Statistical Aspects of Quantum State Monitoring for (and by) Amateurs

D. Bernard « CIRM - April 2018 »

Four lectures:

1 - Quantum non-demolition (QND) measurements

What kind of experiments?
What are indirect (repeated) measurements?

Repeated POVMs & quantum trajectories

Non-demolition measurements

- 2- Discrete quantum trajectories and open quantum walks
- 3- Continuous monitoring and quantum trajectories
- 4- Strong monitoring limit

Lecture Notes: https://www.phys.ens.fr/~dbernard/

What kind of experiments?

Cavity QED: (cf. I. Dotsenk's lectures)
 Testing light/photon (the quantum system) with matter (the quantum probes).

System (S)= photons in a cavity.

Probes (P)= Rydberg atoms (two state systems)

- Others: Circuit QED, etc... (cf. B. Huard's lectures)

Progressive field-state collapse and quantum non-demolition photon counting

Christine Guerlin¹, Julien Bernu¹, Samuel Deléglise¹, Clément Sayrin¹, Sébastien Gleyzes¹, Stefan Kuhr¹†, Michel Brune¹, Jean-Michel Raimond¹ & Serge Haroche^{1,2}

Figure 2 | Progressive collapse of field into photon number state.

unity). **c**, Photon number probabilities plotted versus photon and atom numbers n and N. The histograms evolve, as N increases from 0 to 110, from a flat distribution into n = 5 and n = 7 peaks.

Courtesy of LKB-ENS.

What are (weak) indirect (repeated) measurements?

 A probe, prepared in a given (reference) state, interacts with the system, and (projectively) measured after interaction.

— How to model this process?

What are (weak) indirect measurements (I)?

— Probe measurement: [measurement of a non degenerate probe observable with eigenstate $|s\rangle$ -> projection on $|\otimes|s\rangle\langle s|$.]

$$\rho \to \frac{F_s \, \rho \, F_s^\dagger}{\pi(s)}, \quad \text{with probability } \pi(s) = \text{Tr}(F_s \, \rho \, F_s^\dagger), \quad \text{with } F_s := \langle s | U | \varphi \rangle$$

The transformation of the system state is random (depending on the output signal)

CP-maps and Quantum Channels

- POVM [Positive Operator Valued

Set of operators Fs such that: $\sum_{s} F_{s}^{\dagger} F_{s} = \mathbb{I}$.

It ensures that: $\sum_s \pi(s) = 1$ because $\sum_s \text{Tr}(F_s \rho F_s^{\dagger}) = \text{Tr}(\rho) = 1$.

OK. with countable (or continuous) labelling too (see next lectures).

— Mean behaviour & CP-maps:

Let $\Phi(ar
ho):=\sum F_s\,ar
ho\,F_s^\dagger$ such transformations are called Completely Positive (CP) maps

Theorem (Stinespring's theorem) "Auxiliary Reservoir":

Given a completely positive map Φ there exist a Hilbert space K, a state ω on K and a unitary operator V on the tensor product $\mathcal{H} \otimes K$ such that

$$\Phi(\rho) = \operatorname{Tr}_{\mathcal{K}}(V \rho \otimes \omega V^{\dagger}).$$

for any state ρ on \mathcal{H} .

Example of CP-maps (random unitaries).

Repeated POVMs & Quantum Trajectories

— Series of probes interact recursively with the system and are recursively measured.

The system evolution:
$$\rho_n \to \rho_{n+1} = \frac{F_s \, \rho_n \, F_s^\dagger}{\pi_n(s)}$$
, with probability $\pi_n(s) = {\rm Tr}(F_s \, \rho_n \, F_s^\dagger)$.

The output signal: series of measurement outputs $(s_1, \cdots, s_n, \cdots)$.

— This specifies a Markov chain (on system states) called « Quantum Trajectories »

The probability space is that of the sequences of output, equipped with a natural filtration Fn and with an induced probability measure P.

— Iterated CP-maps:

If the output signal is not recorded, the mean system state evolves via:

$$\bar{\rho}_n \to \bar{\rho}_{n+1} = \Phi(\bar{\rho}_n) = \Phi^{n+1}(\rho_0).$$
 with $\Phi: \bar{\rho} \to \Phi(\bar{\rho}) := \sum_s F_s \, \bar{\rho} \, F_s^\dagger.$

Quantum non-demolition measurements (I)

— If one want the series of repeated POVMs to be close to what a von Neumann measurement would be, we have to impose that a preferred state basis is preserved.

that is $|k\rangle\langle k| \to |k\rangle\langle k|$ with probability one.

