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Discrete Time White Noise

We start with a discrete time model for noise. Suppose we have a sequence
£1,&9,&3,- -+ of independent random variables occurring each At seconds and
with

A random walk, X, X5, X3,---, is given by
Xn=2 &
k=1

and we have

(X2)=n.




Typical Random Walks




De Moivre — Laplace Limit

. For time ¢t > 0 fixed, let N (¢) be the largest integer less than or equal to
t/At. Introduce the rescaled variable

N(t)

Wa,pprox (t) - \/A_t Z gk:-
k=0

By a central limit, Wapprox () converges to a limit variable W (¢) which is

(Gaussian with
(W (1)) =0, <W(t)2> — 1.

The family {W (¢) : t > 0} obtained this way is called a Wiener process.




Wiener Paths
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White Noise (Continuous Time)

Wiener showed that the limit process has sample paths that are almost
always continuous and nowhere differentiable. Let us look at the approximate
derivative
AW, Wi — Wi, VAt

At At At

: : 1
Wi) =0, (W2) =+
< g R/ TAt
so the variance of W, blows up as At — 0. Formally, one may consider white
noise to be the limit process W (t) which is Gaussian and §-correlated:

Wy, =

then

<WWQ>=Q <WW@W%@>:5@—SL




Randomized Dynamics

Let us start with the 1st order ODE
X{t)=v(X (@), X(0)=u.

To solve this numerically we use a time step At as before and consider the
discrete time iteration

Xk:—l—l IXk—I—U(Xk) At, X()IJC(),

then Xapprox (t) = X () should converge to X (t) as At — 0.




Simulating an ODE

ODE X = - X with X(0)=1.




We now try and add some noise:
X#)=v(X®#)+oW(t), X(0)=u.

This time we have the approximation scheme

Xpr1 = X +v(Xp) At + o VA1, Xo = 0.




Ito form of the SDE

So far so good! But if we want to make o depend on X (¢) then we need to
be more precise. We interpret the SDE

dX(t) =v(X(t))dt+o(X(t))dW(t), X(0)= =z,
to have future pointing differentials, that is
dX(t) = X(t+dt) — X(t),
and is approximated by the scheme

—Xk—l—l :Xk;-FU(Xk) At—FO'(Xk)‘V Atfk_H, Xo = Xy-.




The issue is that, while

(0 (Xk) €kt1) = (0 (Xk)) (€k+1) = 0,

we have

(o (Xk) &) o< VAL

and so we would get a different limit process if we used & in the iteration rather
than §k+1 .




Markov Processes

« To specify a stochastic process we must specify all its multi-time pdfs

p(@n,tn;- - 521, 00)
for X (t1) = 21, , X (t,) = x,, for each n > 0.

« The process is Markov if we have

p(xn,tn; - s21,t1) = T(Tn, tn|Tn_1,tn_1) - - T(w2, 2|21, t1) p(21, 1),

where whenever t,, > t,,_1 > --- > t;.




Transition Mechanism

 These give the conditional probabilities

Prob{z < X (t) < z + dz|X (o) = zo} = T(x, t|xo, to) du,

for t > .

« We have the propagation rule (Chapman-Kolmogorov equation)

/T('CU) tlxla tl) T(xla t1|CL'0, t(}) d.iL'l — T('CU) tl.’L'(), tO)a

for all t > t1 > tg.




Wiener’s construction

« The Wiener process is a Markov process which starts at the origin at time zero, and
has the transition mechanism

T (33, t’.CUo, to)

p(z,0)




The Ito differential dW/(t)

» This is not a true differential! The square of dW(t) is not negligible. Instead,
AW (£) dW (t) = dt.
 So, forinstance, we have the Ito formula

AW (D) = g (WD) dW (1) + 3" (WD) dW (K] + -

g (W (t)dw (t) + %g”(W(t))dt.




Functional Integration (Feynman & Kac)

Indeed, we have

B (2 —p_1)>
p(@n, ;- 21, t1) dog - -doy oce TF 2mte1) day, - - - day

Formally, we may introduce a limit “path integral” with probability measure on
the space of paths
IP){N'iener [dW] — B_SWiener w] Dw.

where we have the action

SWiener [W]




Diffusions

e Let's return to the Ito SDE
dX(t) = v(X () dt + o(X (1) dW (1), X(0) = zo.

« We have the stochastic differential expansion

d(X(10) = ¢ (X(0)dX () + 50" (X(0) dX (1) + -

(X ()9 (X (1) + %O(X ()%g" (X (t))]dt + o (X (8))g' (X (2)) AW (2).




Diffusions

« Averaging gives <dg(X(t))> = <£g(X(t))> dt

where the generator of the diffusion is 0 1 5
o(x)

[l:v(:c)%-l-ﬁ

« Alternatively, this may be formulated as the Fokker-Planck equation

0 . B




Filtering

Suppose that we have a system described by a process {X (¢) : t > 0}. We
obtain information by observing a related process {Y (¢) : ¢ > 0}.

dX = wv(X)dt+o(X)dW (stochastic dynamics),
dY = h(X)dt+dZ (Noisy observations).

Here we assume that the dynamical noise W and the observational noise Z are
independent Wiener processes.

 Estimate unknown X(t) using the observationsy ={y(s): 0 <s < t}.




We'll cheat a bit and use Path integrals

The joint probability of both X and Y up to time ¢ is

Pl [dx, dy] = e~ Sx ¥4 DxDy,

Sx [x] +/0 %[g-h(a:)ﬁdfr

Sx [x] + Swiener Y] — /0 [h (x)y — %h (5[3)2 dr.




Or,
P y [dx, dy] = P [dX] Piyiener [dy] A (¥]%) -

where the Kallianpur-Streibel likelihood is

M (y|x) = efo [H@)y()=3h()*dr]

The distribution for X (¢) given observations y = {y (7) : 0 < 7 < t} is then

[HO=re ) (y]x) P [dx]

post x(0)=x¢

pr (wely) = f
x(0)=zq

A(y|x) Pt [dx']




The Filter

Let us write p () for pP**(z|{Y (7) : 0 < 7 < t}). This is the pdf for X ()
conditioned on the past observations {Y (1) : 0 < 7 < t}.

The estimate for f(X (¢)) will be the filter
_ Jou)f(x)dx

wih) = [ o) f(@yde = 7T

where the non-normalized o; satisfies the Duncan-Mortensen-Zakai equa-
tion
doi(z) = L0¢(x) dt + h(z)o(x) dY ().




The Filter Equations

The estimate for f(X(¢)) will be the filter

dr(f) = wo (L) dt + {mo(fh) — mo( f)m (k) }I (D).

where the innovations process is defined as

dI(t) = dY (t) — mp(h) dt.




