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EI

Definition
A complete theory T has elimination of imaginaries if, for all M |= T , for all
n > 0 and for all ∅-definable equivalence relations E on Mn there are m > 0
and an ∅-definable function fE such that for all x, y ∈ Mn

fE(x) = fE(y)⇐⇒ xEy.

An imaginary is an equivalence class of a ∅-definable equivalence relation.

Any imaginary a/E is an {a}-definable set, and hence, if T has quantifier
elimination, is well understood. But Mn/E is not necessary definable, hence
QE does not help to understand the quotient structure. If T has elimination of
imaginaries, then Mn/E is identified with fE(Mn), which is a definable subset
of Mm.
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EI

Fix language L for theory T , and sufficiently saturated model U .
For any σ ∈ Aut(U), and any imaginary e = a/E of an ∅-definable
equivalence relation E,

σ(a/E) = a/E if and only if σ(fE(a)) = fE(a).

We call fE(a) a code for a/E. Observe that fE(a) ∈ dcl(e) and
e ∈ dcleq(fE(a)).
More generally, for any definable set X, we write pXq for a (tuple of )
elements with the property
σ(X) = X (setwise) if and only if σ(pXq) = pXq (pointwise) for all σ.
In a theory with at least two definable elements, elimination of imaginaries is
equivalent to saying every definable set has a finite code.
Working in Leq, e = a/E is an element of U eq, so automatically we have EI (e
codes itself).
EI: Find a (hopefully controllable) fragment of Leq in which every definable
set has a finite code.
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Examples of EI

An infinite pure set in the language of equality does not have EI. A finite
set with more than one element does not have a code.
An algebraically closed field in the language of rings does have EI.

I A finite set {a1, . . . , an} is coded by the tuple of coefficients of the
polynomial

∏n
i=1(X − ai).

I A general definable set is, by quantifier elimination, a boolean
combination of Zariski-closed sets. Each Zariski-closed set is coded
because it has a unique smallest field of definition (equivalently, by coding
the ideal of polynomials that vanish on the Zariski-closed set).
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Examples of EI

An algebraically closed valued field K in the one-sorted language of
valued fields does not have EI.

I xEy⇐⇒ (v(x) = v(y)) cannot be eliminated (set of equivalence classes is
the value group)

I xEy⇐⇒ y(x) = v(y) = 0 & v(x− y) > 0 cannot be eliminated (set of
equivalence classes is the residue field)

I (x1, x2)E(y1, y2)⇐⇒ B≥v(x1−x2)(x1) = B≥v(y1−y2)(y1) cannot be
eliminated (set of equivalence classes is coded by the set of all closed
balls)
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More about balls in ACVF: closed ball containing 0

B≥γ(0) = {x ∈ K : v(x) ≥ γ}
= {x ∈ K : ∃r ∈ OK(x = rc)} for any fixed c with v(c) = γ

= γOK

Thus B≥γ(0) is interdefinable with [c]E, where cEc′ iff v(c) = v(c′); that is,
c/c′ is invertible in OK .

Also, B≥γ(0) has the algebraic structure of an OK-module.
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More about balls in ACVF: closed ball not containing 0

B≥γ(a) = {x ∈ K : v(x− a) ≥ γ}

is not an OK-module, but is a torsor: if x, y, z ∈ B≥γ(a) then
x− y + z ∈ B≥γ(a). Consider the OK-module generated by {1} × B≥γ(a):

L = 〈{1} × B≥γ(a)〉
= {(x, y) ∈ K × K : ∃(r, s) ∈ OK ×OK

(
(x, y) = (r + s, rc1 + sc2)

)
}

for some fixed c1, c2 in B≥γ(a)

= {(x, y) ∈ K × K : ∃(r, s) ∈ OK ×OK
(
(x, y) = (r, s)

(
1 c1
1 c2

))
}

Thus B≥γ(a) is interdefinable with L which is interdefinable with [(c1, c2)]
under the equivalence relation (c1, c2)E(c′1, c

′
2) if and only if(

1 c1
1 c2

)(
1 c′1
1 c′2

)−1

is invertible in GL2(OK).
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More imaginaries in ACVF

More generally, every freely generated rank 2 OK-module of K2 is
interdefinable with an equivalence class of an ∅-definable equivalence relation.

