (\text{C.} - \text{Dragičević 2015}) \end{array}$$

Related to our sharp functional calculus result for nonsymmetric OU operators

$$\Delta_p(e^{iartheta}C)>0 \iff |artheta|$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 ϑ_{C} := Numerical range angle of C

$$A = B \text{ real}, \ \Omega = \mathbb{R}^{n}$$
$$A, B = e^{\pm i\vartheta}I$$
$$A, B = e^{\pm i\vartheta}C, \ C \text{ real}$$
$$A, B \text{ complex}, \ \Omega = \mathbb{R}^{n}$$

(Dragičević – Volberg 2011) (C. – Dragičević 2013) (C. – Dragičević 2015) (C. – Dragičević 2016)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$A = B \text{ real}, \ \Omega = \mathbb{R}^n$$
(Dragičević - Volberg 2011) $A, B = e^{\pm i\vartheta}I$ (C. - Dragičević 2013) $A, B = e^{\pm i\vartheta}C, \ C \text{ real}$ (C. - Dragičević 2015) $A, B \text{ complex}, \ \Omega = \mathbb{R}^n$ (C. - Dragičević 2016)

Our 2016 proof **does not** extend to arbitrary open $\Omega \subset \mathbb{R}^n$ In this case a modification of our method is needed

Major difficulties in the case $\Omega \neq \mathbb{R}^n$

- $D(L_p^A)$ is unknown
- No estimates for the kernel of T_t^A
- $T_t^A: L^{\infty}(\Omega) \to L^{\infty}(\Omega)$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$\int_0^\infty \int_\Omega \left| \nabla T_t^A f(x) \right| \left| \nabla T_t^B g(x) \right| \, \mathrm{d}x \, \mathrm{d}t \lesssim \|f\|_p \|g\|_q,$$
for all $f, g \in (L^p \cap L^q)(\Omega)$.

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $u \in D(L_p^A) \cap D(L_q^A)$ and $v \in D(L_p^B) \cap D(L_q^B)$

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

Remark

Inequality (1) implies dissipativity:

 $(\partial_{\zeta}\mathcal{Q})(u,0) = C|u|^{p-2}\bar{u}; \quad (\partial_{\eta}\mathcal{Q})(0,v) = C'|v|^{q-2}\bar{v}$

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $u \in D(L_p^A) \cap D(L_q^A)$ and $v \in D(L_p^B) \cap D(L_q^B)$

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$

$$\begin{split} |(\partial_{\zeta}\mathcal{Q})(\zeta,\eta)| &\lesssim \max\{|\zeta|^{p-1}, |\eta|\}, \quad |(\partial_{\eta}\mathcal{Q})(\zeta,\eta)| \lesssim |\eta|^{q-1} \\ \|d^{2}\mathcal{Q}(\zeta,\eta)\| &\lesssim |\zeta|^{p-2} + |\eta|^{q-2} + |\eta|^{2-q} \end{split}$$

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \int_{\Omega} H_{Q}^{(A,B)}[(u,v); (\nabla u, \nabla v)]$$
(1)
for all $u \in D(L_{p}^{A}) \cap D(L_{q}^{A})$ and $v \in D(L_{p}^{B}) \cap D(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$

 $egin{aligned} &|(\partial_\zeta \mathcal{Q})(\zeta,\eta)| \lesssim \; \max\{|\zeta|^{p-1},|\eta|\}, \quad |(\partial_\eta \mathcal{Q})(\zeta,\eta)| \lesssim |\eta|^{q-1} \ &\|d^2 \mathcal{Q}(\zeta,\eta)\| \lesssim |\zeta|^{p-2} + |\eta|^{q-2} + |\eta|^{2-q} \end{aligned}$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$

$$\begin{split} |(\partial_{\zeta}\mathcal{Q})(\zeta,\eta)| &\lesssim \max\{|\zeta|^{p-1}, |\eta|\}, \quad |(\partial_{\eta}\mathcal{Q})(\zeta,\eta)| \lesssim |\eta|^{q-1} \\ \|d^{2}\mathcal{Q}(\zeta,\eta)\| &\lesssim |\zeta|^{p-2} + |\eta|^{q-2} + |\eta|^{2-q} \end{split}$$
By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$ The case $\Omega = \mathbb{R}^{n}$.

