Statistical Aspects of Quantum State Monitoring
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Four lectures:

1- Quantum non-demolition (QND) measurements

What kind of experiments?

What are indirect (repeated) measurements?
Repeated POVMs & quantum trajectories
Non-demolition measurements

2- Discrete quantum trajectories and open quantum walks
3- Continuous monitoring and quantum trajectories
4- Strong monitoring limit

Lecture Notes: https://www.phys.ens.fr/~dbernard/
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What kind of experiments?

— Cavity QED: (cf. I. Dotsenk’s lectures)
Testing light/photon (the quantum system) with matter (the quantum probes).

System (S)= photons in a cavity.
Probes (P)= Rydberg atoms (two state systems)

Probe measurement
apparatus

Preparation
of the probes

Photons in a cavity Courtesy of LKB-ENS.

— Others: Circuit QED, etc... (cf. B. Huard's lectures)



Progressive field-state collapse and
quantum non-demolition photon counting

Christine Guerlin', Julien Bernu', Samuel Deléglise’, Clement Sayrin', Sébastien Gleyzes', Stefan Kuhr't,
Michel Brune’, Jean-Michel Raimond' & Serge Haroche'*

Figure 2 | Progressive collapse of
field into photon number state.
unity). ¢, Photon number
probabilities plotted versus photon
and atom numbers n and N. The
histograms evolve, as N increases
from 0 to 110, from a flat
distributioninton=5andn=7
peaks.

Courtesy of LKB-ENS.




What are (weak) indirect (repeated) measurements?

— A probe, prepared in a given (reference) state, interacts with the system,
and (projectively) measured after interaction.

Read-out

Information
entanglement I / form
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-—P Probe measurements information: output signal....
state up-dating....

Random by Q.M. rules

— How to model this process?
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What are (weak) indirect measurements (I) ?

'f"‘i

— Interaction [system-probe]: / unitary interaction operator
system state : : -
Y T p@lp)el = U(p@ )l U,
probe state /
— Probe measurement: [measurement of a non degenerate probe observable

with eigenstate |s> -> projection on T@& [s){s]|. ]

F.pFi \

p — : )s ., with probability 7(s) = Tr(F pFl), with F, := (s|U|p)
(s i S

The transformation of the system state is random (depending on the output signal)



CP-maps and Quantum Channels

— POVM [Positive Operator Valued
Set of operators Fs such that: > _FiFs=L

It ensures that: 2. 7(s) =1 because 3° Tr(FspFl) = Tr(p) = 1.

OK. with countable (or continuous) labelling too (see next lectures).

— Mean behaviour & CP-maps:

ﬁ%ZFSﬁFJ

Let @(p) := Z F, p FI such transformations are called Completely Positive (CP) maps

Theorem (Stinespring’s theorem) “Auxiliary Reservoir”:
Given a completely posttive map ® there exist a Hilbert space K, o state w on K end o unitary
operator Vooon the iensor product ' H @ K such thal

B(p) —Trg(VpmwV).

Jor any slale p on 'H.

Example of CP-maps (random unitaries).
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Repeated POVMs & Quantum Trajectories

T

— Series of probes interact recursively with the system and are recursively measured.

. Fs p, Fs1L , N
The system evolution:  pn = pni1=— (o) * b probabdlity mn(s) = Te(Fs pa FY).
The output signal: series of measurement outputs (s1,---,8,,---).

— This specifies a Markov chain (on system states) called « Quantum Trajectories »

The probability space is that of the sequences of output, equipped with a natural
filtration Fn and with an induced probability measure P.

— Iterated CP-maps:

If the output signal is not recorded, the mean system state evolves via:

Pn = Pnt1 = B(pn) = ®"F(po). with ®: p— ®(p) = Z F.pF!.



Quantum non-demolition measurements (I)

— If one want the series of repeated POVMs to be close to what a von Neumann
measuremen’r would be we have to impose that a preferred state basis is preserved.

Let « Pointer states » = states |k>

Wlth plohablht'y one.

The non-demolition condition:
— This imposes that the interaction U preserves the pointer states.

U= Z k) (k| ® Uy, and hence Fs = Z k) (s|Uk|ep) (k|-

k
unitary on probes / \ diagonal on pointer states

—> Check that then indirect measurement preserve the pointer basis.

— Conditioned probabilities:

For k fixed, the numbers p(s|k) := |(s|Ux|¢)|? specified a probability measure on the probe outputs,
Y. p(s|k) = 1. These are the distributions of the outputs conditioned on the system to be in the pointer
state |k). There is one such distribution for each pointer state.



