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Simplest quantum systems

Better understanding of intimate quantum mechanisms

Measurement, entanglement, non-locality, “paradoxes’, ...

Exploration of the quantum/classical boundary

Understanding decoherence of mesoscopic quantum superpositions

Applications to quantum information processing

Use quantum weirdness to process and transmit information
— Quantum cryptography
— Quantum simulators
— Quantum computers

Applications to quantum metrology

Use quantum coherence and enhanced non-local correlations to go
beyond classical measurement precision limits



Nobel prize 2012

Nobelprize.org

Controlling individual photons
with atoms

“Photon box”

, The Nobel Prize in Physics 2012
Serge Haroche, David J. Wineland

The Nobel Prize in Physics 2012

Serge Haroche

David J. Wineland

Controlling individual atoms (ions)
with photons (lasers)

LEeDe

Sergé Haroche David J. Wineland Linear ion trap

The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche
and David J. Wineland "for ground-breaking experimental methods that
enable measuring and manipulation of individual guantum systems”



Cavity Quantum ElectroDynamics

Optical cavity QED Fiber-based cavity QED

P—

N Vo !

1.5

Cavity QED in solids

Cold atoms in
optical cavities

Laser-trapped atoms
coupled to a bottle resonator

Circuit QED

Superconducting qubits
coupled to a strip-line cavity

Quantum dots Photonic crystals and many others ...



Photon box
high-quality microwave superconducting cavity

- Resonance @ v, = 51 GHz
- Lifetime of photons T_.= 130 ms
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\ oblngthefle |

- billion bounces on the mirrors

- a light travel distance of 40 000 km
(full turn around the Earth)




Outline

» Quantum non-demolition measurement
Basics of atom-cavity interaction : a spring and a spin
Experimental setup : Photon box
QND photon-number measurement

Past quantum states

» Quantum control
Quantum feedback stabilizing photon-number states

Adaptive QND measurement



Simplest quantum models

Spring:
harmonic oscillator
\ l
\ / hy
\\ II
\ / Q
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- \ / Coupling
Atomic motion in a trap :
Vibrational levels of molecules .
Vibration of a mechanical oscillator .

Single mode of light...

Spin ¥z:
two-level atom

Electronic or nuclear spins
Atomic states

Light polarization
Artificial “atoms”...

Elementary block of quantum information
processing: qubit



Harmonic oscillator

Hamiltonian of a harmonic oscillator given by momentum and position operators

2 2 v2
H,; = P + me X [X y P } = ih commutation relation
2m 2
Dimensionless position and momentum
Py, = —1 P
Xog = X
= hw [POQ — Xg] 0= Qh vV 2hmw
Operator of a normalized complex amplitude: g = Xy + i P, AV(z)
=1 \ I\
—hw[ a + 1/2] [a,,a] nfz\ ~/] V M/
Photon-number operator and energy eigenstates n=2 /\\/ fiw
n € N photon number n=1 I
Annihilation and creation operators
aln) = Valn—1) al [n) = VAT 1 |n+1) ho?




Field displacement and coherent states

Coupled to (driven by) a resonant external force:
field displacement

D(a) = el

—a’a) o : complex drive strength

Coherent (classical) states

‘Oﬂ) — D(Qﬁ) ‘O) applied to vacuum

Eigenstate of annihilation operator

a | C\f) = ‘ CB) complex amplitude operator

Coherent state in a photon-number basis
n
o) = ch In) = e~lol?/2 Z & In)
; - Vnl

Poisson distribution of photon numbers

2
a2 o™ _ )
I n = |O‘|
. mean photon
number

Pa(n) =e

phase space

Xﬁ/2 |O{>




Cavity relaxation

Losses due to cavity relaxation (damping)

|n+1)
energy decay rate =1
and cavity lifetime K= Tc K(n+1)(ng,+1) r(n+1)ng,
n)
Excitation due to thermal field (1)
K1y, KNy,
1
thermal photon number Nty = n—1
ehwe/keT _ 1 jump rates In=1)

Photon number probabilities

dp(n
PR — 5(1 4+ mg)(n+ )p(n 1)+ nggnp(n — 1) — [5(1 -+ g+ sy (n - 1)Jp(n)
jump down from (n+1) jump up from (n-1) jump away from n
Master equation dp

K I
—=—50+ nw)(a'ap + paa’ — 2apa’)

_ f ty— g0
znth(aa p+ pa'a—2a'pa),

density matrix evolution



Fabry-Perot interferometer

54

138

d=276

S 74

2 [ 4
Q-H/

a=9 | oA
0:«

\\\‘§

microwave cavity with
standing-wave mode structure

c 1 d
Vg = 57 |4+ —arccos I_E

v =51 GHz

Mode spectrum

TEMg,, mode A =5.9mm

1/2

~ \

Compact waist
(mode width)

wo = (% VAR - d))