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$ The case $\Omega = \mathbb{R}^n$. We can assume that A, B are smooth:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$ The case $\Omega = \mathbb{R}^n$. We can assume that A, B are smooth:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$D(L_p^A) = W^{2,p}(\mathbb{R}^n)$$

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$ The case $\Omega = \mathbb{R}^n$. We can assume that A, B are smooth:

A D N A 目 N A E N A E N A B N A C N

•
$$D(L_p^A) = W^{2,p}(\mathbb{R}^n)$$

• $C_c^{\infty}(\mathbb{R}^n)$ is an operator core for L_p^A (the same for L_q^B)

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$ The case $\Omega = \mathbb{R}^n$. We can assume that A, B are smooth:

•
$$D(L_p^A) = W^{2,p}(\mathbb{R}^n)$$

- $C_c^{\infty}(\mathbb{R}^n)$ is an operator core for L_p^A (the same for L_q^B)
- We reduce the proof of (1) to the case when $u, v \in C^\infty_c(\mathbb{R}^n)$

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$ The case $\Omega = \mathbb{R}^n$. We can assume that A, B are smooth:

•
$$D(L_p^A) = W^{2,p}(\mathbb{R}^n)$$

- $C_c^{\infty}(\mathbb{R}^n)$ is an operator core for L_p^A (the same for L_q^B)
- We reduce the proof of (1) to the case when $u, v \in C^\infty_c(\mathbb{R}^n)$
- In this case the integration by parts in (1) is trivial

By the heat-flow method applied to $\mathcal{E}(t) = \int_{\Omega} \mathcal{Q}(T_t^A f, T_t^B g)$ we reduce to prove

$$\int_{\Omega} |\nabla u| |\nabla v| \lesssim \operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{Q})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{Q})(u, v) L_{2}^{B} v \quad (1)$$

for all $u \in \operatorname{D}(L_{p}^{A}) \cap \operatorname{D}(L_{q}^{A})$ and $v \in \operatorname{D}(L_{p}^{B}) \cap \operatorname{D}(L_{q}^{B})$

In principle, (1) follows from (A, B)-convexity of $\mathcal{Q} (\mathcal{Q} \leftrightarrow \mathcal{Q} \star \varphi_{\nu})$

$$\begin{split} |(\partial_{\zeta}\mathcal{Q})(\zeta,\eta)| &\lesssim \max\{|\zeta|^{p-1}, |\eta|\}, \quad |(\partial_{\eta}\mathcal{Q})(\zeta,\eta)| \lesssim |\eta|^{q-1} \\ \|d^{2}\mathcal{Q}(\zeta,\eta)\| &\lesssim |\zeta|^{p-2} + |\eta|^{q-2} + |\eta|^{2-q} \end{split}$$

$$\operatorname{Re}\,\int_{\Omega}(\partial_{\zeta}\mathcal{Q})(u,v)L_{2}^{A}u+(\partial_{\eta}\mathcal{Q})(u,v)L_{2}^{B}v$$

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

$$\operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{R}_{n})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{R}_{n})(u, v) L_{2}^{B} v$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

$$\operatorname{Re}\,\int_{\Omega}(\partial_{\zeta}\mathcal{Q})(u,v)L_{2}^{A}u+(\partial_{\eta}\mathcal{Q})(u,v)L_{2}^{B}v$$

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

$$\operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{R}_{n})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{R}_{n})(u, v) L_{2}^{B} v$$

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

$$\operatorname{Re} \int_{\Omega} (\partial_{\zeta} \mathcal{R}_{n})(u, v) L_{2}^{A} u + (\partial_{\eta} \mathcal{R}_{n})(u, v) L_{2}^{B} v$$

