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Four lectures:

1- Quantum non-demolition (QND) measurements
2- Discrete quantum trajectories and open quantum walks

3- Continuous monitoring and quantum trajectories

Scaling limit of POVMs and Lindblad evolution
Quantum trajectory SDEs

Basic examples [on Qu-bits]

Applications

4- Strong monitoring limit

Lecture Notes: https://www.phys.ens.fr/~dbernard/
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I .

Recall from lectures 1-2: @ signals
— Iterated POVMs with output signal s_k and updating: @ $ * R
i
p_s = SE’ 1; S with probability 7(s) = Tr(F, p F}),
ms

— To simplify: suppose that probes are spin 1/2, i.e. a doublet of POVM,
label the elements of the POVM by F,, with FYF, + FXF_ =1

— To take the continuous limit, the F's have to depend on a small parameter
and have to be small deformation of trivial elements.

They are two cases: /

— either F1F) are both non zero and proportional to the identity at ¢ = 0;

« dispersive »

or one of the two F3 F_ vanishes and the other one is equal to the identity at £ = 0.

/

« click », alias « poisson jumps »



Scaling limit of POVMs and Lindblad evolution (T)

— We aim at taking the continuous limit (in time),
with continuous monitoring and information extraction.

— We look at the case with the Fs close to the identity, symmetric at e=0.
They have to solve FIF. + F*F_ =1.

— The " local-infinitesimal' form of the POVM is:

1 ~ 1 )
Fy = —= [T+ eN —c(iH + M + 3NTN) +0(e3/?)]

with H hermitic but arbitrary N and M (not necessarily hermitic)
This codes for short time (rescaled) interactions between the system and the probe.

-> Check this is compatible the POVM condition...



Scaling limit of POVMs and Lindblad evolution (IT)

— Let us first look at the mean behaviour (ho records o the outputs +/-):
The transformation of the mean system state is:

p— ®(p) = FLpFl + F_pF!

— In the infinitesimal form: | §p:= ®(p) — p = ( —i[H,p] + Ln(p) )e

, I . 1 - . :
with Ln(p) =NpN' — 5 (N I\ p+ pN lf\/). a « Lindbladian »

Identifying € = dt gives « Lindblad evolution » [one parameter family of continuous CP-maps]

dp = (—i[H,p] + Ly(p) )dt



Scaling limit of POVMs and Lindblad evolution (IIT)

Definition-roposition (Lindblad, .....) “Lindladian”:
Let 'H be a Hilbert space and let p denote quantum states on H. Let H be hermitian end La be
set. of bounded operators on 'H. Lindblad operators are linear maps on quantum states defined

by
‘) : 1
L{p) = —i[H, p] + Z [LapLl — 5(LLLap + pLiLa)].

Lindblad operators are generators of CP-maps in the sense that the maps ®; = e form a
one parameter group of C'P-maps.
— Reciprocally, any one parameter group of CP-maps, depending continuously on this parameter,
can be wrillen m such exponential form.

— More generally/Alternatively:
(Fs)aPOVM s.t. [ — . (H+\@NS+GMS+---) _ . F.

Then, ps = |us|?, Zps =1, aprobability measure E°
? CP-maps: p — ®(p) = E°[ FpFT]

—> What the condition for the small epsilon to exist?
What is then the Lindbladian?

O(p) =p+eLllp)+---



Scaling limit of POVMs & Quantum trajectory SDEs

— What is the system state evolution
if we keep track of the output signal?
It has to be random.

o
— Recall the one-step transformation (with output +/-)

Fy pn Ft
'Tt'n(-i-)

P — Pt — with proba 7, (%) — Tr(Fx p, F1).
— After series of n-steps, we get the signal (s1,52,..sn) = (+,-,- +,...,- *),

in 1-to-1 correspondence with random walk.

I'ts scaling limit is naturally linked to a Brownian motion.

(but the statistic is not going to be that of Brownian motion).

— Let us codes the signal in the rescaled sum: X, = /¢ >, sk.

