Valued fields III Elimination of imaginaries in algebraically closed valued fields

Deirdre Haskell

McMaster University

Research school on model theory, combinatorics and valued fields CIRM Luminy 12 January 2018

Definition

A complete theory *T* has *elimination of imaginaries* if, for all $M \models T$, for all n > 0 and for all \emptyset -definable equivalence relations *E* on M^n there are m > 0 and an \emptyset -definable function f_E such that for all $x, y \in M^n$

$$f_E(x) = f_E(y) \iff xEy.$$

An *imaginary* is an equivalence class of a \emptyset -definable equivalence relation.

Any imaginary a/E is an $\{a\}$ -definable set, and hence, if T has quantifier elimination, is well understood. But M^n/E is not necessary definable, hence QE does not help to understand the quotient structure. If T has elimination of imaginaries, then M^n/E is identified with $f_E(M^n)$, which is a definable subset of M^m .

Fix language \mathcal{L} for theory T, and sufficiently saturated model \mathcal{U} . For any $\sigma \in \operatorname{Aut}(\mathcal{U})$, and any imaginary e = a/E of an \emptyset -definable equivalence relation E,

 $\sigma(a/E) = a/E$ if and only if $\sigma(f_E(a)) = f_E(a)$.

We call $f_E(a)$ a *code* for a/E. Observe that $f_E(a) \in dcl(e)$ and $e \in dcl^{eq}(f_E(a))$.

More generally, for any definable set *X*, we write $\lceil X \rceil$ for a (tuple of) elements with the property

 $\sigma(X) = X$ (setwise) if and only if $\sigma(\ulcorner X \urcorner) = \ulcorner X \urcorner$ (pointwise) for all σ .

In a theory with at least two definable elements, elimination of imaginaries is equivalent to saying every definable set has a finite code.

Working in \mathcal{L}^{eq} , e = a/E is an element of \mathcal{U}^{eq} , so automatically we have EI (*e* codes itself).

EI: Find a (hopefully controllable) fragment of \mathcal{L}^{eq} in which every definable set has a finite code.

Deirdre Haskell (McMaster University)

- An infinite pure set in the language of equality does not have EI. A finite set with more than one element does not have a code.
- An algebraically closed field in the language of rings does have EI.
 - A finite set {a₁,..., a_n} is coded by the tuple of coefficients of the polynomial ∏ⁿ_{i=1}(X − a_i).
 - A general definable set is, by quantifier elimination, a boolean combination of Zariski-closed sets. Each Zariski-closed set is coded because it has a unique smallest field of definition (equivalently, by coding the ideal of polynomials that vanish on the Zariski-closed set).

- An algebraically closed valued field *K* in the one-sorted language of valued fields does not have EI.
 - *xEy* ⇐⇒ (v(x) = v(y)) cannot be eliminated (set of equivalence classes is the value group)
 - ► $xEy \iff y(x) = v(y) = 0 \& v(x y) > 0$ cannot be eliminated (set of equivalence classes is the residue field)
 - (x₁, x₂)E(y₁, y₂) ⇐⇒ B_{≥ν(x1-x2)}(x₁) = B_{≥ν(y1-y2)}(y₁) cannot be eliminated (set of equivalence classes is coded by the set of all closed balls)

$$B_{\geq \gamma}(0) = \{x \in K : v(x) \geq \gamma\}$$

= $\{x \in K : \exists r \in \mathcal{O}_K(x = rc)\}$ for any fixed *c* with $v(c) = \gamma$
= $\gamma \mathcal{O}_K$

Thus $B_{\geq \gamma}(0)$ is interdefinable with $[c]_E$, where cEc' iff v(c) = v(c'); that is, c/c' is invertible in \mathcal{O}_K .

Also, $B_{\geq \gamma}(0)$ has the algebraic structure of an \mathcal{O}_K -module.