Quantum non-demolition measurements (IT)

POVM diagonal on pointer states:  F, = Z &) (s|Ug|ep) (

— The system evolution under repeated QND POVMs:

.l.
Prn = Pnil = F;P?SI;S ,  with probability 7, (s) = Tr(F p, F’ sf ).
Look at the evolution of the diagonal matrix elements O, (k) := p ( k, k)
of the system density matrix (in the pointer basis): o Lo
[a probability measure]
p(s|k) Qn(k
Qu(k) = Qua (k) = EEELOnD),
n($)

with probability mn(s) = Te(Fapa FT) = ) p(s|k) Qn(k).
k
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Quantum non-demolition measurements (IIT)

— Repeated non-demolition POVM and converaence

A precise description
of progressive collapses
as in cavity QED experiments.

— « Convergence/Progressive collapse »:

v Fs v 1 4\ 1 7 4 \ 1 7 v s 7

— The sequences n — Q, (k) converge a.s. and in L' for any k.
— The limit distribution is peaked: Qoo(k) :=limy,_y o0 Qn(k) = Ok;koo for some random target pointer k.
— The random target ko, is distributed according to the initial distribution: Plko = k] = Qo(k).
— The convergence to the target is exponential fast with

Qn(k)/Qn (k) = exp[—nS(koolK)],

with S(ko|k) the relative entropy S(kso|k) = — . p(s|k) log [pl()iflLl:Z)] :

[hypothesis: all conditioned probability p(.|k) are distincts]
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Proof of progressive collapse

— Qn(k) is a (bounded) martingale. E[Qni1(k)|Fn] = Z P(s|k) On (k) Tn(8)

7rn(s)

[Naively: it is preserved in mean] _ Zp

= Qn(k)

— The « martingale convergence theorem » then says that Qn(k) converges a.s. and in
L1. Looking at the fixed point condition |mpl|es that Qn(k) is peaked:

LN

That is: Thmo is a certain pointer state |k, ) such that Q) (k) = dp.p

— Because it converges in L1, we get:

Plhoo = k] = Rdkc=k] = E[Quo (k)] = Qalk),  which are von Neumann rules.

— The exponential decay follow from an explicit formula for Qn(k):

Qn(k) _H( p(s k) \mn( ) H p(sku \r'p(Q|kx)

Qnl(kao) pls|kas)’ p(s|kso)

?

with N, (s) the number of the value s ocenrs in the » first output measurement.

asymptotically at large n, N u, = np <|1 )+ -
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How to read the pointer state?

— By looking at the histogram in the output signal (s1,s2,...,sn,..) for a
given series of iterated indirect measurement:

Because asymptotically at large n, N,(s) ~ np(s|hc) + ---

— Comparing the histogram with the (given) conditioned probability p(s|k)
allow to identify k_\infty if all the p(.|k) are different.

What about if we don't know the initial Q(k)?

— This is actually the real situation [as no need to do a measure of Q(k)]

start. with some a priori trial distribution, say Qg k), (-'j (k) 5 O (k) p(snt+1|k) Qu
. ’ ;.1 ' |.} { 9.'1 ') - — -

update it recursively using Bayes’ rules: Z

But the output signals (s1,52,..) are distributed with the "true’ distribution Q(k).
And the 'trial’ and the "true’ distribution have the same limit (asymptotically)

13
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Mixing, decoherence or not?
— If initially pure, the system state remains pure: no mixing.

— But if we don't record the output signals, or don't measure the output probes,
then the series of probes form a reservoir and induce decoherence.

The off-diagonal matrix element are updated as follows:

' oy Uelg)ug(k)T
I()'n.(‘_‘!? l'.) — //-7-_!._*_1 (-,_ "-':, — 8 u], g\ ]

i, k), wilh proba o, (s) — E p(.ﬂk)(?,ﬁiﬁ').
k

T Tl ‘: ~ )

Hence, in mean:
oG k) = elU Url@)]” po(i, k) = 0, exponentially

That is: exponential decoherence in the pointer basis (as usual...)
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« Macroscopic » pointer states

X
3 &

— After n probe-system interaction
(without measurement)

N Crlk) =Y Culk) @ [ @)™
k k

with « macroscopic states » @) = Z H si|Ukle)) |51) @ -+ @ |sn)

These macroscopic states are asymptotically/exponentially orthogonal

(I)k|(1)l ( ) — ZZ ([s]]1) ~ o~ D (kD)

where the sum is over partition [s] of given frequencies of occurrences of output s:  Ns(n) = ng,



Four lectures:

1- Quantum non-demolition (QND) measurements

2- Discrete quantum trajectories and open quantum walks

Repeated indirect measurement as quantum walks
Open quantum walks & examples

Basics: ergodicity, detailed balance, etc.

