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Elliptic operators in divergence form

Q C R” open, A € L>®(Q2 — C™") a strictly elliptic matrix
function, i.e. 3 A, A > 0 s.t.

(A)E I < A€l [nl, Ve e
Re (A(x)6,€) = A¢2, veeCn

Denote the class of all such matrices by A(Q)

Consider the operator
L5 = —div AV

with Neumann boundary conditions on Q:

L% is the maximal accretive operator on L2(Q) associated with

a(u,v) = /Q (AVu, Vv)er, D(a) = WH3(Q)



o L4 is sectorial with
w(Lg) <95 < /2,

where 15 is the numerical range angle of a

o (TM)es0 = (e_tLﬁl)t>o analytic and contractive in Sy,

J—

5 =m/2 =10,



We are interested in:

o Contractivity, analiticity of (T/)s>0 in LP(Q) (p > 1)
We denote by Lf,‘ its negative generator

e Bounded H°°-functional calculus for L’;‘

e Maximal parabolic regularity for L’;‘

We are interested in results that only depend on the algebraic
properties of the matrix A



p-ellipticity (C.-Dragicevi¢ 2015)

For p > 1 define the R-linear map J, : C" — C" by

Tp(&1 + &) = & +i &2

P q
Here (1,60 € R"and 1/p+1/g = 1.
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p-ellipticity (C.-Dragicevi¢ 2015)

For p > 1 define the R-linear map J, : C" — C" by

Tp(&1 + i&2) ngl%—ié:

Here &1, € R"and 1/p+1/q = 1. For A € A(Q) set

Ap(A) = 2e§<s€ién‘|rg|1i:r11 Re (A(x)&, Tp€)cn.

We say that A is p-elliptic if
Ap(A) >0

As(A) >0 <= A (uniform strict) elliptic
I1—2/p| < A/A = Ap(A) >0

Ap(A) = Ag(A)

Ap(A) >0 <= AL(A*) >0
Ap(A)>0Vp>1 <= Ais real-valued



Main result

Theorem (C.-Dragicevi¢ 2018)
Let Q C R" be any open set (n > 2). Let A€ A(Q2) and p > 1.
Suppose that A,(A) > 0. Then,

(i) (TA)eso is analytic and contractive in LP(Q)

(ii) Lf,\ has maximal parabolic regularity

Z={pe(l,00):Ap(A) >0} is an open interval containing 2

peEl < qgq=p €T



Maximal parabolic regularity

We say that L’;‘ has maximal parabolic regularity if for some r > 1,
all 7>0and all f € L"((0,7); LP(2)), the unique mild solution

t
u(t) = / TA f(s)ds, te(0,7)
0
to the Cauchy problem

u + L’,;‘u =f;
u(0) = 0.

belongs to W1 (0,7); LP(Q)) N L"((0,7); D(Lﬁ))



Maximal parabolic regularity

We say that L’;‘ has maximal parabolic regularity if for some r > 1,
all 7>0and all f € L"((0,7); LP(2)), the unique mild solution

t
u(t) = / TA f(s)ds, te(0,7)
0
to the Cauchy problem

u + L’,;‘u =f;
u(0) = 0.

belongs to W1 (0,7); LP(Q)) N L"((0,7); D(Lﬁ))

Necessary condition: analiticity of (T/)¢>0 in LP(R)
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H®° functional calculus

For ¥ > w(L7) and m € H>®(Sy) one can define the closed d.d.
(possibly unbounded) linear operator m(Lﬁ):

1
A _ Ay—1
m(Lp)f =5 s, m(z)(z — Lp) fdz

We say that Lﬁ has bounded H*°(Sy)-calculus if
m(Ly) € B(LP(Q)), Vm e H*(Sy)
Functional calculus angle:

wr(L}y) = inf{¥ : L} has bounded H>(Sy)-calculus}

Theorem (Dore-Venni and Priiss-Shor; Kalton-Weis)

wr(Ly) < m/2 = L7} has maximal parabolic regularity




Reformulation of the main result

Theorem (C.-Dragicevi¢ 2018)

Let Q C R" be any open set (n > 2). Let A€ A(Q) and p > 1.
Suppose that A,(A) > 0. Then,

(i) (TA)¢so is analytic and contractive in LP(Q)

(i) wh(Ly) < 7/2

e No regularity of 9Q, No Sobolev embeddings

e A result of Kunstmann shows that the range in the theorem is
optimal for the class |Q] < 400, A € A(2) (counterexamples
for Ap(A) <0).



