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Simplest quantum systems
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Better understanding of intimate quantum mechanisms
Measurement, entanglement, non-locality, “paradoxes”, …

Exploration of the quantum/classical boundary
Understanding decoherence of mesoscopic quantum superpositions

Applications to quantum information processing
Use quantum weirdness to process and transmit information

– Quantum cryptography
– Quantum simulators
– Quantum computers

Applications to quantum metrology
Use quantum coherence and enhanced non-local correlations to go 
beyond classical measurement precision limits



Nobel prize 2012
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Controlling individual photons 
with atoms

Controlling individual atoms (ions) 
with photons (lasers)

“Photon box”

Linear ion trap



Cavity Quantum ElectroDynamics
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Circuit QED

Superconducting qubits
coupled to a strip-line cavity

Optical cavity QED

Quantum dots

Cold atoms in
optical cavities

and many others …

5 
µm

Cavity QED in solids

Photonic crystals

Fiber-based cavity QED

Laser-trapped atoms 
coupled to a bottle resonator



Cavity QED
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Photon box

5 cm

- billion bounces on the mirrors

- a light travel distance of 40 000 km 
(full turn around the Earth)

- Resonance @ νc = 51 GHz
- Lifetime of photons Tc= 130 ms

high-quality microwave superconducting cavity

single atoms 
probing the field 

one by one



Outline
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Quantum control

Quantum feedback stabilizing photon-number states 

Adaptive QND measurement

Quantum non-demolition measurement

Basics of atom-cavity interaction : a spring and a spin

Experimental setup : Photon box

QND photon-number measurement

Past quantum states



Simplest quantum models
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En
er

gy

Spring:
harmonic oscillator

Spin ½:
two-level atom

• Atomic motion in a trap
• Vibrational levels of molecules
• Vibration of a mechanical oscillator
• Single mode of light…

• Electronic or nuclear spins
• Atomic states
• Light polarization
• Artificial “atoms”…

• Elementary block of quantum information 
processing: qubit

Coupling



Harmonic oscillator
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Hamiltonian of a harmonic oscillator given by momentum and position operators 

Annihilation and creation operators

Photon-number operator and energy eigenstates

Operator of a normalized complex amplitude:

Dimensionless position and momentum

commutation relation

n ∈ N photon number



Field displacement and coherent states
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Coupled to (driven by) a resonant external force:
field displacement 

Coherent (classical) states

Coherent state in a photon-number basis

Eigenstate of annihilation operator

Poisson distribution of photon numbers 

α : complex drive strength

applied to vacuum

complex amplitude operator

mean photon 
number

phase space



Cavity relaxation
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Losses due to cavity relaxation (damping)

Excitation due to thermal field

energy decay rate
and cavity lifetime

thermal photon number

Master equation

Photon number probabilities

density matrix evolution

jump down from (n+1) jump up from (n-1) jump away from n

jump rates



Fabry-Perot interferometer
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High quality factor

Small mode volume

Compact waist 
(mode width)

TEM900 mode

Mode spectrum

microwave cavity with
standing-wave mode structure

d 
=

Large vacuum field fluctuation

q = 9



Two-level atom
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Hamiltonian

Arbitrary state as a superposition

Bloch sphere representation

states on the sphere = pure
states inside the sphere = mixed
state at the origin = equal mixture of two orthogonal states
opposite vectors = orthogonal states

Bloch sphere



Rabi oscillation
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Coupling to a resonant classical light

light-atom coupling:
(Rabi frequency)

raising and lowering operators:

Rabi oscillations (if started in |e⟩)

Rabi rotation

π/2-pulse

π-pulse

0

1



Ramsey interferometer
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Two π/2-pulses in Ramsey zones R1 and R2