More about balls in ACVF: closed ball not containing 0

$$B_{\geq \gamma}(a) = \{x \in K : v(x-a) \geq \gamma\}$$

is not an \mathcal{O}_K -module, but is a *torsor*: if $x, y, z \in B_{\geq \gamma}(a)$ then $x - y + z \in B_{\geq \gamma}(a)$. Consider the \mathcal{O}_K -module generated by $\{1\} \times B_{\geq \gamma}(a)$:

$$L = \langle \{1\} \times B_{\geq \gamma}(a) \rangle$$

= {(x, y) \epsilon K \times K : \epsilon (r, s) \epsilon \mathcal{O}_K \times \mathcal{O}_K \left((x, y) = (r + s, rc_1 + sc_2) \right) \}
for some fixed c_1, c_2 in B_{\geq \gamma}(a)
= {(x, y) \epsilon K \times K : \epsilon (r, s) \epsilon \mathcal{O}_K \times \mathcal{O}_K \left((x, y) = (r, s) \binom{1 & c_1}{1 & c_2} \binom{1}{2} \binom{1}{2

Thus $B_{\geq \gamma}(a)$ is interdefinable with *L* which is interdefinable with $[(c_1, c_2)]$ under the equivalence relation $(c_1, c_2)E(c'_1, c'_2)$ if and only if

$$\begin{pmatrix} 1 & c_1 \\ 1 & c_2 \end{pmatrix} \begin{pmatrix} 1 & c_1' \\ 1 & c_2' \end{pmatrix}^{-1} \text{ is invertible in } \operatorname{GL}_2(\mathcal{O}_K).$$

- More generally, every freely generated rank 2 \mathcal{O}_K -module of K^2 is interdefinable with an equivalence class of an \emptyset -definable equivalence relation.
- More generally, every freely generated rank n \mathcal{O}_K -module of K^n is interdefinable with an equivalence class of an \emptyset -definable equivalence relation.

Open ball 'on the spine':

$$B_{>\gamma}(c) = \{x \in K : v(x-c) > \gamma = v(c)\}$$
$$= c + \{x \in K : v(x) > \gamma = v(c)\}$$
$$= c + \gamma \mathfrak{m}_K$$

Thus $B_{>\gamma}(c) \in \gamma \mathcal{O}_K / \gamma \mathfrak{m}_K$. Notice that $\gamma \mathcal{O}_K / \gamma \mathfrak{m}_K$ has the structure of a k_K -vector space.

Open ball 'off the spine':

$$B_{>\gamma}(a) = \{x \in K : v(x-a) > \gamma > v(a)\}$$
$$= a + \{x \in K : v(x) > \gamma\}$$

 $B_{>\gamma}(a)$ is interdefinable with an element of $L/\mathfrak{m}L$, where $L = \langle \{1\} \times B_{\geq \gamma}(a) \rangle$.

Valued field *K* has

- valuation ring $\mathcal{O}_K = \{x \in K : v(x) \ge 0\},\$
- with units $\mathcal{O}_K^{\times} = \{x \in \mathcal{O} : v(x) = 0\}$, and
- maximal ideal $\mathfrak{m}_K = \{x \in \mathcal{O} : v(x) > 0\}.$
- The value group is $\Gamma_K = K^{\times} / \mathcal{O}^{\times}$ and
- the residue field is $k_K = \mathcal{O}_K/\mathfrak{m}_K$.

S_1

Pick generator
$$c \in K$$
, take $\Lambda_c = \{x \in K : \exists r \in \mathcal{O}_K (x = rc)\}$.
 $\Lambda_c = \Lambda_{c'} \iff v(c) = v(c') \iff c'c^{-1} \in \mathcal{O}_K^{\times}$

S_n

Pick generator $C \in K^{n^2}$, take $\Lambda_C = \{x \in K^n : \exists r \in \mathcal{O}_K^n (x = rC)\}$. $\Lambda_C = \Lambda_{C'} \iff C'C^{-1} \in \operatorname{GL}_n(\mathcal{O}_K)$