More generally, every freely generated rank n OK-module of Kn is
interdefinable with an equivalence class of an ∅-definable equivalence relation.
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More about balls in ACVF: open balls

Open ball ‘on the spine’:

B>γ(c) = {x ∈ K : v(x− c) > γ = v(c)}
= c + {x ∈ K : v(x) > γ = v(c)}
= c + γmK

Thus B>γ(c) ∈ γOK/γmK . Notice that γOK/γmK has the structure of a
kK-vector space.
Open ball ‘off the spine’:

B>γ(a) = {x ∈ K : v(x− a) > γ > v(a)}
= a + {x ∈ K : v(x) > γ}

B>γ(a) is interdefinable with an element of L/mL, where
L = 〈{1} × B≥γ(a)〉.
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Notation

Valued field K has

valuation ring OK = {x ∈ K : v(x) ≥ 0},
with units O×K = {x ∈ O : v(x) = 0}, and

maximal ideal mK = {x ∈ O : v(x) > 0}.
The value group is ΓK = K×/O× and

the residue field is kK = OK/mK .
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Geometric sorts: the lattices

S1

Pick generator c ∈ K, take Λc = {x ∈ K : ∃ r ∈ OK(x = rc)}.
Λc = Λc′ ⇐⇒ v(c) = v(c′)⇐⇒ c′c−1 ∈ O×K

Sn

Pick generator C ∈ Kn2
, take ΛC = {x ∈ Kn : ∃ r ∈ On

K(x = rC)}.
ΛC = ΛC′ ⇐⇒ C′C−1 ∈ GLn(OK)
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Geometric sorts: the torsors

S1

Pick generator c ∈ K, take Λc = {x ∈ K : ∃ r ∈ OK(x = rc)}.
Λc = Λc′ ⇐⇒ v(c) = v(c′)⇐⇒ c′c−1 ∈ O×K

T1

res(Λ) = Λ/mΛ = {rc + cm : r ∈ OK} is a one-dimensional kK-vector space
T1 =

⋃
Λ∈S1

res(Λ)

Sn

Pick generator C ∈ Kn2
, take ΛC = {x ∈ Kn : ∃ r ∈ On

K(x = rC)}.
ΛC = ΛC′ ⇐⇒ C′C−1 ∈ GLn(OK)

Tn

res(Λ) = Λ/mΛ = {rC + Cm : r ∈ On
K} is an n-dimensional kK-vector space

Tn =
⋃

Λ∈Sn
res(Λ)
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Elimination of imaginaries in ACVF

Geometric sorts
S =

⋃
n Sn, where Sn is the set of free OK-submodules of Kn of rank n (a

lattice)
T =

⋃
n Tn, where

Tn =
⋃

Λ∈Sn
resΛ =

⋃
Λ∈Sn

Λ/mΛ = {(Λ, ξ) : Λ ∈ Sn, ξ ∈ Λ}

Theorem 1
The theory ACVF has elimination of imaginaries in the geometric sorts.
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Some history

(1993) A. Macintyre, P. Scowcroft: Extending the language in natural
ways does not suffice to eliminate imaginaries in pCF
(1995) J. Holly: sorts for the balls suffice to eliminate one variable
imaginaries in ACVF and RCVF
(1997) P. Scowcroft: the three-sorted language (K,Γ, k) does not suffice
for EI in pCF
(2006) D. Haskell, E. Hrushovski, H.D. Macpherson: ACVF has EI in
the geometric sorts (and not in any finite subset)
(2006) T. Mellor: RCVF has EI in the geometric sorts
(2006/2015) E. Hrushovski, B. Martin, S. Rideau: pCF has EI in the
geometric sorts (only need S) (uniformly in p)
(2014) W. Johnson: a smoother proof that ACVF has EI
(2015) S. Rideau: VDFEC has EI in the geometric sorts
(2016) M. Hils, M. Kamensky, S. Rideau: SCVFe has EI in the
geometric sorts
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Criterion for EI

Theorem 2
Let T be a theory in a language with home sort K and let G be a collection of
sorts from Keq. Suppose that:

1 for every non-empty definable set X in K1 there is an
acleq(pXq)-definable type in X;

2 every definable type in Kn has a code (possibly infinite) in G;
3 every finite set of tuples from G has a code in G.

Then T has elimination of imaginaries in the sorts G.

Note: the conditions are sufficient but not necessary; 1) fails in Qp.
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Comments on the proof of the EI criterion

First show by induction on n that for every non-empty definable set X in Kn

there is an acleq(pXq)-definable type in X.