Previous results

REAL COEFFICIENTS
QCR", Ae A(Q), A real-valued
Ouhabaz (1992, 1996): (T/)s>o is sub-Markovian

Kalton-Weis (2001) = wH(LfJ\) < /2, forall p > 1.
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2n
n+2’ T n=2
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COMPLEX COEFFICIENTS

Define the Sobolev exponents (n > 3)

2n o 2n
n+2’ " on-2

I(L%) == {p € [1,00] : supysg | Tl < +o00}.

(a) Q=R", Ae AR")
e Auscher (2004): (2, —¢,2* +¢) C Z(L?), where ¢ = ¢(n, \, \)
¢ Hofmann-Mayboroda-Mclntosh (2011): this range is sharp for
complex A (counterexample for any p ¢ [2,,2*])
(b) © C R” bounded and weakly Lipschitz, A € A(Q)
o Egert (2017): (2, —&,2* +¢) C Z(LA), where e = £(n, \,A, Q)
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Also: mixed boundary conditions, systems, Riesz transforms...



Theorem (Auscher; Egert)

Q=R" or Q C R" bounded and weakly Lipschitz. Then,
wh(L5) = w(Lf) < /2

for all p € Z(LA)° D (2, — &,2* + &).

e Earlier results by Blunck and Kunstmann

e Fundamental tool: modification of Blunck-Kunstmann weak
type (p, p) criterion
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Theorem (Auscher; Egert)

Q=R" or Q C R" bounded and weakly Lipschitz. Then,
wh(L5) = w(Lf) < /2

for all p € Z(LA)° D (2, — &,2* + &).

The proof requires Sobolev embeddings: true because one has
Sobolev extension operators, in this case

Let Q@ C R" be any open set. Then wH(Lf,‘) < m/2, for all
p € (1,00) s.t. Ap(A) > 0.

No Sobolev embeddings and wx(L) depends on p, in general
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An example by Kunstmann

Qo = {(x,y) cR%2: x>0,y < e”x}

A% :=[! the Neumann Laplacian on Q,

e Evans and Harris (1989): The resolvent is not compact:
No Sobolev embedding of W12(Q,) into L9(Q,), g > 2

e Davies and Simon (1992): Study of O'(A?O‘) by means of a
reduction to the Dirichlet operator

—D? +aD, on L%([0,+00); e dx)



e Kunstmann (2002): Study of aess(Ag“), p>1
{0} U0Qpe C a(AF) C[0,0%/4) U0Qp,q
where Qp.» = a2Q, and

2
. p », P—1
Q,=<{x+iy: x> +
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a2

~—

] IQp.a
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e Kunstmann (2002): Study of aess(Ag“), p>1
{0} U9Qpq C o(AF*) C [0,02/4) U0Qpq
where Qp o = a2Qp and
2

Q,=<{x+iy: x> +
P { d (p—22" T 2 }

|

¢, = arcsin |1 — 2/p|

e Kunstmann (2002): 3 Quax C R? of finite measure s.t.
U(Af}m‘“‘) = §¢; 1< p<oo.




e Kunstmann (2002): Study of O’ess(Ag”), p>1
{0} U0Qpe € a(AF) C [0,0%/4) U0Qp,q
where Qp o = a2Qp and
2

-1
Qp—{x+iy:x> P y2—|—p }

(p—2)2 p?

|

¢, = arcsin |1 — 2/p|

e Kunstmann (2002): 3 Qax C R? of finite measure s.t.

U(Agm‘”‘) = §¢; , 1 < p < co. This is the maximal

LP-spectrum in the class of generators of symmetric
contraction semigroups



¢p = arcsin|[L —2/p|, ¢p = 7/2 — ¢},

Theorem (Bakry '89; Liskevich and Perelmuter '95; Kriegler 2011)

Every symmetric contraction semigroup (exp(—t£))¢=o is
LP-contractive in Sy,. In particular, o(£L,) C S¢,;; for all p > 1.
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Every symmetric contraction semigroup (exp(—t£))¢=o is
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Theorem (C.-Dragicevi¢ 2013)

Let p > 1. Then wy(Lyp) < ¢}, for every generator of s.c.s.