Geometric sorts: the torsors

S_1

Pick generator
$$c \in K$$
, take $\Lambda_c = \{x \in K : \exists r \in \mathcal{O}_K (x = rc)\}$.
 $\Lambda_c = \Lambda_{c'} \iff v(c) = v(c') \iff c'c^{-1} \in \mathcal{O}_K^{\times}$

T_1

 $\operatorname{res}(\Lambda) = \Lambda/\mathfrak{m}\Lambda = \{rc + c\mathfrak{m} : r \in \mathcal{O}_K\}$ is a one-dimensional k_K -vector space $T_1 = \bigcup_{\Lambda \in S_1} \operatorname{res}(\Lambda)$

S_n

Pick generator
$$C \in K^{n^2}$$
, take $\Lambda_C = \{x \in K^n : \exists r \in \mathcal{O}_K^n (x = rC)\}$.
 $\Lambda_C = \Lambda_{C'} \iff C'C^{-1} \in \operatorname{GL}_n(\mathcal{O}_K)$

$$T_n$$

 $\operatorname{res}(\Lambda) = \Lambda/\mathfrak{m}\Lambda = \{rC + C\mathfrak{m} : r \in \mathcal{O}_K^n\} \text{ is an } n \text{-dimensional } k_K \text{-vector space}$ $T_n = \bigcup_{\Lambda \in S_n} \operatorname{res}(\Lambda)$

Deirdre Haskell (McMaster University)

Geometric sorts

 $S = \bigcup_n S_n$, where S_n is the set of free \mathcal{O}_K -submodules of K^n of rank n (a *lattice*)

$$\mathcal{T} = \bigcup_n T_n$$
, where
 $T_n = \bigcup_{\Lambda \in S_n} \operatorname{res} \Lambda = \bigcup_{\Lambda \in S_n} \Lambda/\mathfrak{m} \Lambda = \{(\Lambda, \xi) : \Lambda \in S_n, \xi \in \Lambda\}$

Theorem 1

The theory ACVF has elimination of imaginaries in the geometric sorts.

Some history

- (1993) A. Macintyre, P. Scowcroft: Extending the language in natural ways does not suffice to eliminate imaginaries in pCF
- (1995) J. Holly: sorts for the balls suffice to eliminate one variable imaginaries in ACVF and RCVF
- (1997) P. Scowcroft: the three-sorted language (K, Γ, k) does not suffice for EI in pCF
- (2006) D. Haskell, E. Hrushovski, H.D. Macpherson: ACVF has EI in the geometric sorts (and not in any finite subset)
- (2006) T. Mellor: RCVF has EI in the geometric sorts
- (2006/2015) E. Hrushovski, B. Martin, S. Rideau: pCF has EI in the geometric sorts (only need S) (uniformly in *p*)
- (2014) W. Johnson: a smoother proof that ACVF has EI
- (2015) S. Rideau: $VDF_{\mathcal{EC}}$ has EI in the geometric sorts
- (2016) M. Hils, M. Kamensky, S. Rideau: SCVF_e has EI in the geometric sorts

Theorem 2

Let *T* be a theory in a language with home sort *K* and let \mathcal{G} be a collection of sorts from K^{eq} . Suppose that:

- for every non-empty definable set X in K¹ there is an acl^{eq}([¬]X[¬])-definable type in X;
- 2 every definable type in K^n has a code (possibly infinite) in \mathcal{G} ;
- every finite set of tuples from \mathcal{G} has a code in \mathcal{G} .

Then T has elimination of imaginaries in the sorts \mathcal{G} .

Note: the conditions are sufficient but not necessary; 1) fails in \mathbb{Q}_p .

First show by induction on *n* that for every non-empty definable set *X* in K^n there is an $\operatorname{acl}^{\operatorname{eq}}(\ulcorner X \urcorner)$ -definable type in *X*.