Dilation and geometrisation

3- Continuous monitoring and quantum trajectories

4- Strong monitoring limit

16



Repeated indirect measurement as quantum walks

— Repeated POVM as Open Quantum Walks (OQW)

- From repeated POVMs, we get output signals (s1,s2,...).
- At each step we can decide to extract some data X(n) from these outputs,

[i.e. the Xn is a fonction of the signal (s1,..sn) up to step n].

[i.e. they are randomly distributed in some seT].

- At each step, the updating of the outputs yields a updating of the data X(n).

—> We can view this updating as a « walker » moving on the set of possible
data values and whose position is X(n) at step n.

Example:

- Choose to only keep the last digit as data: i.e. X(n):= s_n
- The walker is equipped with the quantum system : an internal « quantum gyroscope ».
- It moves on the complete graph [with vertices the possible value of the output s].

Xin—1) = Xm) = sp and pp_1 = pp = Fs, pn_1 F /Tr(F O 1FJr )
with probability 75 = Tr(Fs pn_ 1FJr )

- Other choices: see below.
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Open quantum walks

Players: « A walker and its internal quantum gyroscope »:
The walker moves on oriented graph Lambda, with position « x »
A quantum system is attached to the walker with Hilbert space H and state « rho ».

Data: Transition matrices on edges By such that Z:y B:,Byy =1 for all z

Definition [Attal et al]

- TtTTT T T T T -=-- - - - == T TTTTTT T T T T T T T T T T T == I e .

Let A bc arn orie m’HI wap/e Lfl H be a H.s/hul space. Lel By, be (boum/uh operalors By, on H associuled
lo any edye © — ¢ of A such lhal Zy BryBzy = 1 for all «. Lel (x,p) be the posilion o € A und lthe
wmitcrnal state p of the walker. The open quantum walk (OQW ) with transition matrices Bgy is the Markov
chain defined by the moves
By, p B , .
(2, p) = (v, ' %y ), with probability 7py = Tr(ByypB7, ).
Yy

Example: Homogeneous OQW on the line

The two transition matrices oy (T e Bt,,+-.y:mB:,,_1‘)
st R:_ RI B3R T s Pl 7 L Pndl o I n+1: 'n+1 ) .
ent1 = = with probability 7, (=) = Tr(B+p, BT )
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Open quantum walks (IT):

— A CP-map is associated to OQWs:

Acti ng on (extended) density matrix of the form )" p, @ |x}{z|. in H&IL2(A).

—

T ( Z [l @ |.'!::> G:_’l.") — Z ( H'.l'y‘f"‘b'-' H;y ) ® ’g} -:3/ . or ns (p)l — Z B'yrpy B‘*Q_'t'
o Y

R

— There is a dual (more geometrical) point of view:
Instead of repeating POVM on the internal state,
OQW may be viewed as coming from evolution + position measurement.

(i) evolve the extended density matrix p @ |z){(z|. with this CP-map.
(ii) perform a von Neumann measurement of the position.
— Relation with control & feedback (because the POVMs (Byy),

depend on the information X on the system).....
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Examples:

— The simplest example is of course for homogeneous quantum walk on the line,
and for spin 1/2 internal space. Jr T
The choice is then in the transition matricess.t. B By +B_.B_ =1

— Non-demolition measurement as OQW:

. 9 - . . - - . -
In this example H — C*, A — Z and Lhe transition matrices By :— B~ are diagonal — this is the non-

Vv ’E 0

demolition hypothesis. Let us paramelrize Lhem as By = ( g ,q—) withpy +p_ =1land g +¢g_ = L.
VvV Ea=

For an internal density matrix with diagonal matrix element Qn and (1-Qn),
the moves are:

':,‘Tn' Qn} — (_;I’n.+1 =, = 1. Qn-+—1 =Pl Qn-,/'-’-"n(_i))r

N

with probability mp(L] — piQn + g+(1 — Qn)

Detailed analysis can be done (as before.. equivalence)...
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Example: a crossover from diffusive to ballistic behaviors

— A choice for the simulations: BLBJr +B'B_ =1 with d=viZrZ+Z+s
B+:5_1(1§5) and B—:(S_l(_rv—su)
A Brownian like regime. A ballistic like (but diffusive) regime.
u = 1.005, v = 1.00 and r = —s = 0.00015 u=1.1,v=1.00 and »r = —s = 0.00015
T :%WFJWMH\W
Muft’fud\ﬂi'\'tfwv '«ﬁ\'\ﬂt'ﬂw‘u'u"u'u\!‘)\) !V\' ‘f‘i%‘t'ﬂklwﬂﬂi T i
JIRCHSL AR AR A |
i O o 7

— Trajectories are ballistic, with seesaw profiles induced by gyroscope flips, and large mean free paths.
But at very large time the position is Gaussian, with large effective diffusion constant.
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Basics: ergodicity, detailed balance, etc.