Cf. correspondance with open quantum walks
(and the relation between random walk and Brownian motion)



Scaling limit of POVMs & Quantum trajectory SDEs

— Let us codes the signal in the rescaled sum: X, = /e > .., Sk.

In the scaling limit (X, pn) becomes time dependent functions (X, pt)

— The scaling limit ( # — oo with 1 = ne lixed.) of repeated POVMs
the time evolution is governed by the following SDEs

dps — —i[ll,p¢l dt + L (pe)dt + Dy (pe)dDe,

dX; = Ti(Nps+ p:NT)dt + dBs.
with  Lvip) = NNt - é{NTNp + pNT).
Dyxip) = Np+pN' —pTr(Np+ pNT)

The measured observable is N+N*. And Bt is a Brownian motion.
Alternative representation in terms of the signals. X: = 5¢ = "signal”

— More generally: « (diffusive) Quantum Trajectory SDEs »
dpy = ( — 'i[H, /'7t] + X L, 'iﬂt))’# + f.'N(:_pt)r‘]f + Dy(pe)d By

L
and with more Brownian (or signals) sources....
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Quantum trajectory SDEs: relation with Filtering

Cf. John's lectures.

— Quantum trajectory equations are non-linear.

dpe — —illl,pe] dt + L (pe)dt + Dy (pe)d DBy,
dX; = Tr(Np;+ pNT)dt + dB,.
— But-... solution can be written as: pt = o/Zy with  Z; = Tr(oy)

i.e. \sigma is an « unnormalised state ».

with
doy = i[H,04|dt + Ly (0¢) + (Noy + 0 NT) d X,

dZ, = Z; Tr(Npy + pe NT) d X,

This is now a linear equation in sigma, driven by the output signal.
Compare with Filtering equation....

_ FypF}

- w(s)

Compare with the iteration of the discrete map: ,




Quantum trajectory SDEs: Hint for a proof:

— Let the signal be: X, = /= 3", . si.
EXpi1— XnlFnl = VeERsp 1| Fal = Ve(mn(+) — mn(=)) ==Tr(Npp + /7n/\’t) -+
E[(Xny1 — Xn)?|Fn] = <cE[s) | Fn] ==

There is a drift in the statistics because the probability to have +/- is state dependent:

This corresponds to: d.X; = "Ir(/N pt + pt_z\’*) dt + dBs.

— Tteration of the discrete Q-trajectories

F, p1 F7I FS F FT FT
P = FopoFy, , P2 = 2P 5 271 10 ,efc....
! (81) 7T(82) (31782)
On :
Thus Pn — Z_ with Onp — an . }781,00}7]L y FSan

Expand in epsilon and compare sigma_{n+m} and \sigma_n

doy = i[H, o¢]dt + Ln(0¢) + (Noy + o NT) d X,

10



Unraveling of Lindblad equation

— Represent a dissipative Lindblad equation has the mean expectation of
the non-dissipative/non-mixing but random process.

Cf. the discrete case, or quantum noise.

— Diffusive Quantum trajectories as unraveling... (case i) (see above)

dpt = Lsys(pt) dt + Ly (pe) dt + Dy (pe) dBy

— Jumpy Poisonnian Q-trajectories as unraveling... (case ii)

dpr = Leys(pe) dt + Ly (py) dt + My (py) dY

~ NpNT)
~ Tr(NpNT)

with My (p) p and dY; =dN, — Tr(NpNT)dt

/'

Poisson process with intensity/mean Tr(NpNT)

—> Typical trajectory during time interval dt?



Lindblad evolution and (Poisson) unraveling

— Following the approach we adopted, we got the Lindblad equations via
the mean evolution of random POVMs.
—> We can also view them as the mean evolution of « jumpy » processes.