Project onto the first n - 1 coordinates, by inductive hypothesis there is a $\operatorname{acl}^{\operatorname{eq}}(\lceil \pi(X) \rceil)$ -definable type in $\pi(X)$. Take a realisation a_1 of this type, look at the fibre above it which is a $\lceil X \rceil a_1$ -definable subset of K^1 so by assumption 1) contains an $\operatorname{acl}^{\operatorname{eq}}(\lceil X \rceil a_1)$ -definable type. Take a realisation a_2 . Argue that there is an $\operatorname{acl}^{\operatorname{eq}}(\lceil X \rceil)$ -definable type realised by (a_1, a_2) and hence contained in X.

Now take *e* to be any imaginary, *X* a definable set for which it is the code, *p* an $\operatorname{acl}^{\operatorname{eq}}(\lceil X \rceil)$ -definable type in *X* and *t* the code from \mathcal{G} given by 2) for *p*. Then $e \in \operatorname{dcl}^{\operatorname{eq}}(t)$ and $t \in \operatorname{acl}^{\mathcal{G}}(e)$. By compactness, can cut *t* down to a finite set t_0 . Since the set of conjugates of t_0 is finite, by 3) it is coded in \mathcal{G} , say by *s*. Then $s \in \operatorname{dcl}^{\mathcal{G}}(e)$ and $e \in \operatorname{dcl}^{\operatorname{eq}}(s)$, as required.

Recall that a type *p* is definable if, for any formula $\varphi(x, b)$ there is a formula d_{φ} such that $\varphi(x, b) \in p$ if and only if $d_{\varphi}(b)$.

- The generic type of an open or closed ball is definable. Let *B* be an open or closed ball defined over *C*. *p_B(x)* says that *x* ∈ *B* and for any *C*-definable ball *B'* with *B'* ⊂ *B*, *x* ∉ *B'*. Any formula φ(*x*, *b*) is in *p_B* provided any realisation of *p_B* is in the set defined by φ. As this set is a finite union of Swiss cheeses, this will hold provided *B* is in one of the balls of the Swiss cheese, and not in one of its holes. This depends only on the parameters *b*.
- The generic type of the residue field is definable. $p_k(x)$ says that $x \in k$ and x is not algebraic. This is definable because k is strongly minimal.

• Consider the generic type $p_{\mathcal{O}}$ of the valuation ring. Every proper sub-ball of \mathcal{O} is contained in a unique ball of the form res⁻¹(α) for $\alpha \in k$. So

$$x \models p_{\mathcal{O}} | C \Longleftrightarrow \operatorname{res}(x) \models p_k | C$$

We say that $p_{\mathcal{O}}$ is *dominated along* res and write $p_k = \operatorname{res}_* p_{\mathcal{O}}$. p_k is *generically stable*, and hence so also is $p_{\mathcal{O}}$.

Because p_O is generically stable, p_O^{⊗n} = p_{Oⁿ} is well-defined and generically stable. res_{*}p_{Oⁿ} = p_{kⁿ} which is stabilized by the action of GL_n(k), so p_{Oⁿ} is stabilized by GL_n(O). So for any lattice Λ we can define the generic type of Λ, p_Λ = g_{*}p_{Oⁿ} where g is any linear transformation sending Oⁿ to Λ. p_Λ is ¬Λ¬-definable.

For every non-empty definable set *X* in K^1 there is an $acl^{eq}(\lceil X \rceil)$ -definable type in *X*.

This follows easily from quantifier elimination and the above discussion of definable types. *X* is a disjoint union of Swiss cheeses $B \setminus B_1 \cup \cdots \cup B_n$, which are $\operatorname{acl}^{\operatorname{eq}}(\lceil X \rceil)$ -definable. For any of the balls *B* in the union, the generic type p_B is in *B*, hence in *X*, and is $\operatorname{acl}^{\operatorname{eq}}(\lceil X \rceil)$ -definable.

Satisfying the conditions of the EI criterion: 2)

Every definable type in K^n has a code (possibly infinite) in \mathcal{G} .