Final state

Probability of finding the atom in |e⟩ and |g⟩

Ramsey fringes

atomic analog to the optical 
Mach-Zehnder interferometer:
Ramsey zones = beam splitters

can be used for metrology (atomic clocks) 
and photon-number counting



Circular Rydberg atoms
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Rydberg atoms: large principle quantum number n
circular states: maximal l = |m| = n -1 

n = 51

n = 50

Useful properties:

- two-level system ⇒ “simple” to treat 
and manipulate

- big electric dipole ⇐ huge sensitive 
“micro” antenna

- long lifetime ⇒ more time for read-out

- easily tunable via Stark effect ⇐ small 
vertical electric field of several V/cm

- easy state detection ⇐ ionization 
electric field different for two states

νa ≈ νc



Atom-cavity interaction
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Atom-field Hamiltonian in rotating wave approximation

Jaynes-Cummings model

Strong coupling regime – loss rates smaller than coupling



Dressed states
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Restriction to the nth doublet (n excitation quanta)

mixing angle

Dressed states – eigenstates of coupled atom-cavity system

detuning



Resonant and dispersive
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Consider initial state of n photons and atom in |e⟩:  

Rabi oscillations (photon exchange) at frequency 𝛀𝛀n

Resonant regime:

Energy eigenvalues

Dispersive regime:

Quantized light shifts
of uncoupled levels

Two atomic levels are shifted in opposite directions, proportional to the photon number n

vacuum Lamb shiftlight shift



Outline
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Quantum control

Quantum feedback stabilizing photon number states 

Adaptive QND measurement

Quantum non-demolition measurement

Basics of atom-cavity interaction : a spring and a spin

Experimental setup : Photon box

QND photon number measurement

Past quantum states



Cavity assembly
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5 cm

atoms ⇐ one mirror-and-piezo mount

assembled cavity block ⇒



Meeting atoms with photons
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Ionisation 
detector

Microwave source

Lasers

Preparation
of circular 

states

Low-Q cavities:
classical field pulses

(Ramsey interferometer)

High-finesse 
cavity

Atomic
oven

Cooled to 0.8 K,
thermal, acoustic, 
magnetic & electric 
isolation

|g⟩ or |e⟩



More realistic drawing
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Cavities

Ramsey zones

Circularization box

Detectors

Shielding box

R1 R2 R3

C2C1

for studying 
non-local states

Laser beams



Magic box
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40 kg of cooper @ 0.8 K

atoms



In the lab
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cavity box

cryostat



Outline
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Quantum control

Quantum feedback stabilizing photon number states 

Adaptive QND measurement

Quantum non-demolition measurement

Basics of atom-cavity interaction : a spring and a spin

Experimental setup : Photon box

QND photon number measurement

Past quantum states



Flying atom and cavity mode
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phase shift per photon

 Energy conservation + adiabatic coupling  ⇒ the field (and thus n) is preserved

 Atom-field interaction modifies νat proportional to n

 Due to frequency change, atomic dipole acquires a phase

νc

cavityatom photon
number



Ramsey interferometer
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n=6
n=7

n=5

n=3 n=2

n=0

n=1
n=4



Photon-number measurement
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initial distribution

atom in |e〉

atom in |g〉

atomic detection modifies 
photon-number distribution
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Photon-number measurement
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atomic detection modifies 
photon-number distribution

Ramsey phase dephasing per photon

atomic state

Bayesian inference 
and measurement at time ti :

with conditional probability :

atom in |e〉

atom in |g〉
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Projective measurement
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Rule 1:  Measurement result is random with probability

Rule 2: After result i the system is projected onto the state

Measured observable is described by a Hermitian operator O. Set of projectors {Pi}
onto the sub-space of possible results {oi} of O have the following properties:

Repeated projective (ideal) measurements give the same result

on

apparatussystem
result

projection

read-out



Positive operator valued measure (POVM)
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Opposite to projective, POVM measurement can be non-repeatable !

POVMs                      satisfy the completeness relation: 

Rule 1: Applied to a system in ρ the measurement gives the result i with 
probability of

Rule 2: The measurement projects the system onto the state

Every generalized measurement can be associated to a set of (not necessarily 
Hermitian) operators {Mi} with i running through all possible measurement results.