Hence wH(Agma") = o,

Wi (Lf,‘”') — wy (efﬂAgmax) <m)2 = 0] <,
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¢p = arcsin|[L —2/p|, ¢p = 7/2 — ¢},

Theorem (Bakry '89; Liskevich and Perelmuter '95; Kriegler 2011)

Every symmetric contraction semigroup (exp(—t£))¢=o is
LP-contractive in Sy,. In particular, 0(£,) C Sy for all p > 1.

Theorem (C.-Dragicevi¢ 2013)

Let p > 1. Then wy(Lyp) < ¢}, for every generator of s.c.s.

Hence wH(Agma") = o,

Wi (L;;’”’) = wy (e’ﬁAﬁmax) <m)2 <= Ny(e”]) >0

Ap(e]) = cos ¥ — cos




¢p = arcsin|[L —2/p|, ¢p = 7/2 — ¢},
Theorem (Bakry '89; Liskevich and Perelmuter '95; Kriegler 2011)

Every symmetric contraction semigroup (exp(—t£))¢=o is
LP-contractive in S,. In particular, o(£,) C Sy for all p > 1.

Theorem (C.-Dragicevi¢ 2013)

Let p > 1. Then wy(Lp) < ¢}, for every generator of s.c.s.

Hence wH(Agm‘”‘) = ¢

wi (L") = wi (" AZ™) < 7/2 = Dp(e’]) >0

Ap(e]) = cos ¥ — cos g,

Our target: A,(A) > 0= wH(Lf,‘) < /2 (for all Q and all A)
The example above shows that this range is sharp




Genesis of p-ellipticity

We discovered p-ellipticity by studying “convexity” of power
functions

ZGEINTS

Motivation: Our interest in “convexity” of the Nazarov-Treil
(1995) Bellman function Q which comprises linear combinations of
tensor products of power functions

2> 16 < Il
Q , = p + q + (5 2 2
o=l P (q - 1) 7 1¢IP > Inl?

where p > 2, g=p/(p—1) and 6 > 0.
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Genesis of p-ellipticity

We discovered p-ellipticity by studying “convexity” of power
functions

ZGEINTS

Motivation: Our interest in “convexity” of the Nazarov-Treil
(1995) Bellman function Q which comprises linear combinations of
tensor products of power functions

I [mf* e > [P < Inl?

2 2
P+ (Z=1) e i kP> 1l
P q

QC,m) = [¢P+[nlT+ o
where p > 2, g=p/(p—1) and 6 > 0.
e For small § the function Q is uniformly convex

e We are interested in a different type of convexity related to
p-ellipticity: Generalized convexity...later



Dindo$ and Pipher (2016)

Independently of us, Dindo$ and Pipher discovered the p-ellipticity
condition and realized it could be used for a new regularity theory
for weak solutions to complex coefficient operators

A “replacement” for the De Giorgi-Nash-Moser regularity theory
for real coefficients



Dindo$ and Pipher (2016)

Independently of us, Dindo$ and Pipher discovered the p-ellipticity
condition and realized it could be used for a new regularity theory
for weak solutions to complex coefficient operators

A “replacement” for the De Giorgi-Nash-Moser regularity theory
for real coefficients

Application: solvability of the LP Dirichlet boundary value
problem for div (AV)



Dindos and Pipher (2016)

Theorem 1 (Reverse Holder inequality)
If ue W22(Q) is a weak solution to div(AVu) =0 in Q and

loc
po :=inf{p > 1: Ais p—elliptic}
then, for any Ba,(x) C Q and p, g € (po, pyn/(n — 2)),

(ulPYg e S (ul®) 5o + (E-T)

rX)

Constants depend only on n, pg, A.

For elliptic A: counterexample by Mayboroda
for g =2 and any p > 2n/(n—2)



Dindos and Pipher (2016)

Theorem 2 (Caccioppoli estimate)

If ue W22(Q) is a weak solution to div(AVu) =0 in Q and

loc
po :=inf{p > 1: Ais p—elliptic}

then, for any Ba,(x) C Q and p € (po, pg),

/ ]Vu]2|u]p_2§r_2/ lulP + (E.T.)
Br(x)

Bor(x)

Constants depend only on n, pg, A.