By quantifier elimination, any definable type p in K^n is determined by formulas of the form

$$Q(x) = 0$$
 and $v(Q_1(x)) \le v(Q_2(x))$

where Q, Q_1 , Q_2 are polynomials over K in n variables. Let V_d be the set of polynomials of degree less than or equal to d (in a fixed number of variables) and observe that V_d is a K-vector space. Let

$$I_d = \{ Q \in V_d : Q(x) = 0 \in p \}$$

$$R_d = \{ (Q_1, Q_2) \in V_d \times V_d : v(Q_1(x)) \le v(Q_2(x)) \in p \}.$$

 I_d is a subspace of V_d , so I_d is coded by a tuple from K V_d/I_d has a $\lceil I_d \rceil$ -definable basis, so is $\lceil I_d \rceil$ -definably isomorphic to K^m for some m.

Deirdre Haskell (McMaster University)

 R_d induces a valued vector space structure on V_d/I_d and therefore has a code r_d in \mathcal{G} by:

Theorem 3

The code for a definable valued vector space structure on K^m is interdefinable with an element of the geometric sorts.

The sequence $(\lceil I_d \rceil, r_d)_{d>0}$ is the required code in \mathcal{G} for p.

Satisfying the conditions of the EI criterion: 3)

Fix one of the geometric sorts *G*. A finite set from *G* is an element of $Sym^n(G)$ (the *n*-fold symmetric product of *G*). We need to code elements of $Sym^n(G)$.

Suppose we can find some other G' and a map $\pi:G'\to G$ such that

- for every element $b \in G$, $\pi^{-1}(b)$ contains a *b*-definable generically stable type;
- G' embeds into $K^m \times K^{\ell}$ for some m, ℓ .

Lemma 1

Definable types in $\operatorname{Sym}^n(K^m \times K^\ell)$ have geometric codes.

By the lemma, definable types in $\text{Sym}^n(G')$ have geometric codes, hence definable types in $\text{Sym}^n(G)$ have geometric codes (this uses the first condition on π). In particular, elements (constant types) in $\text{Sym}^n(G)$ have geometric codes.

Revision of the geometric sorts

Geometric sorts

 $S = \bigcup_n S_n$, where S_n is the set of free \mathcal{O}_K -submodules Λ of K^n of rank n (a *lattice*)

$$T = \bigcup_n T_n$$
, where
 $T_n = \bigcup_{\Lambda \in S_n} \operatorname{res} \Lambda = \bigcup_{\Lambda \in S_n} \Lambda / \mathfrak{m} \Lambda = \{(\Lambda, \xi) : \Lambda \in S_n, \xi \in \Lambda\}$

Revised geometric sorts

 $R_{n\ell} = \{(\Lambda, V) : \Lambda \in S_n, V \text{ is an } \ell \text{-dimensional subspace of } \operatorname{res}(\Lambda) \}$

 R_{n0} is just S_n , R_{n1} is a projectivised version of T_n An element (Λ, V) of $R_{n\ell}$ is coded by Λ (an element of R_{n0}) and V thought of as a 1-dimensional subspace of the ℓ th exterior power of Λ , which is an element of R_{N1} , where $N = \dim(\wedge^{\ell} K^n)$.

Lemma

An element of R_{n1} is coded in $S \cup T$.

Assume $G = R_{n\ell} = \{(\Lambda, V) : \Lambda \in S_n, V \text{ an } \ell\text{-dimensional subspace of } \Lambda \}$. Let $G' = \widetilde{R_{n\ell}} = \{(b, \Lambda, V) : b \text{ is a basis for } \Lambda, (\Lambda, V) \in R_{n\ell}\}.$

Naming a basis *b* induces a map from *V* to an ℓ -dimensional subspace *W* of k^n . The set of such subspaces can itself be embedded in some k^t by elimination of imaginaries in ACF. Thus the map

$$\widetilde{R_{n\ell}} \to K^{n^2} \times k^t \text{ given by } (b, \Lambda, V) \mapsto (b, W) \mapsto (b, \ulcorner W \urcorner)$$

is the required map π .

Theorem 3

The code for a definable valued vector space structure on K^m is interdefinable with an element of the geometric sorts.