Also called weak measurement.

(if , then POVM reduces to a projective 
measurement) 



Weak measurement
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atomic detection modifies 
quantum state

measurement
direction

dephasing per 
photon

photon number
operatorTwo (Kraus) operators 

corresponding to two 
possible outcomes

initial state

state after
projection

atom in |e〉

atom in |g〉
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From weak to projective measurement
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• Evolution of photon number 
distribution while detecting many 
atoms in a single sequence with 4 
alternating detection directions

• Progressive collapse of the field state 
vector during information acquisition 
into a random photon-number state

(initial coherent field with 3.7 photons)

Many repeated weak measurements result in 
the ideal projective measurement of the photon number



Photon number statistics
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Statistics of final photon number 
reveals the initial coherent field of 3.7 photons

Poisson 
distribution

ambiguity between
0 and 8 photons



Quantum jumps of light
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Repeatability of QND measurement

Random projection onto one of n values,
but with an a priori known probability

Quantum jumps between discrete 
values of n: damping of the field caught 
in the act

Ph
ot

on
 n

um
be

r, 
n

Real-time observation of the quantum field evolution

A vivid illustration of quantum measurement postulates



Gallery of trajectories
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Ensemble average
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Smooth exponential decay of a harmonic oscillator:

A direct illustration of the difference 
between individual quantum realizations and ensemble average

0.0 0.2 0.4 0.6 0.8

0 

3.7     

Time (s)

900 sequences

Tc = 130 ms

nth = 0.05 photons

〈n〉 of initial field
M
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Cavity field states
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Photon-number 
state

Coherent  
state

"Schrödinger's 
cat" state

Statistical 
mixture

Wave function

Density matrix

(for 3 photon states)

Wigner function

x
p

x
p

x
p

x
p

"quantumness"

(phase space 
representation)



Wigner function 
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State displaced by 
complex amplitude -α

Parity measurement   

Direct Wigner function measurement recipe:
1. Inject a coherent field (−α).
2. Measure repeatedly photon number parity: its average 
value yields W(α).
3. Resume for different α values



Schrödinger’s cat state of light
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Classical components

2 photons in each 
classical component

(amplitude of the initial 
coherent field)

cat size D2 ≈ 7 photons

coherent components are 
completely separated 

(D > 1)

D



Schrödinger’s cat state of light
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Quantum coherence

quantum superposition 
of two classical fields
(interference fringes)

quantum signature of 
the prepared state
(negative values of 
Wigner function)



Outline
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Quantum control

Quantum feedback stabilizing photon-number states 

Adaptive QND measurement

Quantum non-demolition measurement

Basics of atom-cavity interaction : a spring and a spin

Experimental setup: Photon box

QND photon-number measurement

Past quantum states



Quantum state
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State of a system defines all its properties (results of 
any measurement).

Estimation of the density matrix ρ(t) from:
- initial system’s state
- coherent evolution (Hamiltonian)
- coupling to environment (decoherence)
- measurement results (measurement back-action)

density matrix

ρ(t)

t0 time
m

ea
su

re
m

en
t s

ig
na

l

on

measurement 
apparatus

quantum 
system

environment

The probability of a measurement outcome n
defined by Ωn :



Improved state estimation?
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Our knowledge on the measured system is subject to:
- technical noise (e.g. non-ideal detectors)
- fundamental noise (e.g. measurement back-action)

Ways out:
- improve technology (e.g. better detectors)
- optimize measurement settings (e.g. chose 

appropriate measurement basis)

- more efficiently use all available data: 
use data measured after time t
in order to get better estimate 
of the state at t.

density matrix

ρ(t)

t0 time
m

ea
su

re
m

en
t s

ig
na

l

on

measurement 
apparatus

quantum 
system

environment

??