Let « Pointer states » = states |k>

The non-demolition condition:

— This imposes that the interaction U preserves the pointer states.

$$U=\sum_k |k\rangle\langle k|\otimes U_k, \qquad \text{and hence} \qquad F_s=\sum_k |k\rangle\langle s|U_k|\varphi\rangle\langle k|.$$
 unitary on probes diagonal on pointer states

- -> Check that then indirect measurement preserve the pointer basis.
- Conditioned probabilities:

For k fixed, the numbers $p(s|k) := |\langle s|U_k|\varphi\rangle|^2$ specified a probability measure on the probe outputs, $\sum_s p(s|k) = 1$. These are the distributions of the outputs conditioned on the system to be in the pointer state $|k\rangle$. There is one such distribution for each pointer state.

Quantum non-demolition measurements (II)

POVM diagonal on pointer states :
$$F_s = \sum_k \ket{k} ra{s|U_k|\varphi}ra{k}.$$

— The system evolution under repeated QND POVMs:

$$\rho_n \to \rho_{n+1} = \frac{F_s \, \rho_n \, F_s^{\dagger}}{\pi_n(s)}, \quad \text{with probability } \pi_n(s) = \text{Tr}(F_s \, \rho_n \, F_s^{\dagger}).$$

Look at the evolution of the diagonal matrix elements of the system density matrix (in the pointer basis):

$$Q_n(k) := \rho_n(k,k).$$
 [a probability measure]

$$Q_n(k) \to Q_{n+1}(k) = \frac{p(s|k) Q_n(k)}{\pi_n(s)},$$

with probability
$$\pi_n(s) = ext{Tr}(F_s
ho_n F_s^\dagger) = \sum_k p(s|k) \, Q_n(k).$$

Quantum non-demolition measurements (III)

— Repeated non-demolition POVM and convergence

A precise description of progressive collapses as in cavity QED experiments.

— « Convergence/Progressive collapse »:

- The sequences $n \to Q_n(k)$ converge a.s. and in \mathbb{L}^1 for any k.
- The limit distribution is peaked: $Q_{\infty}(k) := \lim_{n \to \infty} Q_n(k) = \delta_{k;k\infty}$ for some random target pointer k_{∞} .
- The random target k_{∞} is distributed according to the initial distribution: $\mathbb{P}[k_{\infty} = k] = Q_0(k)$.
- The convergence to the target is exponential fast with

$$Q_n(k)/Q_n(k_\infty) \simeq \exp[-nS(k_\infty|k)],$$

with $S(k_{\infty}|k)$ the relative entropy $S(k_{\infty}|k) = -\sum_{s} p(s|k_{\infty}) \log \left[\frac{p(s|k)}{p(s|k_{\infty})}\right]$.

[hypothesis: all conditioned probability p(.|k) are distincts]

Proof of progressive collapse

- $\mathbb{E}[Q_{n+1}(k) | \mathcal{F}_n] = \sum_{n=1}^{\infty} \frac{p(s|k) Q_n(k)}{\pi_n(s)} \pi_n(s)$ — Qn(k) is a (bounded) martingale. $= \sum_{s} p(s|k) Q_n(k) = Q_n(k)$ [Naively: it is preserved in mean]
- The « martingale convergence theorem » then says that Qn(k) converges a.s. and in L1. Looking at the fixed point condition implies that Qn(k) is peaked:

That is: there is a certain pointer state $|k_{\infty}\rangle$ such that $Q_{\infty}(k) = \delta_{k;k_{\infty}}$.