Recall the construction of a valued field. Field *K*, valuation ring \mathcal{O}_K , value group $\Gamma = K^{\times}/\mathcal{O}_K^{\times}$ has total order defined by $x \leq y \iff y/x \in \mathcal{O}_K$. This works because for every pair $x, y \in K$, either $x/y \in \mathcal{O}$ or $y/x \in \mathcal{O}$. The quotient map from K^{\times} to Γ is the valuation. Mimic this construction on a vector space.

Definable valued vector space

Let *V* be a definable vector space over *K*, *R* a definable relation on $V \times V$ such that

$$\Gamma(V) = V \setminus \{0\} / \{(w, v) \in R \& (v, w) \in R\}$$

has a total order induced by $(w, v) \in R$. Write val : $V \to \Gamma(V)$ for the quotient map, and suppose that

$$\operatorname{val}(w+v) \ge \min\{\operatorname{val}(w), \operatorname{val}(v)\},\$$

and there is an action of Γ induced on $\Gamma(V)$ such that $val(aw) = val(a \cdot 1) + val(w) = v(a) + val(w)$.

Then the action of Γ on $\Gamma(V)$ has fewer than dim(*V*) many orbits. Theorem 3: $\lceil R \rceil$ is interdefinable with an element of the geometric sorts. $V = K^m$ for some m.

Suppose there is just one orbit in the action of Γ on $\Gamma(V)$.

Then $\lceil R \rceil$ is interdefinable with $B_{\geq 0}(\mathbf{0})$, because $\operatorname{val}(w) \leq \operatorname{val}(u)$ if and only if *u* is in every closed ball around **0** that contains *w*.

Since $B_{\geq 0}(\mathbf{0})$ is an \mathcal{O}_K -submodule of K^m it is coded in the geometric sorts.

More generally, there are at most *m* orbits. In each of these orbits, find an $\lceil R \rceil$ -definable element. Each one defines a closed ball in the valued vector space, which will be an \mathcal{O}_K -submodule of K^m , hence coded. The sequence of these codes is interdefinable with $\lceil R \rceil$.

Lemma 1

Definable types in $\operatorname{Sym}^n(K^m \times K^\ell)$ have geometric codes.

We already observed that definable types in \mathcal{K}^m have geometric codes. As $\mathcal{O}_K \subset K$, also definable types in \mathcal{O}_K^ℓ have geometric codes. The function res : $\mathcal{O}_K \to k_K$ has the property that, for every $b \in k_K$ there is a *b*-definable type in res⁻¹(*b*), hence definable types in $\mathcal{K}^m \times k^\ell$ have geometric codes.

Show that a definable type from $\text{Sym}^n(K^m \times K^\ell)$ has the same code as a definable type in $K^{m'} \times k^{\ell'}$, which suffices.

References

- A. Macintyre, P. Scowcroft: On the elimination of imaginaries from certain valued fields. Ann. Pure Appl. Logic 61 (1993), no. 3, 241–276.
- J. Holly: Canonical forms of definable subsets of algebraically closed and real closed valued fields, J. Symb. Logic 60 (1995), 843–860.
- P. Scowcroft: More on imaginaries in p-adic fields. J. Symbolic Logic 62 (1997), no. 1, 1–13.
- D. Haskell, E. Hrushovski, H.D. Macpherson: Definable sets in algebraically closed valued fields: elimination of imaginaries. J. Reine Angew. Math. 597 (2006)
- T. Mellor: Imaginaries in real closed valued fields. Ann. Pure Appl. Logic 139 (2006), no. 1-3, 230–279.
- (2006/2015) E. Hrushovski, B. Martin, S. Rideau: Definable equivalence relations and zeta functions of groups, arXiv:math/0701011
- (2014) W. Johnson: On the proof of elimination of imaginaries in algebraically closed valued fields, arXiv:1406.3654
- (2015) S. Rideau: Imaginaries and invariant types in existentially closed valued differential fields, arXiv:1508.07935
- (2016) M. Hils, M. Kamensky, S. Rideau: Imaginaries in separably closed valued fields, arXiv:1612.02142