Past quantum state
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density matrix effect matrixS. Gammelmark et al., PRL 111, 160401 (2013)

ρ(t) Ε(t)

Τt0 time
m

ea
su

re
m

en
t s

ig
na

l

Complete the density matrix ρ(t ) with an effect matrix Ε(t), calculated 
similarly to ρ(t), but on data obtained after time t in a backward time 
direction.

From now on, the quantum state of the system is defined by a pair:

Ξ(t )  = {ρ(t), Ε(t)}

The improved estimate of the measurement outcome:



Field evolution measurement
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S C

- Prepare a coherent field in the cavity:
Poisson photon-number distribution
on average 6 photons

- Send a long sequence of QND probes
dephasing per photon π/4, i.e. distinguish from 0 to 7 photons 

- Each detection projects the field into a new state:
- take into account detection result 
- take into account decoherence from the last detection (∼0.2 ms)

- Goal: estimate evolution of the photon-number distribution on a single 
quantum trajectory



Quantum non-demolition measurement
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forward

backward

forward-backward

- Properties similar to 
forward analysis

- Broad initial distribution
- 8-photon measurement 

periodicity
- Some noise

- Narrower distributions 
(smaller uncertainty on n)

- No periodicity problems
- Reduced noise



Quantum jump detection
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Simple measurement protocol:
- use empty cavity (no photons);
- inject a single photon with a resonant atom at time t = 0;
- try to detect this photon with dispersive QND probes sent before and after t.

one-photon injection

forward
backward
forward-backward

- delayed detection, noise
- advanced detection, noise
- detection on time, (almost) 

no noise

one random realization



Quantum jump detection
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one-photon injection

forward
backward
forward-backward

- delayed detection, noise
- advanced detection, noise
- detection on time, (almost) no 

noise

average over many realizations

Simple measurement protocol:
- use empty cavity (no photons);
- inject a single photon with a resonant atom at time t = 0;
- try to detect this photon with dispersive QND probes sent before and after t.



Photon-number lifetimes
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Statistics of individual quantum jumps 
from initial coherent field of 6 photons

Lifetime of different n-states

Do these “jumps” make sense?



Summary on past quantum state
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Approaches similar to the past quantum state method:
- forward-backward algorithm
- quantum state smoothing
- …

At no additional “experimental” cost:
- we (almost) get rid of noise and obtain purer quantum properties
- we overcome some measurement limitations (like fundamental periodicity of 

interferometric measurement) and access previously hardly accessible states
- we improve detection of quantum state changes

Applications ?
- to get more precise property evolution, e.g. for parameter estimation and metrology
- to learn about the property “in the past”, e.g. for state reconstruction and post-

selecting data
- …

T. Rybarczyk et al., PRA 91, 062116 (2015)



Summary I: Photon-number measurement
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QND photon-number measurement
dispersive atom-cavity interaction and 
photon-number dependent phase shift;
individual weak measurements lead to the 
ideal projective one

 Photon box
high-quality cavity storing photons for long 
time and single circular Rydberg atoms with 
control on the atom-cavity interaction

 Past quantum state
use results of measurements performed both 
before and after some moment in order to 
better estimate of a real quantum trajectory



Outline
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Quantum control

Quantum feedback stabilizing photon number states 

Adaptive QND measurement

Quantum non-demolition measurement

Basics of atom-cavity interaction : a spring and a spin

Experimental setup : Photon box

QND photon number measurement

Past quantum states



Challenges in experimenting with quantum systems
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Manipulation of individual quantum systems in a well-
controlled way

Individual atoms, ions, photons, nuclear or electron spins, 
quantum dots, superconducting circuits, ...

Isolation from the environment

Preparation of individual quantum objects and systems

Sophisticated measurements at the quantum limit

Vacuum, electric/magnetic/light traps for particles, 
cryogenic environment, low noise equipment, ...