— Because it converges in L1, we get:

 $\mathbb{P}[k_{\infty}=k]=\mathbb{E}[\delta_{k_{\infty}=k}]=\mathbb{E}[Q_{\infty}(k)]=Q_{0}(k),\quad \text{which are von Neumann rules}.$

The exponential decay follow from an explicit formula for Qn(k):

$$\frac{Q_n(k)}{Q_n(k_\infty)} = \prod_s \big(\frac{p(s|k)}{p(s|k_\infty)}\big)^{N_n(s)} \simeq \prod_s \big(\frac{p(s|k)}{p(s|k_\infty)}\big)^{np(s|k_\infty)}$$

 $\frac{Q_n(k)}{Q_n(k_\infty)} = \prod_s \left(\frac{p(s|k)}{p(s|k_\infty)}\right)^{N_n(s)} \simeq \prod_s \left(\frac{p(s|k)}{p(s|k_\infty)}\right)^{np(s|k_\infty)},$ with $N_n(s)$ the number of the value s occurs in the n first output measurement asymptotically at large n, $N_n(s) \simeq np(s|k_\infty) + \cdots$

How to read the pointer state?

— By looking at the **histogram** in the output signal (s1,s2,...,sn,...) for a given series of iterated indirect measurement:

Because asymptotically at large
$$n, N_n(s) \simeq np(s|k_\infty) + \cdots$$

— Comparing the **histogram** with the (given) conditioned probability p(s|k) allow to identify k_\infty if all the p(.|k) are different.

What about if we don't know the initial Q(k)?

— This is actually the real situation [as no need to do a measure of Q(k)]

start with some a priori trial distribution, say
$$\widehat{Q}_0(k)$$
, $\widehat{Q}_n(k) \to \widehat{Q}_{n+1}(k) := \frac{p(s_{n+1}|k) \widehat{Q}_n(k)}{\widehat{Z}_n}$, update it recursively using Bayes' rules:

But the output signals (s1,s2,...) are distributed with the 'true' distribution Q(k). And the 'trial' and the 'true' distribution have the same limit (asymptotically)

Mixing, decoherence or not?

- If initially pure, the system state remains pure: no mixing.
- But if we don't record the output signals, or don't measure the output probes, then the series of probes form a reservoir and induce decoherence.

The off-diagonal matrix element are updated as follows:

$$\rho_n(j,k) \to \rho_{n+1}(j,k) = \frac{u_s(j)u_s(k)^*}{\pi_n(s)} \rho_n(j,k), \quad \text{with proba } \pi_n(s) = \sum_k p(s|k)Q_n(k).$$

Hence, in mean:

$$\bar{\rho}_n(j,k) = [\langle \varphi | U_j^* U_k | \varphi \rangle]^n \, \rho_0(j,k) \to 0,$$
 exponentially

That is: exponential decoherence in the pointer basis (as usual...)

« Macroscopic » pointer states

- After n probe-system interaction (without measurement)

$$\sum_{k} C_{k} |k\rangle \to \sum_{k} C_{k} |k\rangle \otimes |\Phi_{k}\rangle^{(n)}$$

with « macroscopic states »
$$|\Phi_k\rangle^{(n)} = \sum_{s_1,\cdots,s_n} \big(\prod_{j=1}^n \langle s_j|U_k|\varphi\rangle\big)\,|s_1\rangle\otimes\cdots\otimes|s_n\rangle$$

These macroscopic states are asymptotically/exponentially orthogonal

$$^{(n)}\langle \Phi_k | \Phi_l \rangle^{(n)} = \sum_{[s]} Z_n([s]|k)^* Z_n([s]|l) \simeq e^{-nD(k|l)}$$

where the sum is over partition [s] of given frequencies of occurrences of output s: $N_s(n)=nq_s$

Four lectures:

- 1 Quantum non-demolition (QND) measurements
- 2- Discrete quantum trajectories and open quantum walks

Repeated indirect measurement as quantum walks

Open quantum walks & examples

Basics: ergodicity, detailed balance, etc.

Dilation and geometrisation

- 3- Continuous monitoring and quantum trajectories
- 4- Strong monitoring limit

Repeated indirect measurement as quantum walks

- Repeated POVM as Open Quantum Walks (OQW)
 - From repeated POVMs, we get output signals (s1,s2,...).
 - At each step we can decide to extract some data X(n) from these outputs,

[i.e. the Xn is a fonction of the signal (s1,...sn) up to step n].

[i.e. they are randomly distributed in some set].

- At each step, the updating of the outputs yields a updating of the data X(n).
- -> We can view this updating as a « walker » moving on the set of possible data values and whose position is X(n) at step n.