Project onto the first n− 1 coordinates, by inductive hypothesis there is a
acleq(pπ(X)q)-definable type in π(X). Take a realisation a1 of this type, look
at the fibre above it which is a pXqa1-definable subset of K1 so by assumption
1) contains an acleq(pXqa1)-definable type. Take a realisation a2. Argue that
there is an acleq(pXq)-definable type realised by (a1, a2) and hence contained
in X.

Now take e to be any imaginary, X a definable set for which it is the code, p an
acleq(pXq)-definable type in X and t the code from G given by 2) for p. Then
e ∈ dcleq(t) and t ∈ aclG(e). By compactness, can cut t down to a finite set t0.
Since the set of conjugates of t0 is finite, by 3) it is coded in G, say by s. Then
s ∈ dclG(e) and e ∈ dcleq(s), as required.

Deirdre Haskell (McMaster University) EI in ACVF MTCVF: valued fields III 16 / 29



definable types in ACVF

Recall that a type p is definable if, for any formula ϕ(x, b) there is a formula
dϕ such that ϕ(x, b) ∈ p if and only if dϕ(b).

The generic type of an open or closed ball is definable. Let B be an open
or closed ball defined over C. pB(x) says that x ∈ B and for any
C-definable ball B′ with B′ ⊂ B, x /∈ B′. Any formula ϕ(x, b) is in pB

provided any realisation of pB is in the set defined by ϕ. As this set is a
finite union of Swiss cheeses, this will hold provided B is in one of the
balls of the Swiss cheese, and not in one of its holes. This depends only
on the parameters b.

The generic type of the residue field is definable. pk(x) says that x ∈ k
and x is not algebraic. This is definable because k is strongly minimal.
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more definable types in ACVF

Consider the generic type pO of the valuation ring. Every proper sub-ball
of O is contained in a unique ball of the form res−1(α) for α ∈ k. So

x |= pO|C⇐⇒ res(x) |= pk|C

We say that pO is dominated along res and write pk = res∗pO. pk is
generically stable, and hence so also is pO.

Because pO is generically stable, p⊗n
O = pOn is well-defined and

generically stable. res∗pOn = pkn which is stabilized by the action of
GLn(k), so pOn is stabilized by GLn(O). So for any lattice Λ we can
define the generic type of Λ, pΛ = g∗pOn where g is any linear
transformation sending On to Λ. pΛ is pΛq-definable.
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Satisfying the conditions of the EI criterion: 1)

For every non-empty definable set X in K1 there is an acleq(pXq)-definable
type in X.

This follows easily from quantifier elimination and the above discussion of
definable types. X is a disjoint union of Swiss cheeses B \ B1 ∪ · · · ∪ Bn,
which are acleq(pXq)-definable. For any of the balls B in the union, the
generic type pB is in B, hence in X, and is acleq(pXq)-definable.
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Satisfying the conditions of the EI criterion: 2)

Every definable type in Kn has a code (possibly infinite) in G.

By quantifier elimination, any definable type p in Kn is determined by
formulas of the form

Q(x) = 0 and v(Q1(x)) ≤ v(Q2(x))

where Q, Q1, Q2 are polynomials over K in n variables.
Let Vd be the set of polynomials of degree less than or equal to d (in a fixed
number of variables) and observe that Vd is a K-vector space. Let

Id = {Q ∈ Vd : Q(x) = 0 ∈ p}
Rd = {(Q1,Q2) ∈ Vd × Vd : v(Q1(x)) ≤ v(Q2(x)) ∈ p}.

Id is a subspace of Vd, so Id is coded by a tuple from K
Vd/Id has a pIdq-definable basis, so is pIdq-definably isomorphic to Km for
some m.
Deirdre Haskell (McMaster University) EI in ACVF MTCVF: valued fields III 20 / 29



Satisfying the conditions of the EI criterion: 2)

Rd induces a valued vector space structure on Vd/Id and therefore has a code
rd in G by:

Theorem 3
The code for a definable valued vector space structure on Km is interdefinable
with an element of the geometric sorts.

The sequence (pIdq, rd)d>0 is the required code in G for p.
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Satisfying the conditions of the EI criterion: 3)

Fix one of the geometric sorts G. A finite set from G is an element of
Symn(G) (the n-fold symmetric product of G). We need to code elements of
Symn(G).