If the isolation is not ideal, use active control on the system to 
maintain its state, i.e. implement quantum feedback loop



Control of a classical system
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Use of feedback loops

Classical
system 

Controller pspt
c

• Sensor: measures the current state of the system

• Controller: compares to the set-point and chooses feedback control

• Actuator: acts on the system to bring it closer to the target



Control of a classical system
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Use of feedback loops

Controller temperature
Tset

gas flow

• Sensor: measures the current state of the system

• Controller: compares to the set-point and chooses feedback control

• Actuator: acts on the system to bring it closer to the target

Example: temperature control



Control of a quantum system
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Use of feedback loops ?

Quantum 
system 

Controller pspt
c

• Sensor: measures the current state of the system …

The measurement modifies 

the state of the quantum system to be controlled !



Control of a quantum system
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Use of feedback loops

Quantum
system 

Controller p
pt

c

• Sensor: measures the current state of the system

• Filter: estimates system’s state using all available knowledge

• Controller: compares to the set-point and chooses feedback control

• Actuator: acts on the system to bring it closer to the target

Filter
ps



Quantum jumps and Relaxation
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Time, t [ms]

Ph
ot

on
 n

um
be

r, 
n

Real-time repetitive non-destructive photon number measurement

Projection onto a random

photon-number state |n⟩ Cascade of quantum jumps 

due to decoherence



Quantum jumps and Relaxation
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Time, t [ms]

Ph
ot

on
 n

um
be

r, 
n

Projection onto a random

photon-number state |n⟩ Cascade of quantum jumps 

due to decoherence

Protection against decoherenceRobust and deterministic preparation 
of quantum states

Possible solution: active real-time quantum feedback



Quantum feedback loops
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 System: light trapped in a cavity

 Set point: fixed number of photons

 Sensor: single atoms performing weak measurements of photon number

 Filter/controller: state estimation and optimal feedback action

 Actuator classical: injection of coherent fields with controlled amplitude
 Actuator quantum: injection or subtraction of a photon by resonant atoms

Classical control Quantum control



Quantum feedback with quantum actuators
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Controller chooses between:
(|g〉+|e〉, dispersive) ⇐ no correction required
(|e〉, resonant) ⇐ too few photons
(|g〉, resonant) ⇐ too many photons

Actuators:  resonant atoms 

Challenges: 
- switch between different interactions in 

real time
- accurately calibrate resonant interaction
- properly take it into account all relevant 

experimental imperfections
- ...

Atomic state is set by the microwave injection S1 into R1

Interaction type is set by the Stark shift controlled by potential V



Filter: estimation of a field’s state
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- In each feedback loop k, the filter performs real-time estimation ρk of the state of 

the field based on:

- actual field’s state ρk-1 estimated at the end of the previous loop,

- actual measurement result on sensor and actuator atoms,

- last feedback action,

- free state evolution (relaxation) during the loop duration.

- Initially, the field in the cavity is in the state of density matrix ρ0 prepared by us 

(e.g. vacuum or coherent)



Filter I: measurement sensors
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For every detected atom: outcome

« Ideal » description: 
does not take into account the imperfections of the experimental setup !



Filter I: measurement sensors
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• Detection efficiency ε:

atom can miss detection (65% chance)

• Detection errors ηg and ηe:

state can be wrongly attributed (12% chance)

• Poissonian atom statistics: 

random number of atoms per sample (0, 1 or even 2), so 

nobody knows how many atoms have passed through the cavity

Difficulty : imperfections of the experimental setup

?

?



