LECTURE II -STOCHASTICS

> John Gough Aberystwyth

CIRM, 16-20 April 2018

Discrete Time White Noise

• We start with a discrete time model for noise. Suppose we have a sequence $\xi_1, \xi_2, \xi_3, \cdots$ of independent random variables occurring each Δt seconds and with

$$\langle \xi_k \rangle = 0, \quad \left\langle \xi_k^2 \right\rangle = 1.$$

• A random walk, X_1, X_2, X_3, \cdots , is given by

$$X_n = \sum_{k=1}^n \xi_k$$

and we have

$$\langle X_n \rangle = 0, \quad \langle X_n^2 \rangle = n.$$

Typical Random Walks

De Moivre – Laplace Limit

• For time t > 0 fixed, let N(t) be the largest integer less than or equal to $t/\Delta t$. Introduce the rescaled variable

$$W_{\text{approx}}(t) = \sqrt{\Delta t} \sum_{k=0}^{N(t)} \xi_k.$$

• By a central limit, $W_{\text{approx}}(t)$ converges to a limit variable W(t) which is Gaussian with

$$\langle W(t) \rangle = 0, \quad \left\langle W(t)^2 \right\rangle = t.$$

The family $\{W(t) : t \ge 0\}$ obtained this way is called a Wiener process.

Wiener Paths

White Noise (Continuous Time)

Wiener showed that the limit process has sample paths that are almost always continuous and nowhere differentiable. Let us look at the approximate derivative

$$\dot{W}_k = \frac{\Delta W_k}{\Delta t} = \frac{W_{k+1} - W_k}{\Delta t} = \frac{\sqrt{\Delta t}\,\xi_{k+1}}{\Delta t},$$

then

$$\left\langle \dot{W}_{k}\right\rangle = 0, \quad \left\langle \dot{W}_{k}^{2}\right\rangle = \frac{1}{\Delta t}$$

so the variance of \dot{W}_k blows up as $\Delta t \to 0$. Formally, one may consider white **noise** to be the limit process $\dot{W}(t)$ which is Gaussian and δ -correlated:

$$\left\langle \dot{W}(t) \right\rangle = 0, \quad \left\langle \dot{W}(t) \dot{W}(s) \right\rangle = \delta(t-s).$$

Randomized Dynamics

• Let us start with the **1st order ODE**

$$\dot{X}(t) = v(X(t)), \quad X(0) = x_0.$$

To solve this numerically we use a time step Δt as before and consider the discrete time iteration

$$X_{k+1} = X_k + v(X_k) \Delta t, \quad X_0 = x_0,$$

then $X_{\text{approx}}(t) = X_{N(t)}$ should converge to X(t) as $\Delta t \to 0$.

Simulating an ODE

An approximation to the solution of the ODE $\dot{\mathbf{X}} = -\mathbf{X}$ with $\mathbf{X}(0)=1$.

We now try and add some noise:

$$\dot{X}(t) = v(X(t)) + \sigma \dot{W}(t), \quad X(0) = x_0.$$

This time we have the approximation scheme

$$X_{k+1} = X_k + v(X_k) \Delta t + \sigma \sqrt{\Delta t} \xi_{k+1}, \quad X_0 = x_0.$$

Ito form of the SDE

So far so good! But if we want to make σ depend on X(t) then we need to be more precise. We interpret the SDE

 $dX(t) = v(X(t)) dt + \sigma(X(t)) dW(t), \quad X(0) = x_0,$

to have *future pointing differentials*, that is

$$dX(t) \equiv X(t+dt) - X(t),$$

and is approximated by the scheme

$$X_{k+1} = X_k + v(X_k)\Delta t + \sigma(X_k)\sqrt{\Delta t}\xi_{k+1}, \quad X_0 = x_0.$$

The issue is that, while

$$\langle \sigma(X_k) \xi_{k+1} \rangle = \langle \sigma(X_k) \rangle \langle \xi_{k+1} \rangle = 0,$$

we have

$$\langle \sigma \left(X_k \right) \xi_k \rangle \propto \sqrt{\Delta t}$$

and so we would get a different limit process if we used ξ_k in the iteration rather than ξ_{k+1} .

