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We	have	a	simple	scheme	for	obtained	
irreversible	dynamics	from	reversible	ones	
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3.1	Quantum	System	+	Classical	Noise	

•  Consider	the	stochastic	unitary	(H,R	Hermitean)	

	

• We	have	the	stochastic	Schrödinger	equation	

•  Set																																																						to	get	a	stochastic	Heisenberg	equation	

where		



Quantum	System	with	Classical	Jumps	

• We	can	also	apply	a	unitary	kick	S	at	random	times:	

	

• Here	N(t)	is	a	Poisson	process	counting	the	number	of	kicks	up	to	time	t,	it	has	
independent	increments	and	

•  So	



Lindblad	Generators	

•  		

•  These	include	the	examples	emerging	from	classical	noise,	but	the	class	of	
Lindblad	generators	is	strictly	larger	that	this	–	we	need	quantum	noise!		



3.1	Fock	Space	

• We	consider	a	boson	field:	when	we	look	at	the	

field	we	see	particles	at	specific	locations.	

• A	pure	state	of	the	field	…	n	particles	

The	wave		function	is	completely	symmetric	under	interchange	of	labels.	

•  The	number	of	particles	in	the	state	may	be	indefinite:	



Fock	Space	

• Note	that	n	=	0		is	included.	No	particles	is	a	physical	state	of	the	field.		

•  The	probability	that	we	have	exactly	n	particles	is	

Normalization	is		

	

	

•  The	vacuum	state	is	defined	as	



Fock	Space	
•  The	Hilbert	space	spanned	by	such	indefinite	number	of		

indistinguishable	boson	states	is	called	Fock	Space.	

•  	A	total	set	is	given	by	the	exponential	vectors		

•  They	satisfy	

•  The	vacuum	is		



3.3	Photons	on	a	Wire	

•  Fock	space	over	the	segment	[s,t]		:-	

•  Introduce	quantum	white	noises	

•  b(t)	annihilates	a	photon	at	t.		



The	Fundamental	Quantum	Stochastic	
Processes	
•  Creation/Annihilation	

• Number	(a.k.a.	Gauge,	conservation)		



Quantum	Stochastic	Processes	

•  Fix	a	system	Hilbert	space,							.	A	quantum	stochastic	process	is	a	family	of	
operators,	{X(t):	t≥0},	acting	on																										.	

•  The	process	is	adapted	if,	for	each	t,	the	operator	X(t)	acts	trivially	on	the	future	
environment	factor																.	

•  		QSDEs	with	adapted	coefficients	(Hudson	&	Parthasarathy,	1984)	



Quantum	Stochastic	Calculus	

•  		

•  		



Quantum	Ito	Table	

•  The	full	table	is	

• Quantum	Ito	Rule	



Some	“Classical”	Processes	

•  The	process																																															is	self-commuting,																																																			and	
had	the	distribution	of	a	Wiener	process	is	the	vacuum	state	

•  The	same	applies	to																																																				,	but	…	

	

• A	Poisson	process	is	given	by	



3.4	Emission	-	Absorption	

• Hamiltonian	

	

• Unitary	

Not	in	Wick	order!	

• Dyson	Series	

•  	Wick	order	the	terms.	



• One	step	re-ordering	

•  The	(Wick	ordered)	QSDE			



•  The	Hudson-Parthasarathy	form	is	

•  The	Heisenberg	equation:				



3.5	Scattering	



3.6	SLH	Formalism	

• Quantum	white	noises		

• Hamiltonian	H		

•  Coupling/Collapse	Operators	L	

•  Scattering	Operator	S	



Quantum	Stochastic	Models	
• General	(S ,L	,	H)	case	

Wick-ordered	form:	

Heisenberg	Picture	

Lindblad	Generator	



Input-Output	Relations	

•  The	outputs	are	defined	by	

•  From	the	quantum	Ito	calculus	



Quantum	Markovian	Models	

The	“wires”	are	quantum	fields		
and	may	carry	a	multiplicity.	



3.6	Quantum	Filtering	













Same	form	as	derived	by	Denis	and	Peter!	