Small mode volume
243 ﬂWozd 3
V:flf(r)l d'r = —— ~3.8)

Large vacuum field fluctuation

hw

Eo = ~ 1,58-10° V/m

2EQV

1%
High quality factor Q = —
%

=21-v-Tey ~ 31010



Two-level atom

Hamiltonian E
. hweg/2 + —— le)
We
Hy == 95, oz = |e) (e[ — |g)(g 0t
—hweg 2+ —— |g)

Arbitrary state as a superposition

| i i 0 Bloch sphere
1)) = cos —|e) + e sin —|g)
2 2
Bloch sphere representation
states on the sphere = pure TN
states inside the sphere = mixed 5 3 A
state at the origin = equal mixture of two orthogonal states y

opposite vectors = orthogonal states




Rabi oscillation

Coupling to a resonant classical light

Q,
H, = z'h?[a_ — o]

Rabi rotation

raising and lowering operators: 9+ = |€> <g‘
o_ = |g)(e|
light-atom coupling: . 2d *
(Rabi frequency) £2r = ﬁgrea e fx
Rabi oscillations (if started in |e))
Pe
(W) = sin(2,/2)|g) + cos(2,.t/2)]e) 1

P, = cos*(,t/2)

/2-pulse =]

0

m-pulse




Ramsey interferometer

N
atomic analog to the optical
‘ €> Mach-Zehnder interferometer:
0 Ramsey zones = beam splitters
R, R, ]
D
|9)

Final state
1 ' iq
W) =5 [(1—e?)[e) + (1+€?) |g)]
Probability of finding the atomin |e)and |g) can be used for metrology (atomic clocks)

and photon-number counting
Pe,g\e — (1 + COS @)/2
Ramsey fringes



Circular Rydberg atoms

Rydberg atoms: large principle quantum number n

circular states: maximal | =|m| =n -1 _
Useful properties:

- two-level system = “simple” to treat
and manipulate

— |€> - big electric dipole «< huge sensitive
“micro” antenna

n=>51 (r =~ 1/4pum, d ~ 1800 eag)

Va = V¢ - long lifetime = more time for read-out
(T, ~ 30ms)

- easily tunable via Stark effect <= small
— ‘ g) vertical electric field of several V/icm

- easy state detection < ionization
n =50 electric field different for two states



Atom-cavity interaction

Atom-field Hamiltonian in rotating wave approximation

3)
R |
— ih—(afo_ — ,
H,.=1ih 5 (a'o_ —aoy) Q W,
2)
dEq€E” - € W,
Qp =2 @ ° =~ 2m-51kHz ¢
0 - e) 1)
W,, +—> w,
9) : 0)

Jaynes-Cummings model

fiwe Y
H=H,+ H.+ Hy. = hwc(a'a+1/2) + 290'2—|—Zh70((1,T0'_—a0'+)

Strong coupling regime — loss rates smaller than coupling

Qo/2mr ~50kHz > (k~10Hz, ~ ~ 35Hz)
TRabi ~20pus < (T ~100ms, T, ~ 30ms)



Dressed states

A detuni icti th ittt
Energy /A N A, :euizng o Restrlctlorl to the n'™" doublet (n excitation quanta)
;;O}
|e,n) 3
A, = — \/
2 L S S — — 0, Qovn +1
| g,n+1) 7 | e,m)
|-+,m)
P
0
Y le,1)
3w, /2 t----- R Bt ISR <o gint 1)
|q‘2> . .
w{. T T I T I T I I I T 1
Weg ' -3 -2 -1 0 1 2 3 1
We Ac/gzn
, h
“/? | TR .0 EE = (n+1/2) hwe £ ~/AZ + (2
W,[2 - (0] I 2
_ L1
W ey 2 l9:1) Dressed states — eigenstates of coupled atom-cavity system
Y ——— +,n) = cos(6,/2)|e,n)+isin(0,/2)|g,n+ 1)
|—,n) = sin(0y/2)le,n) —icos(6y/2)|g,n+ 1)
mixing angle  tan 6, = Q, /A,
—W,,/2 |9.0)




Resonant and dispersive

Resonant regime: A, =(

- Ot o Qut

Consider initial state of n photons and atom in |e): “Pe(t)> = cos —— |e,n) + sin ; g, n+ 1)
Rabi oscillations (photon exchange) at frequency Q,
Dispersive regime: |A.| > Q

| N A, Q
Energy eigenvalues E-=Mn+1/2)hw.*+h —

2 4A,
Quantized light shift 05
uantized light shifts _ | ) o oo — -

of uncoupled levels Aen =N +1)s0 ; Ag,n finso "7 4A,

Two atomic levels are shifted in opposite directions, proportional to the photon number n

