LECTUREIPROBABILITY

John Gough
Aberystwyth

CIRM, 16-20 April 2018

1.1 Jelly Beans

Texture

Colour

	$\mathrm{G}($ reen $)$	$\mathrm{Y}($ ellow $)$	$\mathrm{B}($ lue $)$	
R (ough)	$\mathbf{1 0}$	$\mathbf{4 0}$	$\mathbf{0}$	50
S(mooth)	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{2 0}$	50
	30	50	20	100

- Joint Probability $-\operatorname{Prob}\{G ; R\}=0.10$, etc.
- Marginal Probability $-\operatorname{Prob}\{G\}=0.30, \operatorname{Prob}\{R\}=0.50$
- Conditional Probability $-\operatorname{Prob}\{G \mid R\}=0.20$
- Are Colour \& Texture independent variables?
- How could they be made so?

1.2 Probability Density Functions (PDFs)

- PDFs

A random variable X has pdf ρ_{X} so that

$$
\operatorname{Pr}\{x \leq X<x+d x\}=\rho_{X}(x) d x .
$$

Normalization requires $\int \rho_{X}(x) d x=1$.

- Joint PDFs

A pair of random variables X, Y has joint pdf $\rho_{X, Y}$ so that

$$
\operatorname{Pr}\{x \leq X<x+d x ; y \leq Y \leq y+d y\}=\rho_{X, Y}(x, y) d x d y .
$$

Normalization requires $\int \rho_{X, Y}(x, y) d x d y=1$.

1.2 Probability Density Functions (PDFs)

- Marginal PDFs

$$
\begin{aligned}
\rho_{X}(x) & =\int \rho_{X, Y}(x, y) d y, \quad(x-\text { marginal }) \\
\rho_{Y}(y) & =\int \rho_{X, Y}(x, y) d x, \quad(y-\text { marginal })
\end{aligned}
$$

- Conditional PDFs

The pdf for X given that $Y=y$ is defined to be

$$
\rho_{X}(x \mid y)=\frac{\rho_{X, Y}(x, y)}{\rho_{Y}(y)}
$$

1.2 Probability Density Functions (PDFs)

- Statistical Independence

We say that X and Y are statistically independent if their joint probability factors into the marginals

$$
\rho_{X, Y}(x, y)=\rho_{X}(x) \times \rho_{Y}(y), \quad \text { (independence). }
$$

- Consequence

In the special case where X and Y are independent we have

$$
\rho_{X}(x \mid y)=\rho_{X}(x) .
$$

In other words, conditioning on the fact that $Y=y$ makes no change to our knowledge of X.

1.3 Bayes Theorem

Given $\rho_{Y \mid X}$ and ρ_{X} we can work out $\rho_{X \mid Y}$.
The key is that we can work out the joint pdf:

$$
\rho_{X, Y}(x, y)=\rho_{Y \mid X}(y \mid x) \rho_{X}(x),
$$

and so

$$
\rho_{X \mid Y}(x \mid y)=\frac{\rho_{X, Y}(x, y)}{\rho_{Y}(y)}=\frac{\rho_{Y \mid X}(y \mid x) \rho_{X}(x)}{\int \rho_{Y \mid X}\left(y \mid x^{\prime}\right) \rho_{X}\left(x^{\prime}\right) d x^{\prime}}
$$

1.4 Estimation

- We have a variable, X, which is unknown (even its pdf!)
- We measure a second variable, Y, somehow dependent on X.
- Wish to estimate X from the measurement of Y.
- Likelihood ...

Our main modelling assumption is that whenever X is known to take a particular value of x, then the conditional pdf for Y is a known function: we write this as

$$
\lambda(y \mid x) .
$$

- But we want things the other way round! X is unknown, not Y !
- We need the marginal for X to use Bayes Theorem, but we don't know it.
- Therefore we guess an a prior distribution for X :

$$
\rho_{X}(x)=\rho_{\text {prior }}(x) .
$$

- We then have the corresponding joint probability for X and Y :

$$
\rho_{X, Y}^{\text {prior }}(x, y)=\lambda(y \mid x) \times \rho_{\text {prior }}(x) .
$$

- If we subsequently measure $Y=y$ then we obtain the a posteriori distribution:

$$
\rho_{\text {post }}(x \mid y)=\frac{\lambda(y \mid x) \rho_{\text {prior }}(x)}{\int \lambda\left(y \mid x^{\prime}\right) \rho_{\text {prior }}\left(x^{\prime}\right) d x^{\prime}}
$$

Example (Signal + Noise)

- Let X be the position of a particle. We measure

$$
Y=X+\sigma Z
$$

where Z is a standard normal variable, called the "noise", independent of X.