— Ergodicity (via Kummerer-Maassen theorem)

Theorem (Kummaerer-Maassen) “Ergodicily”:
Let (Zn, pn) an OQW. Then, we have the almaost sure convergence of its time average:

n
L E ' )
— . 6%
n Pk
E—0

when n — oo, with P(p™') = 0, or equivalent ) | B py" B, = py" -

o

zi) (x| — Z P 6 |x) (x|,  as..
T

In particular: i V) pm with Nn(y) the number of time
nroo M v the site y has been visited.
1 " inv
lim — I Pk ]I.L'\._JJ = ‘”' v
n—oc Nu(y) = § Tr(py™)
Proof: pr — pi ® |Tx){zi|. Consider the sum of its iteration Sy _, pi. Since E[p,|Fn_1] — B(fn_1), its

Doob decomposition is
7 n—|
D obe=My 1Y B,
k—0 k0

with M,, a martingale, E M, |F,_1] — M,_1. [rom the law of large for martingales and bound-
ness arguments it follows that 14, > 0 and henee that 2377 (6 2370 1 *B(p:) converges

"w=- by ! Py R
to 0. By iteration, this implies that 230 4 — %\_:f:,_l} V(o) converges Lo 0 for any me. By
. - v . T i " ! N/~
summation this then implies that L 37 ax — 137 ’ - S 3" (g} also eomverges to ().

: ation L SM e o LS o eraes
Now, the operation |, -7 B™ project on invariant states. Hence, = 31 i converges to an

invariant state. O
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Basics: ergodicity, detailed balance, etc.

— Detailed balance (as usual, by relating reversed paths)

Definition- Proposition “Detailed balance”:
(i) Detailed balance is said to be fulfilled if there exists a family of operators pu,, x € A, acting

on ‘H such that By, = pu.By,.

(ii) In such case, p™ 1= pugypl is R-invariant: P(p™) = p™v.

Alternatively, an intertwining relation between the CP map and its dual.

Probabilities of reversed path/trajectories are then linked
]P’[QI'J_)xE |x07 PO — ugo/q‘r(#go)] X I‘T(/’,LE.O) T ]P)[ﬁl'l_’xo \Ié? Pe — :u'%g/’r]jr(lu’%f)] X ﬂ(#gf)

The ratio of the probabilities to visit a path and its time reversed is proportional to the ratio
of the asymptotic frequencies of visits of the final and initial points (as in classical)

— Irreducibility, decomposition (as, or close to, classical Markov chain)

— Recurrence, transient, & harmonic measure,...

— etc....
23



Dilation and geometrisation

Recall what a (discrete) random process is.

What a quantum stochastic process could/should be?

- The initial state (« vacuum state »)
alias a measure:

- The recursive evolution:

- It entangles the system
and the n-first probes,
leaving the rest unchanged

- Filtration of algebras of observables

No measurement...
No classical information...
No bayesian up-dating..

—> Quantum Filtration....

L S < P _ 0 o Boo
!)S}"S it ,0|) (Q/;/ ‘e ,_@ p“ 5 v e psy.s (& pp . Q,

2 — Up. Q2 l’rggl — LI';ZZ(;D;I () Lfdiﬂ U’AA;‘E —

tot o
/)7{) = Op X Pp R ---

Lol T (Lol N 7T
P+l — ("'-";n+1 (on & PD) 00;71-5-1‘

.An — B(H)sys %4 B(H)probe X B(H)probe X -
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Example: A quantum process with classical walks:

If there is no internal space, OQW=RW: What is then the quantum process?

— Probes are spin 1/2 and the system Hilbert space is L?(Z) with basis |z), z € Z.
and the probe-system interaction is such that: - o

1
LT 1q\ @’ ;- ‘. — :1! + ] \ C-\f) +) + 11 —_— 1 5; _ \' 1 .
| / I‘PP: \//:z “ / | | ) M

— After n iteration, the system-probe (the n-first) state is

1 | . o
o X @) Blwa)  With )= ) @@ )

| zf'""‘n ) -

—> kind of « Quantum parallelism ».

— If we measure |+/-> we are back to classical random walks (RW).
What happens if we measure the probe spin in a different direction?



That's it for today:
Thank youl

Next Time:
3- Continuous monitoring and quantum trajectories
4- Strong indirect quantum monitoring
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