— Start from d,Ot — —’L[H, ,Ot] dt + Ly (,Ot) dt
— Define a random evolution (on states) between t and t+dt via:
: , 1
- If no jumps: [y) — |1y) — iH |3)y) dt — §(N‘LN — (NTN):) [4e) dt

with proba (1 — (NTN), dt)

- If jumps: 1)) — N\¢t>/\/<NTN>t

with proba (NTN), dt

—> Cf. Dyson's expansion for the kernel « exp(tL) »...



Bacis examples of Quantum Trajectories Qu-bit . (Q U )
Spin 1/2 '

— Example I: Non-demolition measurement

The continuous version of the discrete non-demolition measurement.

Q-trajectory SDEs: dp = Lmeas(p) dt + Dmeas(p) dBy
If SinglAZ is monitored: Lmeas(p) = —; T, |02, p|] and  Dpeas(p) = ;i({gz:!)} — 2ptr(pa,))
Qt = <+|Pt|+>

— SDEs for the diagonal matrix element Q:

9

(](2(; =7 (;)t(] (Qt) (1 Rt: \}«/

. . 5 Mt; ' # W.W ﬂ'\'a\
Hence, Qt is a (bounded) martingale. 4 ST

The martingale convergence theorem applies an e — »

o — I with proba Qq.  Qn, — 0 wilh proba | — Q)p.

. . . . _—
The convergence is exponentially fast with a time scale of order ~~*

— Find an explicit solution to this equation (in ferms of the signals)?

13



— Example II: Qu-bit in thermal contact
A Qu-bit, in contact with a thermal bath, with its energy continuously monitored.

dp = (dp)syst + (dp)meas. with  (dp)syst — —t|h, pldt + Liperm(p) i

. 1 . ) , 1 \
ltherm(£) = /\’,')(«’.T AT — E{JI T ,pt)+ A1 —p) ((7 T — 3{” aT :ﬂ})a

/s
—

(induce incoherent transitions between states |+ and |->)

— SDEs for the diagonal matrix element Q:

dQ)s — ANp — Q)dt + 5 Qe(1 — Q¢ ) d 3.

T~

Thermal relaxation Effect of monitoring

« competition »
with two characteristic time scales!

1 mw TIm
) |
/MW L H LJLUJJmR‘ I L hl.

i

0 ;
t n

large lambda
large gamma
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— Example ITI: Monitored Rabi oscillation
A Qu-bit with the monitoring of an observable non-commuting with the hamiltonian.

Here we monitor the system observable ¢* for a Qu-bit with hamiltonian wo*”.

— Q-trajectory SDEs dp — (a'.p)syS + (dp)mess with (dp)ays — —iw[a™, py] dit

d@), wUpdt +~vQ(1 = Q) dby, 7
| | ~2 ) [ for' = 7 1 O
(N']t — - (Qt — 3) df — 8 [-/t dt — '."[]t(Qt — ;:l rH?t

Rabi oscillation / « competition » \ Effect of measurement
with two characteristic time scales!

TN T
,u\f\;a\, \)w J\“ ” « ‘

¢\f

large omega large gamma

— The state purifies exponentially fast: reduction to a one-parameter SDE
15



Application (I): The Open Quantum Brownian Motion (OQBM)

— OQBM = Scaling limit of OQW.

— Recall that OQW = repeated position dependent POVM (alias Q-trajectories)
if 3 gp(x) @ |2)(z| := Elpn @ |2, ) {zx]] is the mean density matrix of an OQW

then () = P(n) () = Z Byzpn(y)B,,..  with B's the transition matrices
“21’

— For an homogeneous walk on the line:

pr+selc) = F_ p(x + dx) Fi + F, pe(x — o) F_;r_

— In the scaling limit, with diffusive scaling (dx"2=dt) and F= = — [[= VEN = <(if + 3 NTN) 4 0(:7)

'\f.

o o 1, o o o
Ope(z) = —i|H,pe(z)] | Edipt(:v) (NOzpe(z) | ()l,pt(;lt)Nlj | Ly (pe(z)).

This is a (well defined) Lindblad equation on H x L"2(R), called the OQBM,
generalizing diffusion equations, mixing spatial and internal d.o.f.'s.