- The likelihood function is

$$
\lambda(y \mid x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(y-x)^{2} / 2 \sigma^{2}}
$$

- If we choose a prior $\rho_{\text {prior }}$ for X then

$$
\rho_{\text {post }}(x \mid y)=\frac{\rho_{\text {prior }}(x) e^{-(y-x)^{2} / 2 \sigma^{2}}}{\int \rho_{\text {prior }}\left(x^{\prime}\right) e^{-\left(y-x^{\prime}\right)^{2} / 2 \sigma^{2}} d x^{\prime}}
$$

Example (Parameter Estimation)

- Suppose we have a coin with an unknown probability, x, for heads.
- We toss it three times and obtain the sequence $y=$ HHT .
- The likelihood function is then $\lambda(H H T \mid x)=x^{2}(1-x), \quad 0 \leq x \leq 1$.

Choose a Prior

Let us choose the prior to be the uniform distribution $\rho_{X}(x)=1$, that is, we take all values for the probability parameter x to be equally likely. A simple calculation gives

$$
\rho_{\mathrm{post}}(x \mid H H T)=\frac{x^{2}(x-1)}{\int_{0}^{1} x^{\prime 2}\left(1-x^{\prime}\right) d x^{\prime}}=12 x^{2}(1-x)
$$

The a posteriori distribution has
Mean 3/5
Mode 2/3

If we had however chosen a different prior, we would get a different answer. For instance, if we set

$$
\rho_{\text {prior }}(x)=6 x(1-x), \quad 0 \leq x \leq 1,
$$

then we calculate

$$
\rho_{\text {post }}(x \mid H H T)=\frac{x^{3}(x-1)^{2}}{\int_{0}^{1} x^{\prime 3}\left(1-x^{\prime}\right)^{2} d x^{\prime}}=60 x^{3}(1-x)^{2}
$$

The a posteriori distribution has
Mean 4/7
Mode 3/5

Example (Von Neumann's Model for Quantum Measurement)

- We consider an observable, \hat{X}, say the position of a quantum system.
- Rather than measure \hat{X} directly, we measure an observable \hat{Y} giving the pointer position of a second system (called the measurement apparatus). We assume that apparatus is described by a wave-function ϕ.
- The initial state of the system and apparatus is $\left|\Psi_{0}\right\rangle=\left|\psi_{\text {prior }}\right\rangle \otimes|\phi\rangle$, i.e.,

$$
\left\langle x, y \mid \Psi_{0}\right\rangle=\psi_{\text {prior }}(x) \phi(y) .
$$

We couple the particle to the apparatus using the unitary

$$
\hat{U}=e^{i \mu \hat{X} \otimes \hat{P}_{Y} / \hbar}
$$

where $\hat{P}_{Y}=-i \hbar \frac{\partial}{\partial y}$.

After coupling, the joint state is

$$
\left\langle x, y \mid \hat{U} \Psi_{0}\right\rangle=\psi_{\text {prior }}(x) \phi(y-\mu x) .
$$

If the measured value of \hat{Y} is y, then the a posteriori wave-function is

$$
\psi_{\text {post }}(x \mid y)=\frac{1}{\sqrt{\rho_{Y}(y)}} \psi_{\text {prior }}(x) \phi(y-\mu x)
$$

where

$$
\rho_{Y}(y)=\int\left|\psi_{\text {prior }}(x) \phi(y-\mu x)\right|^{2} d x
$$

Basically, the pointer position will be a random variable with pdf given by ρ_{Y} : the a posteriori wave-function may then be thought of as a random wavefunction on the system Hilbert space:

$$
\psi_{\text {prior }}(x) \longrightarrow \psi_{\text {post }}(x \mid Y)
$$

It is interesting to reconsider the problem in the Heisenberg picture!

Let $\hat{Y}^{\text {in }}=I \otimes \hat{Y}$. In the Heisenberg picture, the observable that we actually measure is

$$
\hat{Y}^{\mathrm{out}}=\hat{U}^{*}\left(I \otimes \hat{Y}^{\mathrm{in}}\right) \hat{U}=I \otimes \hat{Y}^{\mathrm{in}}+\mu \hat{U}^{*}(\hat{X} \otimes I) \hat{U}
$$

- Here $\hat{Y}^{\text {out }}$ is the measured observable.
- We estimate the signal, $\hat{U}^{*}(\hat{X} \otimes I) \hat{U}$.
- And we add noise, $\hat{Y}^{\text {in }}$, which has pdf $|\phi(y)|^{2}$.