Example:

- Choose to only keep the last digit as data: i.e. X(n):= s_n
- The walker is equipped with the quantum system : an internal « quantum gyroscope ».
- It moves on the complete graph [with vertices the possible value of the output s].

$$X_{(n-1)} \to X_{(n)} = s_n \text{ and } \rho_{n-1} \to \rho_n = F_{s_n} \rho_{n-1} F_{s_n}^{\dagger} / \text{Tr}(F_{s_n} \rho_{n-1} F_{s_n}^{\dagger})$$

with probability $\pi_{s_n} = \text{Tr}(F_{s_n} \rho_{n-1} F_{s_n}^{\dagger})$

Other choices: see below.

Open quantum walks

Players: « A walker and its internal quantum gyroscope »: The walker moves on oriented graph Lambda, with position « x » A quantum system is attached to the walker with Hilbert space H and state « rho ».

Data: Transition matrices on edges

$$B_{xy}$$
 such that $\sum_{y} B_{xy}^* B_{xy} = \mathbb{I}$ for all x .

Definition [Attal et al]

Let Λ be an oriented graph. Let \mathcal{H} be a Hilbert space. Let B_{xy} be (bounded) operators B_{xy} on \mathcal{H} associated to any edge $x \to y$ of Λ such that $\sum_y B_{xy}^* B_{xy} = \mathbb{I}$ for all x. Let (x, ρ) be the position $x \in \Lambda$ and the internal state ρ of the walker. The open quantum walk (OQW) with transition matrices B_{xy} is the Markov chain defined by the moves

$$(x, \rho) \to (y, \frac{B_{xy} \rho B_{xy}^*}{\pi_{xy}}), \text{ with probability } \pi_{xy} = \text{Tr}(B_{xy} \rho B_{xy}^*).$$

Example: Homogeneous OQW on the line

The two transition matrices s.t.
$$B_{+}^{*}B_{+} + B_{-}^{*}B_{-} = \mathbb{I}$$
.

$$(x_n, \rho_n) \to \left(x_{n+1} = x_n + \epsilon_{n+1}, \rho_{n+1} = \frac{B_{\epsilon_{n+1}} \rho_n B_{\epsilon_{n+1}}^*}{\pi_n(\epsilon_{n+1})}\right).$$

$$\epsilon_{n+1} = \pm \quad \text{with probability } \pi_n(\pm) = \text{Tr}(B_+ \rho_n B_{\perp}^*).$$

Open quantum walks (II):

- A CP-map is associated to OQWs:

Acting on (extended) density matrix of the form $\sum_{x} \rho_{x} \otimes |x\rangle\langle x|$. in $\mathcal{H} \otimes \mathbb{L}^{2}(\Lambda)$.

$$\mathfrak{P}\Big(\sum_x \rho_x \otimes |x\rangle\langle x|\Big) = \sum_{x;y} (B_{xy}\rho_x B_{xy}^*) \otimes |y\rangle\langle y|. \quad \text{or} \qquad \mathfrak{P}(\rho)_x = \sum_y B_{yx}\rho_y B_{yx}^*.$$

- There is a dual (more geometrical) point of view:
 Instead of repeating POVM on the internal state,
 OQW may be viewed as coming from evolution + position measurement.
 - (i) evolve the extended density matrix $\rho \otimes |x\rangle\langle x|$, with this CP-map.
 - (ii) perform a von Neumann measurement of the position.
- Relation with control & feedback (because the POVMs $(B_{xy})_y$ depend on the information X on the system).....

Examples:

- The simplest example is of course for homogeneous quantum walk on the line, and for spin 1/2 internal space.
 - The choice is then in the transition matrices s.t. $B_+^\dagger B_+ + B_-^\dagger B_- = \mathbb{I}$
- Non-demolition measurement as OQW:

In this example $\mathcal{H} = \mathbb{C}^2$, $\Lambda = \mathbb{Z}$ and the transition matrices $B_{\pm} := B_{x;x\pm 1}$ are diagonal – this is the non-demolition hypothesis. Let us parametrize them as $B_{\pm} = \begin{pmatrix} \sqrt{p_{\pm}} & 0 \\ 0 & \sqrt{q_{\pm}} \end{pmatrix}$ with $p_{+} + p_{-} = 1$ and $q_{+} + q_{-} = 1$.