— Can be generalized to higher dimension with/without in-homogeneities.
16



Application(IT): Elements of feedback & control

See I. Dotsenko's and B. Huard lectures

— System monitoring -> information/output signals
-> back acts on the systems
-> many ways (at least theoretically...)

— Say:

- monitoring : dps — —i[ll,p¢l dt + Ly (pe)dt + Dy (pg)d Dy,

) o _ . 7- 1.
- signalsz dX; = Tr(Nps+ peN')dt + dB;.

o | | 1
- back-act unitarily:  p— e peth It = p—i[h, pl dX; — 510, (b, Al] (dX;)?

—> What is the total evolution ?

— Many other protocols:



Four lectures:

1- Quantum non-demolition (QND) measurements
2- Discrete quantum trajectories and open quantum walks
3- Continuous monitoring and quantum trajectories

4- Strong monitoring limit

Examples: Thermal Qu-bit & Rabi
The quantum jump Markov chain
Examples

A finer structure: quantum spikes
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Two basics examples:

—Two processes in competition: system evolution and monitoring with different time scales.

A thermal Qu-bit: A coherent Qu-bit:

Monitoring the energy of Qu-bit Moni’ror'si]ng Rabi oscillation
O =0,

in contact with a thermal bath H= =0,
O=H xo, 2

I ~, SN - ] I i W il
S 051 | \ / \ /
\ / )

20

0.0 \ \
1.0 \ / 3\
=1 \ / \ \
l.. }I

S 0.5

0.0
1.0

S 05}

0.0

V=25

1“...
oF

-

o

-
L
1

0

1
v=10 ~
| 82
) L |—ﬂ—
1 g 0
0 2t
15

" (As T-meas decreases)

1.0
S 0.5 1
O' L m‘

0 5 10
t

() 29

— Quantum jumps emerge (from a diffusive behaviour, they are not built in)...
because we moved the *von Neumann cut’.



Zeno effect or not?

— How does the quantum Zeno effect affects quantum trajectories ?

— Recall how do quantum trajectories for a thermal Qu-bit or for Rabi oscillations look.

40, w Uy dt +~Qu(1 — Q) d3,, dQs — Ap — Q)dt + v Qe(1 — Q) d 13;.

t)

. I Y- - I
(I[Jt — —() (Qt —_ 3) f]f — ?{-/t (H' o "r’[]t(th — 3\. l’lnt

T | T T

N~ ...~- similar

I
AR <- but -> L g LRl
o v | o |
[ | iy oo 7)) — 1/A1 —p) and limy_oc T — 1/ Ap.
Tjuulp - "*"2,'; '1‘1*"2 X 'T}::‘){u}..i_/TULtez-’:s' NO Zeno effeC'I'

Zeno effect

— Hamiltonian and dissipative channels react quite differently fo measurement
back action, i.e. to the Zeno effect [because of the number of d.o.f.'s involved]

20



Basic example: Thermal Qu-bit or.. | what is the strong measurement limit

of quantum trajectories (part I)

1.0

v =0.01

S 0.5

— A Qu-bit, in contact with a thermal bath

1.0

with its energy continuously monitored. -1

S 0.5

0.0
1.0

Qs — Mp — Q)dt + 5 Qu(1 — Q¢) d13;. MMW

0 0

In the imit v — oc of very efficient monitoring, we have :
— The invarianl measure of the thermal guantumn trajectory SDE has a linil:
lim,, ;o0 dPstat = [(1 —p)4(Q) + pd(1 — Q)] dQ).

— The limits of the mean time T (resp. T4 ) the trojectorics spend near Q ~ 1 (resp. @ ~0)
re!
lim, oo T, =1/A(1 —p) and lim, .o Tp =1/Ap.

21



Basic example: Thermal Qu-bit  Hint for a proof
— Stationary measure for 1d SDE:  d@r = [(Q:)di | 4(Q:)dB;

—> Transition kernels, evolution of expectation values, of measures.