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

•
$$\partial_{\zeta} \mathcal{R}_{n}(u, v), \partial_{\eta} \mathcal{R}_{n}(u, v) \in W^{1,2}(\Omega)$$

$$\int_{\Omega} H_{\mathcal{R}_n}^{(A,B)}[(u,v); (\nabla u, \nabla v)]$$

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

•
$$\partial_{\zeta} \mathcal{R}_n(u, v), \partial_{\eta} \mathcal{R}_n(u, v) \in W^{1,2}(\Omega)$$

$$\int_{\Omega} H_{\mathcal{R}_n}^{(A,B)}[(u,v); (\nabla u, \nabla v)]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

- $d\mathcal{R}_n
 ightarrow d\mathcal{Q}$ and the limit of the integral exists
- $\partial_{\zeta} \mathcal{R}_{n}(u, v), \partial_{\eta} \mathcal{R}_{n}(u, v) \in W^{1,2}(\Omega)$
- $d^2 \mathcal{R}_n
 ightarrow d^2 \mathcal{Q}$ a.e.

$$\int_{\Omega} H^{(A,B)}_{\mathcal{R}_n}[(u,v); (\nabla u, \nabla v)]$$

Approximation of Q by a sequence (\mathcal{R}_n) s.t.

- $d\mathcal{R}_n \rightarrow d\mathcal{Q}$ and the limit of the integral exists
- $\partial_{\zeta} \mathcal{R}_{n}(u, v), \partial_{\eta} \mathcal{R}_{n}(u, v) \in W^{1,2}(\Omega)$
- $d^2 \mathcal{R}_n
 ightarrow d^2 \mathcal{Q}$ a.e.
- Each *R_n* must be (*A*, *B*)-convex (positivity of the function inside the integral)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex
- **3** $d^2\mathcal{R}_n \in L^\infty(\mathbb{R}^4; \mathbb{R}^{4,4})$

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex
- **3** $d^2\mathcal{R}_n \in L^\infty(\mathbb{R}^4; \mathbb{R}^{4,4})$

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex
- **3** $d^2\mathcal{R}_n \in L^\infty(\mathbb{R}^4; \mathbb{R}^{4,4})$

5
$$\|d\mathcal{R}_n(\omega)\| \leqslant C(|\omega|^{p-1}+|\omega|^{q-1})$$

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex
- **3** $d^2\mathcal{R}_n \in L^\infty(\mathbb{R}^4; \mathbb{R}^{4,4})$
- **5** $||d\mathcal{R}_n(\omega)|| \leq C(|\omega|^{p-1} + |\omega|^{q-1})$
- 6 $d\mathcal{R}_n \to d\mathcal{Q}$ and $d^2\mathcal{R}_n \to d^2\mathcal{Q}$ a.e. in \mathbb{R}^4

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex
- **3** $d^2\mathcal{R}_n \in L^\infty(\mathbb{R}^4; \mathbb{R}^{4,4})$
- **5** $||d\mathcal{R}_n(\omega)|| \leq C(|\omega|^{p-1} + |\omega|^{q-1})$
- 6 $d\mathcal{R}_n \to d\mathcal{Q}$ and $d^2\mathcal{R}_n \to d^2\mathcal{Q}$ a.e. in \mathbb{R}^4

 \mathcal{R}_n depends on A, B and p. The construction of (\mathcal{R}_n) is based on elementary methods but it requires some effort, because (A, B)-convexity is a rigid property.

- 1 $\mathcal{R}_n \in C^2(\mathbb{R}^4)$
- **2** \mathcal{R}_n is (A, B)-convex
- **3** $d^2\mathcal{R}_n \in L^\infty(\mathbb{R}^4; \mathbb{R}^{4,4})$
- **5** $||d\mathcal{R}_n(\omega)|| \leq C(|\omega|^{p-1} + |\omega|^{q-1})$
- 6 $d\mathcal{R}_n \to d\mathcal{Q}$ and $d^2\mathcal{R}_n \to d^2\mathcal{Q}$ a.e. in \mathbb{R}^4

 \mathcal{R}_n depends on A, B and p. The construction of (\mathcal{R}_n) is based on elementary methods but it requires some effort, because (A, B)-convexity is a rigid property.

First step: study of gen. convexity of multivariable power functions (related to (non) contractivity of (T_t^A, T_t^B) on $L^p(\Omega; \mathbb{C}^2)$)

Thank you for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ふして 山田 ふぼやえばや 山下