For an internal density matrix with diagonal matrix element Qn and (1-Qn), the moves are:

$$(x_n, Q_n) \rightarrow (x_{n+1} = x_n \pm 1, Q_{n+1} = p_{\perp} Q_n / \pi_n(\pm)),$$

with probability $\pi_n(\pm) = p_{\pm} Q_n + q_{\pm} (1 - Q_n)$

Detailed analysis can be done (as before.. equivalence)...

Example: a crossover from diffusive to ballistic behaviors

— A choice for the simulations:
$$B_+^\dagger B_+ + B_-^\dagger B_- = \mathbb{I} \quad \text{with} \quad \delta = \sqrt{u^2 + v^2 + r^2 + s^2}$$

$$B_+ = \delta^{-1} \left(\begin{smallmatrix} u & r \\ s & v \end{smallmatrix} \right) \quad \text{and} \quad B_- = \delta^{-1} \left(\begin{smallmatrix} -v & s \\ r & -u \end{smallmatrix} \right)$$

A Brownian like regime.

u = 1.005, v = 1.00 and r = -s = 0.00015

A ballistic like (but diffusive) regime.

u = 1.1, v = 1.00 and r = -s = 0.00015

— Trajectories are ballistic, with seesaw profiles induced by gyroscope flips, and large mean free paths. But at very large time the position is Gaussian, with large effective diffusion constant.

Basics: ergodicity, detailed balance, etc.

- Ergodicity (via Kummerer-Maassen theorem)

Theorem (Kummerer-Maassen) "Ergodicity":

Let (x_n, ρ_n) an OQW. Then, we have the almost sure convergence of its time average:

$$\frac{1}{n}\sum_{k=0}^{n}\rho_{k}\otimes|x_{k}\rangle\langle x_{k}|\rightarrow\sum_{x}\rho_{x}^{\mathrm{inv}}\otimes|x\rangle\langle x|,\quad\text{a.s.,}$$

 $n \underset{k=0}{\longleftarrow}$ when $n\to\infty$, with $\mathfrak{P}(\rho^{\mathrm{inv}})=0$, or equivalent $\sum_x B_{xy} \rho_x^{\mathrm{inv}} B_{xy}^* = \rho_y^{\mathrm{inv}}$.

In particular:

$$\lim_{n\to\infty} \frac{N_n(y)}{n} = \operatorname{Tr}(\rho_y^{\text{inv}}),$$

$$\begin{split} &\lim_{n \to \infty} \frac{N_n(y)}{n} - \mathrm{Tr}(\rho_y^{\mathrm{inv}}), \\ &\lim_{n \to \infty} \frac{1}{N_n(y)} \sum_{k=0}^n \rho_k \, \mathbb{I}_{x_k - y} = \frac{\rho_y^{\mathrm{inv}}}{\mathrm{Tr}(\rho_y^{\mathrm{inv}})}. \end{split}$$

with Nn(y) the number of time the site y has been visited.

Proof:

 $\hat{\rho}_k = \rho_k \otimes |x_k\rangle\langle x_k|$. Consider the sum of its iteration $\sum_{k=0}^n \hat{\rho}_k$. Since $\mathbb{E}[\hat{\rho}_n|\mathcal{F}_{n-1}] = \mathfrak{P}(\hat{\rho}_{n-1})$, its Doob decomposition is

$$\sum_{k=0}^{n} \hat{\rho}_{k} = M_{n} + \sum_{k=0}^{n-1} \mathfrak{P}(\hat{\rho}_{k}),$$

with M_n a martingale, $\mathbb{E}[M_n|\mathcal{F}_{n-1}] = M_{n-1}$. From the law of large for martingales and boundness arguments it follows that $\frac{1}{n}M_n \to 0$ and hence that $\frac{1}{n}\sum_{k=0}^n \hat{\rho}_k = \frac{1}{n}\sum_{k=0}^{n-1} \mathfrak{P}(\hat{\rho}_k)$ converges to 0. By iteration, this implies that $\frac{1}{n}\sum_{k=0}^n \hat{\rho}_k - \frac{1}{n}\sum_{k=0}^{n-1} \mathfrak{P}^m(\hat{\rho}_k)$ converges to 0 for any m. By summation this then implies that $\frac{1}{n}\sum_{k=0}^n \hat{\rho}_k - \frac{1}{n}\sum_{k=0}^{n-1} \left(\frac{1}{M}\sum_{m=0}^{M-1} \mathfrak{P}^m\right)(\hat{\rho}_k)$ also converges to 0. Now, the operation $\frac{1}{M}\sum_{m=0}^{M} \mathfrak{P}^m$ project on invariant states. Hence, $\frac{1}{n}\sum_{k=0}^n \hat{\rho}_k$ converges to an invariant state.