Suppose we can find some other G′ and a map π : G′ → G such that

for every element b ∈ G, π−1(b) contains a b-definable generically
stable type;

G′ embeds into Km × K` for some m, `.

Lemma 1
Definable types in Symn(Km × K`) have geometric codes.

By the lemma, definable types in Symn(G′) have geometric codes, hence
definable types in Symn(G) have geometric codes (this uses the first condition
on π). In particular, elements (constant types) in Symn(G) have geometric
codes.
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Revision of the geometric sorts

Geometric sorts
S =

⋃
n Sn, where Sn is the set of free OK-submodules Λ of Kn of rank n (a

lattice)
T =

⋃
n Tn, where

Tn =
⋃

Λ∈Sn
resΛ =

⋃
Λ∈Sn

Λ/mΛ = {(Λ, ξ) : Λ ∈ Sn, ξ ∈ Λ}

Revised geometric sorts
Rn` = {(Λ,V) : Λ ∈ Sn,V is an `-dimensional subspace of res(Λ) }

Rn0 is just Sn, Rn1 is a projectivised version of Tn

An element (Λ,V) of Rn` is coded by Λ (an element of Rn0) and V thought of
as a 1-dimensional subspace of the `th exterior power of Λ, which is an
element of RN1, where N = dim(∧`Kn).

Lemma
An element of Rn1 is coded in S ∪ T .
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Satisfying the conditions of the EI criterion: 3)

Assume G = Rn` = {(Λ,V) : Λ ∈ Sn,V an `-dimensional subspace of Λ }.

Let G′ = R̃n` = {(b,Λ,V) : b is a basis for Λ, (Λ,V) ∈ Rn`}.

Naming a basis b induces a map from V to an `-dimensional subspace W of
kn. The set of such subspaces can itself be embedded in some kt by
elimination of imaginaries in ACF. Thus the map

R̃n` → Kn2 × kt given by (b,Λ,V) 7→ (b,W) 7→ (b, pWq)

is the required map π.
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Comments on proof of Theorem 3

Theorem 3
The code for a definable valued vector space structure on Km is interdefinable
with an element of the geometric sorts.

Recall the construction of a valued field. Field K, valuation ring OK , value
group Γ = K×/O×K has total order defined by x ≤ y⇐⇒ y/x ∈ OK . This
works because for every pair x, y ∈ K, either x/y ∈ O or y/x ∈ O. The
quotient map from K× to Γ is the valuation. Mimic this construction on a
vector space.

Deirdre Haskell (McMaster University) EI in ACVF MTCVF: valued fields III 25 / 29



Comments on proof of Theorem 3

Definable valued vector space
Let V be a definable vector space over K, R a definable relation on V × V such
that

Γ(V) = V \ {0}/{(w, v) ∈ R & (v,w) ∈ R}

has a total order induced by (w, v) ∈ R. Write val : V → Γ(V) for the quotient
map, and suppose that

val(w + v) ≥ min{val(w), val(v)},

and there is an action of Γ induced on Γ(V) such that
val(aw) = val(a · 1) + val(w) = v(a) + val(w).

Then the action of Γ on Γ(V) has fewer than dim(V) many orbits.
Theorem 3: pRq is interdefinable with an element of the geometric sorts.
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Comments on proof of Theorem 3

V = Km for some m.
Suppose there is just one orbit in the action of Γ on Γ(V).
Then pRq is interdefinable with B≥0(0), because val(w) ≤ val(u) if and only
if u is in every closed ball around 0 that contains w.
Since B≥0(0) is an OK-submodule of Km it is coded in the geometric sorts.

More generally, there are at most m orbits. In each of these orbits, find an
pRq-definable element. Each one defines a closed ball in the valued vector
space, which will be an OK-submodule of Km, hence coded. The sequence of
these codes is interdefinable with pRq.

Deirdre Haskell (McMaster University) EI in ACVF MTCVF: valued fields III 27 / 29



Comments on proof of Lemma 1

Lemma 1
Definable types in Symn(Km × K`) have geometric codes.

We already observed that definable types in Km have geometric codes.
As OK ⊂ K, also definable types in O`K have geometric codes.
The function res : OK → kK has the property that, for every b ∈ kK there is a
b-definable type in res−1(b), hence definable types in Km × k` have geometric
codes.
Show that a definable type from Symn(Km × K`) has the same code as a
definable type in Km′ × k`

′
, which suffices.
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