OWey = (2n + 1)sg
=Gy

light shift vacuum Lamb shift



» Quantum non-demolition measurement

Basics of atorn-cavity interaction : a spring and a spin

Experimental setup : Photon box
(AND photon nurnber rneasurernent

Past quantum states

> Quanturn control

ICK stabilizing photon number stat

Qy

Quanturn feedb
)

measurerment

Adaptive QNL

e

(=)
=



Cavity assembly

< one mirror-and-piezo mount

assembled cavity block =




Meeting atoms with photons

Microwave source

Atomic High-finesse
oven cavity
Lasers
lonisation

D detector

B

Preparation R,
of circular R,
states

Low-Q cavities:

C

Cooled to 0.8 K, classical field pulses
thermal, acoustic, (Ramsey interferometer)
magnetic & electric
isolation




More realistic drawing

Ramsey zones

Detectors

Circularization box

for studying
non-local states

Shielding box

Laser beams







In the lab

cryostat




» Quantum non-demolition measurement

s of atorm-c Jd\/lf/ Interaction : a

SICS C

oy
b

cxperimental setup : Photon box
QND photon number measurement

Past quantum states

» Quanturn control
llizing photon nurnber stat

ICK stab

Qy

Quanturn feedb
)

measurerment

Adaptive QNL

e

a spring and a spin

(=)
=



Flying atom and cavity mode

photon cavity Q - I
number —_| |?’L> AFE, = h4A (?’L -+ 1)

Q2
AF, = —h—-
M o = haAT

= Energy conservation + adiabatic coupling = the field (and thus n) is preserved
=» Atom-field interaction modifies v,, proportional to n

= Due to frequency change, atomic dipole acquires a phase

p(n) = (n+1/2)po
QQ
Yo = 0 —Tint phase shift per photon
2A
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Photon-number measurement

005, INitial distribution atomic detection modifies
' photon-number distribution
= 0.204 .
T -Pml(n)
S 0.151
o
5 Pin(n)
2 0.101 0.251
A 0.051 0201 f
= 0.151
0.00- = :
0123456 78 |:>0- 0.107 atom in |e)
Photon number n 0.051
oo - MBMETSIMEIEY |
|6> 01234567 8
T
atom in |g)
- 01234567 8

T




Photon-number measurement

atomic detection modifies

Bayesian inference photon-number distribution

and measurement at time t;:

final initial P(n, t+
P(n,t;") o< P(ai|prisn)P(n,t;) 0.25)

0.201

atomic state  Q; € {g, 6}

7/

0.151

P(n)

0.101 atom in |e)

0.051

L L
0123456 7 8
T

0.00-

with conditional probability :
0.257

P(gl¢r,n) = cos?[po(n +1/2) + o

dephasing per photon Ramsey phase 0.001

P(n)

0.101 atom in |g)

012345678
n



Projective measurement

system

P — Pproj

apparatus
PP result

AN - )
\ read-out . Yi

S

0,
projection

Measured observable is described by a Hermitian operator O. Set of projectors {P.}
onto the sub-space of possible results {0} of O have the following properties:

O=) oiP D Pi=1 P, = P? = P}

Rule 1: Measurement result is random with probability

pi = Tr(p F;)

Rule 2: After result | the system is projected onto the state

P; p P
Pi

Pproj =

Repeated projective (ideal) measurements give the same result



Positive operator valued measure (POVM)

Every generalized measurement can be associated to a set of (not necessarily
Hermitian) operators {M,} with i running through all possible measurement results.

POVMs F, = M:r M, satisfy the completeness relation:

‘ (if M,; = ﬂ:ff , then POVM reduces to a projective
measurement)

Rule 1: Applied to a system in p the measurement gives the result i with

probability of
pi = Tr(p M) M;)

Rule 2: The measurement projects the system onto the state
M;p M)
Di
Opposite to projective, POVM measurement can be non-repeatable !

Pproj =

Also called weak measurement.



Weak measurement

initial state
/ .
G \ M;jp M]
J —€,9) Pproj =
/« Tr(M; p Mj)
state after
projection
measurement
direction
N+1/2 \(b
Me:SiH(SOO( T1/2)+ ‘T)

/' }oo2
photon number

Two (Kraus) operators  gperator

corresponding to two

possible outcomes dephasing per
j photon

\
M, = cos (SOO(NJF;/Q) + &r

)

atomic detection modifies
guantum state

)Oproj

0.257
0.201

7/

0.151

0.10- atom in |e)

Distribution {n|p|n)

0.051

'—v—v—v—r—v—v—r—. L A S—
012345678
Photon number, n

0.00-

0.251
0.201
0.15]
0.101 atom in |g)