Filter I: measurement sensors
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Poisson distribution Pa of atom number in atomic samples 

To be considered:

- mean atom number na = 0.6

- include possible 0- and 2-atom events

- suppose negligible probability of more than 2 atoms

- consider a proper normalization for the Kraus operators

New set of Kraus operators:



Statistical mixture of all possible states:

for every detection outcome

probabilities are given by the stochastic matrix :

Filter I: measurement sensors

70

Detection efficiency ε and detection errors ηg and ηe

result of ideal 
detection

our detection 
result

(for the sake of simplicity)



Filter II: resonant corrections
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Ideal Rabi oscillation

tow types of atoms: ν = {absorber, emitter} 

state transformation

detection results

emitter failed

emitter succeeded

absorber succeeded

absorber failed



Filter II: resonant corrections
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Imperfections

- get Rabi frequency 𝛀𝛀n and damping 𝛕𝛕n from 

calibration in different photon-number states

- here, consider only populations, but not 

coherence of the field

- modify Kraus operators:

Dispersion in Rabi oscillations

- taken into account similar to the sensor atoms

Detection imperfections



Filter III: field relaxation
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Loop duration: interval between atoms

Characteristic time: lifetime of a photon

Thermal field:

Coupling to environment results in a sudden loss/capture of photons

loss:

capture:

no change:

Result of the quantum master equation:

jump operators



Filter III: field relaxation
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Loop duration: interval between atoms

Characteristic time: lifetime of a photon

Thermal field:

Coupling to environment results in a sudden loss/capture of photons

loss:

capture:

no change:

If field coherence is not important, considered only P(n,t) evolution

relaxation matrix



Filter IV: putting all together
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Quantum state estimated in a feedback loop k

detection result

not-yet-detected atoms
(s=3, flying between cavity and detector)

initial state
atom type

Challenge : perform these calculation fast 

Use different approximations, operator properties, precalculated stuff, mathematical 
tricks, etc



Controller: feedback action
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Controller’s task is to find the actuator action minimizing the distance 
between the actual p(n) and the target state nt

Distance to target: mean variance

Distance matrix

Distance to be minimized:

decides for the next 3 atoms in fly
minimizing distance



Feedback loop in action
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Feedback stabilization of Fock state |7〉

 Vacuum state |0〉

 Initial preparation of |7〉

 Detection of a quantum jump to |6〉

 Correction and restoration of |7〉

 and so on …

Deterministic preparation of 
fragile photon-number states 
(demonstrated up to n = 7) 
and their stabilization 
against decoherence

Note: Lifetime of state |7〉 is only 9 ms



Photon-number distribution
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• An independent QND 
measurement is performed.

• Field state is reconstructed based 
on the measurement results of 
4000 individual trajectories.

• Each trajectory is terminated 
at about 2Tc

Stationary regime: 
ensemble average of many trajectories has a steady P(n) distribution



Photon-number distribution
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Stationary regime: 
ensemble average of many trajectories has a steady P(n) distribution

• An independent QND 
measurement is performed.

• Field state is reconstructed based 
on the measurement results of 
4000 individual trajectories.

• Each trajectory is terminated 
at about 2Tc



Photon-number distribution
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• Use knowledge of the controller: 

interrupt feedback loop 
as soon as e.g. P(nt) > 0.8

• State purity is improved



Photon-number distribution
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Feedback preparation

Maximal fidelity for the target 
state in a classical field

(Poisson distribution) (squeezed distribution)

Coherent field |α〉



Preparation speed-up
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∼ 63%

27 ms

250 ms

Active quantum feedback: 
- prepare vacuum field
- activate feedback
- wait until P(nt)>0.8

Passive “trial-and-error”: 
- prepare coherent field
- measure photon number
- if P(nt)<0.8, start from the beginning

Active preparation is 9 times 
faster than passive for nt = 3.

Moreover, this difference 
rapidly increases with nt.



Sequential preparation of quantum states
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 An pre-set sequence of targets is chosen

 As soon as fidelity of the current target reaches 80%, the target is changed.

 Illustration of adaptive measurement

Arbitrary sequence {3,1,4,2,6,2,5}



Summary on Quantum feedback
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Proposal and simulations:
I. Dotsenko, M. Mirrahimi, M. Brune, J.-M. Raimond, S. Haroche, & P. Rouchon, 

« Quantum feedback by discrete QND measurements: 
towards on-demand generation of photon-number states », 
Phys. Rev. A 80, 013805 (2009)

Stability analysis:
M. Mirrahimi, I. Dotsenko & P. Rouchon, IEEE Conference on Decision and Control ,1451-1456 (2010)
A. Somaraju et al., Proceedings of the American Control Conference, 5084-5089 (2012)
...