Dindos and Pipher (2016)

Theorem 2 (Caccioppoli estimate)

If ue W22(Q) is a weak solution to div(AVu) =0 in Q and

loc
po :=inf{p > 1: Ais p—elliptic}

then, for any Ba,(x) C Q and p € (po, pg),

/ ]Vu]2|u]p_2§r_2/ lulP + (E.T.)
Br(x)

Bor(x)

Constants depend only on n, pg, A.

Consequence:

[85(4) > 0, v € WE2(Q) s.t. div(AVY) = 0] = [u]* v € W2(Q)

loc loc



Cialdea-Maz'ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea
and Maz'ya for studying contractivity of Dirichlet semigroups

Several papers and a book on this subject

Theorem (Cialdea-Maz'ya)

Q C R" bounded of class, say, C?, A€ C}Q). Let p > 1.
Suppose that for all x € Q and «, 8 € R”

%(ReA(x)a, a) + (Re A(x)8, 8)
1 1
+ 2(<;Im AX) + T A (x)> a,B8) >0

etdiv (AV))

Then the Dirichlet semigroup ( +>0 IS contractive in LP

y
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Ap(A) > 0 <= Cialdea-Maz'ya condition above



Cialdea-Maz'ya (2005)

p-ellipticity is related to a condition earlier introduced by Cialdea
and Maz'ya for studying contractivity of Dirichlet semigroups

Several papers and a book on this subject

Theorem (Cialdea-Maz'ya)

Q C R” bounded of class, say, C2, A€ C(Q). Let p > 1.
Suppose that for all x € Q and a, 8 € R”

4
pq
+ 2<<%Im A(x) + %Im A*(x)> ,8) >0

(Re A(x)a, ) + (Re A(x), )

tdiv (AV))

Then the Dirichlet semigroup (e +>0 IS contractive in LP

V.

C.-Dragicevi¢ 2015. A,(A) > 0 can be interpreted in terms of
generalized convexity of the power function F,



Generalized convexity

Identify C” with R” x R" by

V(& +i&2) = (1,&), &,&€R”

Given A € C™" consider its real form

R P ( ReA —ImA )

ImA Re A

Fix ® € C?(R?%;R). Let Aq,..., A, € C™".
Generalized Hessian of ® with respect to Ay, ..., Ax:

HE A (w) = (M(A1) @ & M(A)T - ((26)(w) & far)




Definition

We say that ® is (A, ..., Ax)-convex if

HY A w; X] = (HY ) ()X, X)gain > 0,
for all X € R%k" and all w € R2k,




Definition

We say that ® is (A, ..., Ax)-convex if

HY A w; X] = (HY ) ()X, X)gain > 0,
for all X € R%k" and all w € R2k,

Example: Generalized convexity of power functions F,(¢) = |¢|P

Let Ac C™" and p > 1. Then
HA 16 V()] = pICIP2Re (A (e77eg) , 7, (e~ W)

Ap(A) > 0 <= F, is A-convex

BL[¢IP2A,(A) = min. eigenvalue of (HA (¢) + HA ()T)/2
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Let Q CR", Ag,...,Ax € A(Q) and & € C3(R?%;R).

For fi,...,fi € (LP N L9)(Q), define

£(t) ;:/¢(Tf‘1ﬁ,...,rf‘kfk)
Q

Here we identify T/Yf with (Re T{'f, Im T{")

In applications ® = F, or Q: We need to know a priori that
(TtAj)t>o are analytic in LP and L9 J

Set = +id,j=1,..., kand
1 2

Oy = % (aq- - iacé-)
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a) Suppose that we can interchange derivative and integral:

_e(t) = /Q 2Re

b) Suppose that

k
3 (05®) (T;‘1 fiy oo, T fk) LT
j=1

(0N TR, ..., TI ) € WH(Q)

Then the right hand side equals
/QHéAl"“’Ak) (T8f, . T (YT, VTR

In this case

‘Cbis (A1,...,A)—convex = £ Y\, in (0,+oo)‘




a) Suppose that we can interchange derivative and integral:

=&'(t) = /Q2Re

b) Suppose that

k
S (00) (THA, .. TER) LY TV
j=1

(D) TM ..., TR ) € WH3(Q)