Evolution of measure: dP(Q) = 0g (%862 g(Q) — f(Q))P(Q) dt

Stationary measure:  dPiat(Q) =0

— Standard formula for the stopping time statistics:

Let 0 < @Q; < @Qf < 1. Let T, ¢ be the [irst instance the process started at Q; hits Qy belore hitting 0.

Qs e o .
dQ) M) / AP .. with  Oh(Q) — f(Q)/¢*(Q) [if Ois a forbidden target]

[, f] — 2 /
JQ;

Then, careful limit gamma->infinity.

(.?»‘: L

e Qi | \ P —el
_ ACTUC(”yi ~11_1,1:.( PIAYL; € 1] a; loepy + (l — a) 0; ./3 e “ids, [to be used later.....]

22



Basic example: Monitored Rabi oscill. or.. | what is the strong measurement limit
of quantum trajectories (part I)

— Similar methods apply to the case of monitored Rabi
oscillation for a Qu-bit, to prove The Zeno formula for
for the mean time in between jumps T 2
and finer statistical properties.

]unlp =Y /4%’

~ =110y, My = Ll
\ [ Y
() \\ /' 'l‘. p /
7 \
r \ J \ 4
\. [,
_0
\
J

|
1 l.,. . PWT,
Ge

— Hint of a proof: L J
0 ' : 0 bl uﬂ‘ |

Project the Q-trajectory SDEs on pure state

condition so we restrict to sta,tes of the form |y;)  cos(0¢/2) T)+sin(0:/2)| |}, which correspond
to () = r)(1 + casfy) and U/, = 5 L sin #,. 'I'his rednees the evolution equation to a single SDE far

Q( or 91.

dfy = —(w + 2~vsinf; cos B ) dt — 2+ sin f; dB;.

23



The quantum jumps Markov chain

— In general: dpr = Lays(pr) dt + YL (pr) dt + 4 D (pr) dBs.

To take the large gamma limit, avoiding the Zeno effect requires rescaling coefficients in the
system dynamics.

— First, the mean behaviour:

Let N be diagonalisable and |i> the eigen-vectors.
Let Qi be the diagonal element of the density matrix. Qi := (i|p)

Then, é‘)@j = az 772.3-. Markov chain on pointer states.
)

N

Explicitly computable from the microscopic data.

If one is only interested in the mean behaviour (and hence in the jump rates)

dpr = (Lsys(pt) +7° LN(:Ot)) dt

24



The quantum jumps Markov chain (I) : Hint for a proof.

— If one is only interested in the mean behaviour (and hence in the jump rates)

dpt = (Lsys(pt) +7° LN(pt)) dt

\ Potentially big at large gammal

Perturbation theory around « Ker Ln ».

Two simple cases:
(i) (Dissipative channel) L_sys preserves the pointer basis: Lgys(|7)(2]) = Z Aij 17)4]
J

At large gamma: dpt|diag = Lsys(Pt|diag)dl

(ii) (Unitary channel) : Lsys(p) = —i[H, p] (+ conditions)

At large gamma: dptldgiag = =7 > (Lsys - (L)™' Lsys) (Pdiag)|diag

25



The gquantum jumps Markov chain / Potentially big at large gamma!!

— In general: dpr = Laya(pr) dt + v L (pr) dt + v D (pr) dBy.

(To take the large gamma limit, avoiding the Zeno effect requires rescaling coefficients in the system dynamics.)

The proof is (we believe) interesting itself because it requires dealing with
the strong noise limit of SDEs.

— More:

At large gamma, all finite dimensional distributions of the conditioned density
matrix converge to those of a finite state Markov process on the projectors
associated to the measurement eigenvectors (the pointer states).

This applies only not the finite dimensional distributions.

- At every (fixed) time: pt = |i¢) (i)
- In mean: Pt = Z Qi(t) |3) (i

20



The quantum jumps Markov chain (IT) : Hint for a proof.

dpy = Lays(pr) dt + 7214;\; (pr)dt + v Dn(pr) dBys.