Experiment:
C. Sayrin et al., 

« Real-time quantum feedback prepares and stabilizes photon number states », 
Nature 477, 73-77 (2011)

X. Zhou et al.,
« Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections », 

Phys. Rev. Lett. 108, 243602 (2012)
B. Peaudecerf et al., 

« Quantum feedback experiments stabilizing Fock states of light in a cavity », 
Phys. Rev. A 87, 042320 (2013)

coherent injection

resonant atoms

coherent injection

coherent injection

review of both methods



Outline
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Quantum control

Quantum feedback stabilizing photon number states

Adaptive QND measurement

Quantum non-demolition measurement

Basics of atom-cavity interaction : a spring and a spin

Experimental setup: Photon box

QND photon number measurement

Past quantum states



Adaptive QND measurement
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So far: 
for complete QND measurement we use a sequence of sensors with 
4 alternative Ramsey phases (i.e. detection direction set by R2) in order to 
be equally sensitive to all photon number from 0 to 7.

0

1
23

Idea: 
for each sensor choose a detection direction which has a maximum chance 
to give the most new information on the field in order not to waste time on 
less useful measurements

We choose the measurement 
which can still “surprise” us

B. Peaudecerf et al., PRL 112, 080401 (2014)



Optimal phase choice
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|g〉|e〉
Four available 
measurements

useless

good
Example:

distribution Pk(n) 
after k detections:

Expected photon number distribution Pk+1(n)



Entropy as information measure
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Shannon entropy as a measure of knowledge P (n) on photon number:

No information on photon number (uniform distribution):

Full information on a photon number (single peak distribution):

Smaller entropy = more knowledge

Example:

distribution Pk(n) 
after k detections:



Optimal phase choice
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Sg=0.50 Se=0.32

〈Sk+1〉=0.41

Sg=1.05 Se=0.56

〈Sk+1〉=0.74

Sg=0.95 Se=0.95

〈Sk+1〉=0.95

Sg=0.56 Se=1.05

〈Sk+1〉=0.74

Available 
measurements

Expected photon number distribution Pk+1(n)

Sk = 0.98

Example:

distribution Pk(n) 
after k detections:

|g〉|e〉



Adaptive QND measurement
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Algorithm: for each sensor choose a Ramsey phase which has a maximum 
chance to minimize entropy

real-time 
controller



Experimental sequence
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Initialization

projection onto
a random |ni〉

Verification

independent
measurement of |nf〉

Adaptive 
measurement

measurement of |n〉

We want to test phase adaptation in a context free from relaxation :

Select trajectories with no relaxation :
ni = nf

(25 ms)



Experimental sequence
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We want to test phase adaptation in a context free from relaxation :

measurement of
state |n=2〉

2

3

0

1

Initialization

projection onto
a random |ni〉

Verification

independent
measurement of |nf〉

Adaptive 
measurement

measurement of |n〉
(25 ms)

Phase, aligned orthogonally to a maximally probable n 
(so-called mid-fringe setting, better distinguishability from its 
neighbors), is chosen more often.

Controller’s measurement choice follows P(n)



Speed-up of information acquisition
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passively alternated

actively adapted

(dashed lines: simulations)

Faster entropy reduction
if phase is adapted



Summary II: Quantum control
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 Adaptive QND measurement
choosing in real time a Ramsey phase
for speeding-up information acquisition 
(for faster state reduction/projection)

 Quantum feedback with coherent injection
preparation and stabilization of 
photon-number states (up to 4)

 Quantum feedback with resonant atoms
faster feedback, thus higher
photon-number states (up to 7 so far)



Thank you for your 

attention!
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