Then the right hand side equals

/QHg,Al’"-’Ak) (T8 TG (VTR VTR

Example ® = F, =|-|P, p>1

Assume that (T/);~0 is analytic in LP(R).

f € LP(Q) s.t. (OcFp)(TEF) = p| TAFIP2TAF € WH2(Q)?




a) Suppose that we can interchange derivative and integral:

_e(t) = /Q 2Re

b) Suppose that

k
> (0g®) (TE A, TRG) LY TV,
j=1

(0N TR, ..., TI ) € WH(Q)

Then the right hand side equals

/QH§,A1~“’A“ (T8f, . T (YT, VTR

D(L’;‘) is unknown, in general. This is a technical problem for us J
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Semigroup contractivity and analiticity

Target: Prove that given any open Q C R” and any A € A(Q)
Ap(A) > 0 = (T{)s>0 analytic and contractive in LP(R)

The proof follows from a result by Nittka.

Ouhabaz's invariance criterion

By, :={ue >N LP: lullp <1}, Pp: L? — B, L projection

(T8)e=0 contr. in LP(Q) iff P, (W12(Q)) € W12(Q) and
Re /(AVPPU,V(U — Ppu)) >0
Q

for all u € W12(Q)




Theorem (Nittka 2012)
| TA|l, < 1 if and only if

/ Re (AVU,V(|U|p_2U)>Cn >0
Q

for all u € W2(Q) sit. |ulP~2u € WH2(Q)

Key tool: Nittka's implicit formula for P, : L2 — B,
(no explicit formula, unless p = 2, 00)
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Theorem (Nittka 2012)
| TA|l, < 1 if and only if

/ Re (AVw, V(|ulP2u))cn > 0
Q

for all u € Wh2(Q) s.t. [ulP~2u € W12(Q)

Key tool: Nittka's implicit formula for P, : L2 — B,

(no explicit formula, unless p = 2, 00)

p-ellipticity implies contractivity: Suppose that A,(A) > 0.
Ap(A) = 0= pRe (AVv, V(JulP2u))cn = 0

Analiticity: By continuity in ¥, Ap(A) > 0 self-improves into
Ap(e?A) > 0 (for small )



Back to H*°-calculus

Target: Prove that given any open Q C R” and any A € A(Q)
Ap(A) >0 = wy(L)) < /2,

where wy(L7) is the functional calculus angle of L7



Back to H*°-calculus

Target: Prove that given any open Q C R” and any A € A(Q)
Ap(A) >0 = wy(L)) < /2,

where wy(L7) is the functional calculus angle of L7

Theorem (Cowling, Doust, Mclntosh and Yagi 1996)

Suppose that for some ¥ € (0, 5) we have

o +i9 0 px
| LT 40| DTS g dxa < Il el

for all f,g € (LP N L9)(Q). Then wy(L}) < m/2




For A, B € A(Q2) and p > 1, define

Ap(A, B) == min{D,(A), Ay(B)}

Theorem (C.-Dragicevi¢ 2018)

Let A, B € A(Q2) and p > 1. Suppose that A,(A, B) > 0. Then

(ee)
| [eTaeco| v Teeco| axaes el

for all f,g € (LP N L9)().
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For A, B € A(Q2) and p > 1, define

Ap(A, B) == min{D,(A), Ay(B)}

Theorem (C.-Dragicevi¢ 2018)

Let A, B € A(Q2) and p > 1. Suppose that A,(A, B) > 0. Then

| [ [9Tare0| [ 78e0o] dxde <161, el

for all f,g € (LP N L9)().

The functional calculus result follows from the case B = A*

Recall:
e Ap(A)>0 <= Ay(A*)>0
o A,(A) > 0 self-improves into A,(e”A) > 0 (for small 9)



Square functions

Bilinear integrals are dominated by square functions

[ o] [V e axde < 161l Guol@)

Ga(f)(x) := (/OOO ‘VTtAf(x)F dt)l/z
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Square functions

Bilinear integrals are dominated by square functions

/OOO [ [ TeCo| [ TEgC0)| axde < 10, 10w (@)l

) 1/2
(I ot )

e Auscher (2004) Q = R": ||Gal|p < oo for
p € (q-(L4), g+(LY)

e Auscher, Hofmann, Martell (2012) Q = R": ||G,4l|p < oo for
p > p_(14), where (p_ (L), p, (%)) = Z(L4)