— It is based on an analysis of the second order differential operator
associated to the SDEs:

df (pe) = (D[ )(pe) dl + (- - - )dBks.

el

\ with D of the form: © — Dg 4+~

Do,

Projection at large gamma plus perturbation theory. I

Potentially big at large gammal

27



Imaging transport & Q-flux in spin chains :

dp¢ ‘meas. XY Hamiltonian H = ¢ Z]_(g}fo}vﬁ + 0;_/0;4“)

with monitoring of the spin Sz : |N; = 07.

— Pointer states are spin configurations : |[e]) = |--- , 1], -+, 1|, )
—> Projection on (classical) spin configuration (at every time):
pr = lled) (el =Pler)  but mean state.... pe =D Qs(P(e),
d _ 1 _ _ _
Eps — —§D Z [U;_Uj-i-l’ [0] 0';+17p3]] + h.C._,
(Quantum) Markov chain = SSEP, fD\ A
alias Simple Symmetric Exclusion Process. | 1.1 J.l‘l

— Emergence of « classicality » from Q-monitoring.

- But classical variables are relative to the monitored observable and the dynamics depends on the
monitoring process.



A finer structure: quantum spikes

— Let us look again at the quantum trajectories:

For a coherent Qu-bit:

l‘ y = .1 1“\' ‘W = LIl
‘ fl\*'l : 4 |

Q Q #
\ / 1

1 .0
0 21 I
.

1

",
)
oy 10 "T“—F'T"T’“
| ‘ ;

;l .'

For a thermal Qu-bit:

Ll W L

A finer structure survives, /

besides the jumps: the spikes.

- Spikes of height bigger a than a cutoff are countable.
- They have infinitesimal time duration, of order gamma”{-2}

— They have to be taken into account say when controlling Q-bits
(as otherwise the " controller’ may trigger to often).

29



Zooming in on Quantum Trajectories

— Q-Spikes are (almost) instantaneous (time scale of order T-meas)
but have an internal structure

—> Use a « effective time » only sensible to state variation
instead of the " natural’ time parametrisation. Say:

T = ZTr[(5,0n)2)] or 7= ZTT[(5Pn)2)diag]

| T N | ﬂh. lu n\ VM
. i ‘\

. | { [

_ | f

V! T A
\'v”\ 'v'” \ u Ll w
A 0\

parametrised by the quadratic variation

VU

with natural tfime parametrisation

— This is not in contradiction with the fact that all finite distributions of the
Q-trajectories converge to those of the jump Markov chain.

« What is true at any (given) time does not (always) hold at every time | »



Discrete:
system evolution + weak
measurement at high frequency.

Lkl | "']" T TT H"
‘)
o
) .AALJ.;.J.L Ll_.nu...a..x.. ~hh
u - 10
L T
' "ll ’ ’." ' I'u
o
1 | | | ! ' I‘I ' ‘
ol AR 1 WA L \
n ¢ 6
0 . —
f(s) -~ — T
—
J—
0ne
0 10
Flis. 1. LYscrete guantum trajectories in real and effective

L. Tops:

real e 2 shows sharp jumps and spikes. Center: The cue-
ludiom af €2 in effecisne Gme t allaws fa resalie whot happena
ouleide e bowndsrwy O and 1, the deledy wre anfuided, Bol-
The plots
are showm for the same reabization mth £ — 0.3, As — IN~3,

tom: Liffective fime as a function of the real fame.

=058 und N\=1.

= S TH{(6pa)?] o

and the signal...

T eaoodalaene of e grvonad shele prodedeededy O

Continuous:

system evolution + continuous

monitoring at high rate.