Basics: ergodicity, detailed balance, etc.

- Detailed balance (as usual, by relating reversed paths)

Definition-Proposition "Detailed balance":

- (i) Detailed balance is said to be fulfilled if there exists a family of operators μ_x , $x \in \Lambda$, acting on \mathcal{H} such that $B_{yx}\mu_y = \mu_x B_{xy}^*$.
- (ii) In such case, $\rho_x^{\text{inv}} := \mu_x \mu_x^*$ is \mathfrak{P} -invariant: $\mathfrak{P}(\rho^{\text{inv}}) = \rho^{\text{inv}}$.

Alternatively, an intertwining relation between the CP map and its dual.

Probabilities of reversed path/trajectories are then linked

$$\mathbb{P}[\Omega_{x_0 \to x_\ell} \big| x_0, \rho_0 = \mu_{x_0}^2 / \mathrm{Tr}(\mu_{x_0}^2)] \times \mathrm{Tr}(\mu_{x_0}^2) = \mathbb{P}[\overline{\Omega}_{x_\ell \to x_0} \big| x_\ell, \rho_\ell = \mu_{x_\ell}^2 / \mathrm{Tr}(\mu_{x_\ell}^2)] \times \mathrm{Tr}(\mu_{x_\ell}^2).$$

The ratio of the probabilities to visit a path and its time reversed is proportional to the ratio of the asymptotic frequencies of visits of the final and initial points (as in classical)

- Irreducibility, decomposition (as, or close to, classical Markov chain)
- Recurrence, transient, & harmonic measure,...
- etc....

Dilation and geometrisation

Recall what a (discrete) random process is.

What a quantum stochastic process could/should be?

- The initial state (« vacuum state ») alias a measure:
- The recursive evolution:
- It entangles the system and the n-first probes, leaving the rest unchanged
- Filtration of algebras of observables

$$\rho_{\rm sys}^0\otimes \rho_{\rm p}\otimes \cdots \otimes \rho_{\rm p}\otimes \cdots = \rho_{\rm sys}^0\otimes \rho_{\rm p}^{\otimes \infty} =: \Omega,$$

$$\Omega \to U_{0;1} \Omega U_{0;1}^{\dagger} \to U_{0;2} U_{0;1} \Omega U_{0;1}^{\dagger} U_{0;2}^{\dagger} \to \cdots$$

$$\rho_n^{\text{tot}} \otimes \rho_p \otimes \rho_p \otimes \cdots,$$

$$\rho_{n+1}^{\text{tot}} = U_{0;n+1} \left(\rho_n^{\text{tot}} \otimes \rho_p \right) U_{0;n+1}^{\dagger},$$

$$\mathcal{A}_n := \mathcal{B}(H)_{\mathrm{sys}} \otimes \mathcal{B}(H)_{\mathrm{probe}} \otimes \mathcal{B}(H)_{\mathrm{probe}} \otimes \cdots$$

Example: A quantum process with classical walks:

If there is no internal space, OQW=RW: What is then the quantum process?

— Probes are spin 1/2 and the system Hilbert space is $L^2(\mathbb{Z})$ with basis $|x\rangle$, $x\in\mathbb{Z}$. and the probe-system interaction is such that:

$$U|x\rangle\otimes|\varphi_p\rangle=\frac{1}{\sqrt{2}}[|x+1\rangle\otimes|+\rangle+|x-1\rangle\otimes|-\rangle].$$

- After n iteration, the system-probe (the n-first) state is

$$|\psi_n\rangle = \frac{1}{2^{n/2}} \sum_{\omega_n} |X(\omega_n)\rangle \otimes |\omega_n\rangle$$
 with $|\omega_n\rangle := |\pm\rangle \otimes ... \otimes |\pm\rangle$

—> kind of « Quantum parallelism ».

— If we measure |+/-> we are back to classical random walks (RW).
What happens if we measure the probe spin in a different direction?

That's it for today: Thank you!

Next Time:

- 3- Continuous monitoring and quantum trajectories
- 4- Strong indirect quantum monitoring