Square functions

Bilinear integrals are dominated by square functions

| [ e[V e axde < 19,4 G @I,

) 1/2
(I ot )

e Auscher (2004) Q = R": ||Gal|p < oo for
p € (q-(L4), g+(LY)

e Auscher, Hofmann, Martell (2012) Q = R": ||G,4l|p < oo for
p > p_(14), where (p_ (L), p, (%)) = Z(L4)

Under our assumptions boundedness of square functions
(vertical /conical) on LP(2) is unknown.
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We use a variant of the Bellman-function-heat-flow method
introduced by Petermichl and Volberg (2002)

Our method consists in studying the strict monotonicity of
- [artrTie)  (0-9)
where Q = Q, ;5 is the Nazarov-Treil function, p > 2, g = p

Let p > 2. Suppose that A,(A, B) > 0. We want to prove that

[ [T |[vreel s [ -0z + el
for all £,g € (LP N L9)(Q).




Bellman-function-heat-flow method

We use a variant of the Bellman-function-heat-flow method
introduced by Petermichl and Volberg (2002)

Our method consists in studying the strict monotonicity of
- [artrTie)  (0-9)
where Q = Q, ;5 is the Nazarov-Treil function, p > 2, g = p

Let p > 2. Suppose that A,(A, B) > 0. We want to prove that

/‘/Wﬂﬂwfd</~£’<wwmm

for all £,g € (LP N L9)(Q).
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Our method consists in studying the strict monotonicity of
&)= [ oTA.TE) (0~ 0)
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Bellman-function-heat-flow method

We use a variant of the Bellman-function-heat-flow method
introduced by Petermichl and Volberg (2002)

Our method consists in studying the strict monotonicity of
&)= [ oTA.TE) (0~ 0)

where Q = Q, ;5 is the Nazarov-Treil function, p > 2, g = p

Let p > 2. Suppose that A,(A, B) > 0. We want to prove that

/Q(VT;‘f] VTEe| s —£(t)

for all f, g € (LP N L9)(9).

In principle, this follows from (uniform) generalized convexity of Q



Generalized convexity of Q

Bo(A, B) = min{A,(A), Ap(B))

Theorem (C.-Dragicevi¢ 2016)

Let p > 2 and A, B € A(). Suppose that A,(A,B) >0
Then 36 > 0s.t. Q is (A, B)-convex in R*\ T: for a.e. x € Q

HG VBN (o, B)] 2 ]al1B],

for every w € R*\ T and a, 3 € R?".

Fp®1+1®Fq+5F2®F2—q) lf K|p<|77|q

—-
—

aFp®1+4+ 0l ®Fg, ICIP > |nl9



Generalized convexity of Q

Bo(A, B) = min{A,(A), Ap(B))

Theorem (C.-Dragicevi¢ 2016)

Let p > 2 and A, B € A(). Suppose that A,(A,B) >0
Then 36 > 0s.t. Q is (A, B)-convex in R*\ T: for a.e. x € Q

HGBN: (a, )] 2 1018,

Oxpy,

for every w = (¢,n) € R* and «, B € R?".

Fo@l4+1®@Fg+ R ® Fa g, if [C]P <|nl?

—-
—

aFp®1+4+ 0l ® Fg, ICIP > |nl9



Generalized convexity of Q
AP(Aa B) = min{AP(A)7 AP(B)}

Theorem (C.-Dragicevi¢ 2016)

Let p > 2 and A, B € A(). Suppose that A,(A,B) >0
Then 36 > 0s.t. Q is (A, B)-convex in R*\ T: for a.e. x € Q

HGC BN (a, B)]12 allfl,

for every w = (¢,n) € R* and «, B € R?".

HA (G o] + HE [: ] + 0HZR [wi (@, B)]
HS B w; (a, B)] =
clHR [ a] + 2 HE [11: 5]
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Bilinear embedding - earlier results

A= Breal, Q =R" (Dragi¢evi¢ — Volberg 2011)
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Bilinear embedding - earlier results

A= Breal, Q =R" (Dragi¢evi¢ — Volberg 2011)
A B=et"] (C. — Dragidevi¢ 2013)
A B=etC, C real (C. — Dragicevi¢ 2015)

Related to our sharp functional calculus result
for nonsymmetric OU operators

V(p—2)2 + p(tan vc)?