Markov Processes

• To specify a **stochastic process** we must specify all its multi-time pdfs

$$\rho\left(x_n,t_n;\cdots;x_1,t_1\right)$$

for $X(t_1) = x_1, \cdots, X(t_n) = x_n$ for each $n \ge 0$.

• The process is **Markov** if we have

$$\rho(x_n, t_n; \cdots; x_1, t_1) = T(x_n, t_n | x_{n-1}, t_{n-1}) \cdots T(x_2, t_2 | x_1, t_1) \rho(x_1, t_1),$$

where whenever $t_n > t_{n-1} > \cdots > t_1$.

Transition Mechanism

• These give the conditional probabilities

$$\operatorname{Prob}\left\{x \le X(t) \le x + dx | X(t_0) = x_0\right\} = T(x, t | x_0, t_0) \, dx,$$

for $t > t_0$.

• We have the propagation rule (Chapman-Kolmogorov equation)

$$\int T(x,t|x_1,t_1) T(x_1,t_1|x_0,t_0) \, dx_1 = T(x,t|x_0,t_0),$$

for all $t > t_1 > t_0$.

Wiener's construction

• The Wiener process is a Markov process which starts at the origin at time zero, and has the transition mechanism

$$T(x,t|x_0,t_0) = \frac{1}{\sqrt{2\pi (t-t_0)}} e^{-\frac{(x-x_0)^2}{2(t-t_0)}},$$

$$\rho(x,0) = \delta_0(x).$$

• The transition mechanism is the Green's function for the heat equation

$$\frac{\partial}{\partial t}\rho = \frac{1}{2}\frac{\partial^2}{\partial x^2}\rho.$$

The Ito differential *dW(t)*

• This is not a true differential! The square of dW(t) is not negligible. Instead,

 $dW(t) \, dW(t) = dt.$

• So, for instance, we have the Ito formula

$$dg(W(t)) = g'(W(t)) dW(t) + \frac{1}{2}g''(W(t)) dW(t)^2 + \cdots$$

= $g'(W(t)) dW(t) + \frac{1}{2}g''(W(t)) dt.$

Functional Integration (Feynman & Kac)

Indeed, we have

$$\rho(x_n, t_n; \cdots; x_1, t_1) dx_n \cdots dx_1 \propto e^{-\sum_k \frac{(x_k - x_{k-1})^2}{2(t_k - t_{k-1})}} dx_n \cdots dx_1.$$

Formally, we may introduce a limit "path integral" with probability measure on the space of paths

$$\mathbb{P}_{\text{Wiener}}^{t}\left[d\mathbf{w}\right] = e^{-S_{\text{Wiener}}\left[\mathbf{w}\right]} \mathcal{D}\mathbf{w}.$$

where we have the action

$$S_{\text{Wiener}}\left[\mathbf{w}\right] = \int_{0}^{t} \frac{1}{2} \dot{w} \left(\tau\right)^{2} d\tau.$$

Diffusions

• Let's return to the Ito SDE

$$dX(t) = v(X(t)) dt + \sigma(X(t)) dW(t), \quad X(0) = x_0.$$

• We have the stochastic differential expansion

$$dg(X(t)) = g'(X(t)) dX(t) + \frac{1}{2}g''(X(t)) dX(t)^2 + \cdots$$

= $\left[v(X(t))g'(X(t)) + \frac{1}{2}\sigma(X(t))^2g''(X(t))\right] dt + \sigma(X(t))g'(X(t)) dW(t).$

Diffusions

• Averaging gives

$$\langle dg(X(t)) \rangle = \langle \mathcal{L}g(X(t)) \rangle dt$$

where the generator of the diffusion is

$$\mathcal{L} = v(x)\frac{\partial}{\partial x} + \frac{1}{2}\sigma(x)^2\frac{\partial^2}{\partial x^2}.$$

• Alternatively, this may be formulated as the Fokker-Planck equation

$$\frac{\partial}{\partial t}\rho(x,t) = \mathcal{L}^{\star}\rho(x,t) = -\frac{\partial}{\partial x}[v(x)\rho(x)] + \frac{1}{2}\frac{\partial}{\partial x^2}[\sigma(x)^2\rho(x)].$$

Filtering

Suppose that we have a system described by a process $\{X(t) : t \ge 0\}$. We obtain information by observing a related process $\{Y(t) : t \ge 0\}$.