L bl m
f*,‘;‘ l‘@‘ .Ht | \M a f.'l'
”\ f / ' 'l i | f
e F
'(s) e — |
T

FIG. 2. Continuous quanfum drajectonies in read and €jffec
dxew dxvav. Tap: Thee eancabudeornc of e
Q@ in real fime = shows sharp jumps end spikes. Center: The
enabudion af () in effertine fime t looks like o reficrted Hmum
wre wsolwie walkoul sharp buneilsons, Bollow: Efcelive e
az a function of the real tame. 1he plots are shoun for the
some renlisafson amth 4 — 200 (whach Inaks ke ¥ — 400,
p=03uanmd N=1.

= > Tr[(6pn)Giag]

grmsrercd stale prmlvidndily

— The question is how to reconstruct the physical time given the effective time



Internal structure of Q-jumps and Q-Spikes.

For a thermal Qu-bit, let @, = (+|p,|+)

— Theorem:

' In the large monitoring rate limit, the Q-trajectories of
f thermal Qu-bit are equivalent " in law' o a Brownian motion
- reflected at O and 1 but parametrised by its local times via

1 1
_ : _ oLt
Q)+ = const. ||[W_.|| with  t= v Pk
— Proposition: 1
~ In the large monitoring rate limit,
- Quantum spikes have a scale invariant statistics; mm
. - They form a Point Poisson Process G

QM \
1’}{» ."

— Y w—lj-rl YT
Q‘ spiky
i N .l x J process
i W K
,'; "’w " .‘ i
L " | \ | | "“.‘ vl il reflected
y L iy ‘ :
" \ g Brownian
AL "I
effective
time
physical time

— Similar results hold for a (large) class of SDEs in the strong noise limit....



We stop here this series of lectures on
« Statistical Aspects of Quantum State Monitoring »
for (and by) Amateurs

0

PEE

THANK YOU!
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A finer structure: quantum spikes (IT)

— Why spikes survive?
Look at the linear equation close to Q=0:  dX; = Apdt +~vXdB;.

Exact solution -> ~* X, converges in law:

ApY = lim v’ X;  with P[Y < y] = e~ 2/¥

Y— 0O

In a given trajectory, all Xt are of order ~~2 but they are correlated on a time
interval of order~~2 . On a given time interval they are v~ such variables.

Hence, the maximum A/ := sup,c(, ;[ X¢] is of order 1:

PIM < m| ~ [6_2/72m]72(b_“)

34



A finer structure: quantum spikes (IT)

— Check statistical property of Q-trajectories (derived from the SDEs)

_ . dc)-
Poisson intensity for spikes emerging from O:  dvo = Apdj - {6(1 — Q)dQ + Q—?

— Recall: the distribution of the time a trajectory starting at Qi reaches Q is:

Q; Qi ) Ap 22, For O < (); < () < 1,
—€ Y 10

APexcnr := — 4 l\f: dt = (1 — .

Q Q

— This can be computed (« rederived »)using the spikes’ description:
- Starting at Qi = conditioning on the presence of a spike point in [Qi,1]x[0,dt] (with dt->0)
Two possibilities:
- This initial spike is actually above Q (first term)
P'[Meaxp.er = L Me.uxpw.sn = 1|50
- The next spikes above Q differ from the initial one (second term)

T[N Qixuse = 1. Niguxrog = 0. Niguxiee a0 = 1| Naq.xwsn = 1] 15 0
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An _explicit construction at large coupling (IT)

— Look again at the linear equation (close to Q=0): dX; = \pdt + v XdBs.
It develops spikes (from 0) at large gamma.

from natural parametrization
. . F 4 A A >
i P4 B to local time parametrization

— Hint for a proof:

9
—

Change time (quadratic variation): new ‘time’ 7 by dr := y?XZdt = (dX,)

Yield a new SDE(z, — x) : Ap

17 dr + dW,. = Apdi; + dW;

dZ, = 5
E
Matters only at Z=0-> reflection — \

a (new) Brownian motion

Z has to be a Brownian motion reflected a zero — dZ, = dL\®) 4+ dW, [Tanaka formula]
By identification: dr.\" _ Ap dit Local time at O
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