A,(e”C) >0 < |v] < arccot NS

¥ c:= Numerical range angle of C



Bilinear embedding - earlier results

A= Breal, Q =R" (Dragi¢evi¢ — Volberg 2011)
A B=et"] (C. — Dragicevi¢ 2013)
A, B=etC, C real (C. — Dragicevi¢ 2015)

A, B complex, Q = R" (C. — Dragicevi¢ 2016)



Bilinear embedding - earlier results

A= Breal, Q=R" (Dragicevi¢ — Volberg 2011)

A B = et (C. — Dragicevi¢ 2013)

A B=etC, Creal (C. — Dragicevi¢ 2015)

A, B complex, Q = R" (C. — Dragicevi¢ 2016)
Our 2016 proof does not extend to arbitrary open Q C R”
In this case a modification of our method is needed J

Major difficulties in the case ) # R”
. D(Lf,‘) is unknown

e No estimates for the kernel of T

o TA Q)]



“Proof” of the bilinear embedding: A,(A,B) >0, p > 2

/OOO/Q VTA()| [V TEe(x)| dxde < £, lell,,

for all f,g € (LP N L9)(Q).
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By the heat-flow method applied to £(t) = [, Q(TAf, Tfg)
we reduce to prove

[ vull9v] ke [ (@0c@)(u ) fu+ (2,0 )iEv (1)
Q Q

for all u € D(Lf,‘) N D(LqA) and v € D(LE) N D(Lg)

Inequality (1) implies dissipativity:

(0Q)(u,0) = ClulP™T;  (8,)(0,v) = C'|v|"*¥
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“Proof” of the bilinear embedding: A,(A,B) >0, p > 2

By the heat-flow method applied to £(t) = [, Q(TAf, Tfg)
we reduce to prove
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Q Q
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In principle, (1) follows from (A, B)-convexity of Q (Q <> Qx¢,)
The case QQ = R". We can assume that A, B are smooth:

* D(Lp) = W?P(R")
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“Proof” of the bilinear embedding: A,(A,B) >0, p > 2

By the heat-flow method applied to £(t) = [, Q(TAf, Tfg)
we reduce to prove

[ Ivul19v £Re [ (0:Q)(w. )50+ (0, BV (1)
Q Q
for all u € D(Lf,‘) N D(LqA) and v € D(LE) N D(Lg)

In principle, (1) follows from (A, B)-convexity of Q (Q <> Qx¢,)
The case QQ = R". We can assume that A, B are smooth:

e D(Ly) = W2P(R")

e CX°(R") is an operator core for L’g (the same for Lg)

e We reduce the proof of (1) to the case when u,v € C°(R")

e In this case the integration by parts in (1) is trivial
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By the heat-flow method applied to £(t) = [, Q(TAf, Tfg)
we reduce to prove
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The general case 2 C R”

/ HEB) (0, v); (T, V)]
Q

Approximation of Q by a sequence (R,) s.t.
o dR, — dQ and the limit of the integral exists
o OcRn(u,v), 0, Rn(u,v) € WH3(Q)
o d?R, — d?Q ae.



The general case 2 C R”

/ HEB) (0, v); (T, V)]
Q

Approximation of Q by a sequence (R,) s.t.
o dR, — dQ and the limit of the integral exists
o OcRn(u,v), 0, Rn(u,v) € WH3(Q)
o d?R, — d?Q ae.

e Each R, must be (A, B)-convex
(positivity of the function inside the integral)
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The general case 2 C R". Replace the Bellman function Q with
a sequence of functions (R,) s.t.

® R, < C3(R*)

® R, is (A, B)-convex

© d°R, € L®(R* R**)

O [[dRn(w)] < C(n)lw|

6 [[dRn(w)] < C(Jw[P™* + |w]I71)

@ dR, — dQ and d*R, — d?Q a.e. in R*

R, depends on A, B and p. The construction of (R,) is based on
elementary methods but it requires some effort, because

(A, B)-convexity is a rigid property.

First step: study of gen. convexity of multivariable power functions
(related to (non) contractivity of (TA, T2) on LP(Q; C?))



Thank you for your attention!
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