 $dX = v(X) dt + \sigma(X) dW$ (stochastic dynamics), dY = h(X) dt + dZ(Noisy observations).

Here we assume that the dynamical noise W and the observational noise Z are independent Wiener processes.

• Estimate unknown X(t) using the observations $y = \{ y(s) : o \le s \le t \}$.

We'll cheat a bit and use Path integrals

The joint probability of both X and Y up to time t is

$$\mathbb{P}_{X,Y}^{t}\left[d\mathbf{x}, d\mathbf{y}\right] = e^{-S_{X,Y}\left[x, y\right]} \mathcal{D}\mathbf{x}\mathcal{D}\mathbf{y},$$

where

$$S_{X,Y} [\mathbf{x}, \mathbf{y}] = S_X [\mathbf{x}] + \int_0^t \frac{1}{2} \left[\dot{y} - h(x) \right]^2 d\tau$$

= $S_X [\mathbf{x}] + S_{\text{Wiener}} [\mathbf{y}] - \int_0^t \left[h(x) \, \dot{y} - \frac{1}{2} h(x)^2 \right] d\tau.$

$$\mathbb{P}_{X,Y}^{t}\left[d\mathbf{x}, d\mathbf{y}\right] = \mathbb{P}_{X}^{t}\left[d\mathbf{x}\right] \mathbb{P}_{\text{Wiener}}^{t}\left[d\mathbf{y}\right] \, \lambda\left(\mathbf{y}|\mathbf{x}\right)$$

where the Kallianpur-Streibel likelihood is

Or,

$$\lambda\left(\mathbf{y}|\mathbf{x}\right) = e^{\int_0^t \left[h(x)dy(\tau) - \frac{1}{2}h(x)^2d\tau\right]}.$$

•

The distribution for X(t) given observations $\mathbf{y} = \{y(\tau) : 0 \le \tau \le t\}$ is then

$$\rho_t^{\text{post}}\left(x_t|\mathbf{y}\right) = \frac{\int_{x(0)=x_0}^{x(t)=x_t} \lambda\left(\mathbf{y}|\mathbf{x}\right) \mathbb{P}_X^t\left[d\mathbf{x}\right]}{\int_{x(0)=x_0} \lambda\left(\mathbf{y}|\mathbf{x}'\right) \mathbb{P}_X^t\left[d\mathbf{x}'\right]}.$$

The Filter

Let us write $\rho_t(x)$ for $\rho_t^{\text{post}}(x|\{Y(\tau): 0 \le \tau \le t\})$. This is the pdf for X(t) conditioned on the past observations $\{Y(\tau): 0 \le \tau \le t\}$.

The estimate for f(X(t)) will be the **filter**

$$\pi_t(f) = \int \rho_t(x) f(x) \, dx = \frac{\int \sigma_t(x) f(x) \, dx}{\int \sigma_t(x') \, dx'}$$

where the non-normalized σ_t satisfies the **Duncan-Mortensen-Zakai equa**tion

 $d\sigma_t(x) = \mathcal{L}^* \sigma_t(x) \, dt + h(x) \sigma_t(x) \, dY(t).$

The Filter Equations

The estimate for f(X(t)) will be the **filter**

$$d\pi_t(f) = \pi_t(\mathcal{L}f) dt + \left\{ \pi_t(fh) - \pi_t(f)\pi_t(h) \right\} dI(t),$$

where the **innovations process** is defined as

$$dI(t) = dY(t) - \pi_t(h) dt.$$