0.05

Distribution {n|p|n}

OOO'_'_'_'_r_v_ T T T T
012 3 456 7 8
Photon number, n



From weak to projective measurement

1,0

 Evolution of photon number
distribution while detecting many
atoms in a single sequence with 4
alternating detection directions

o
(83}
Probability

» Progressive collapse of the field state
vector during information acquisition
0,0 into a random photon-number state

(initial coherent field with 3.7 photons)

Many repeated weak measurements result in
the ideal projective measurement of the photon number



Photon number statistics

0,15

Poisson
distribution

0,10 4

Probability

0,05

ambiguity between
0 and 8 photons

0,00

0 1 2 3 4 5 6 7
Photon number

Statistics of final photon number
reveals the initial coherent field of 3.7 photons



Quantum jumps of light

Real-time observation of the quantum field evolution

Random projection onto one of n values,
but with an a priori known probability

c

é Repeatability of QND measurement

=

c

8

2

bood o taa | Quantum jumps between discrete
00 01 02 03 04 values of n: damping of the field caught

Time (s) in the act

A vivid illustration of quantum measurement postulates



Gallery of trajectories

7 - - 7 - -
6 " ™~ 1 6 .
g ",
A /e d— N, A ]
c L v
v I . Vo B84 7
— A =
o T a8 Q I
o i 2 4 4
£ E
S S5 |
c 404 / < 3
c e 7 c B -
S w006 _n07 o8/ i) |
= L Time (s} L
2 “'ﬂ-,_ , i o 2 -
< _

Photon number <n=

T 1 — 1 T T T 1 — T T T T T ' 1 — 1 T T 1 T
00 01 02 03 04 00 01 02 03 04 00 01 02 03 04 00 01 02 03 04
Time (s) Time (s) Time (s) Time (s)



Ensemble average

(n) of initial field
900 sequences

.

| ' |
237 - T.=130ms -
s 2 e
o = n,, = 0.05 photons |
O
e !
o O _ —
| ' | ' | ' | '
0.0 0.2 0.4 0.6 0.8
Time (S)

Smooth exponential decay of a harmonic oscillator:

A direct illustration of the difference
between individual quantum realizations and ensemble average



Cavity field states

Photon-number Coherent "Schrodinger's Statistical
state state cat" state mixture

Wave function

@)

O

Density matrix

P

(for 3 photon states)

Wigner function

W(a)

(phase space
representation)




Wigner fu

nction

, K Parity measurement
State displaced by |
complex amplitude - P =0 = {4 o

-

o

Direct Wigner function measurement recipe:
1. Inject a coherent field (—a).

2. Measure repeatedly photon number parity: its average
value yields W(a).

3. Resume for different o values

~

/




M Schrodinger’s cat state of light

Classical components

2 photons in each
classical component
(amplitude of the initial
coherent field)

cat size D? # 7 photons

coherent components are
completely separated

(D>1)




M Schrodinger’s cat state of light

Quantum coherence

04N

quantum superposition N\
of two classical fields 0.2 N\
(interference fringes) |

quantum signature of
the prepared state
(negative values of T R
Wigner function) 0.4




» Quantum non-demolition measurement

o ”
el

——

oy
U?

xperimental setup: Photon box

L

nt

(D

(AND photon-nurmber measurerm

Past quantum states

> Quanturn control

ICK stabilizing pnoton-nurnber

—_——

l‘\\

Quanturn feedb

Adaptive QND measurerment

-
-

L

F2)
S

e

Ics of atorn-cavity interaction : a spring and a spin

~
2



State of a system defines all its properties (results of

Quantum state

any measurement).

Estimation of the density matrix p(¢) from:

The probability of a measurement outcome n

initial system'’s state
coherent evolution (Hamiltonian)
coupling to environment (decoherence)

measurement results (measurement back-action)

defined by Q :

Pf(n,t) = Tr[Qf Q. p(1)]

measurement signal

~

quantum
syste

measurement
apparatus

density matrix

time



Improved state estimation?

Our knowledge on the measured system is subject to:

Ways out:

technical noise (e.g. non-ideal detectors)
fundamental noise (e.g measurement back-action)

improve technology (e.g. better detectors)
optimize measurement settings (e.g. chose
appropriate measurement basis)

quantum
syste

measurement
apparatus

more efficiently use all available data:
use data measured after time ¢
in order to get better estimate
of the state at ¢

(D)

~
7

measurement signal
S NN 4
|

P/ (n,t) = Tr[Qf A?p(t)} 5 >
0 t e

density matrix




Past quantum state

Complete the density matrix p(¢) with an effect matrix £(¢), calculated
similarly to p(£), but on data obtained after time £in a backward time
direction.

From now on, the quantum state of the system is defined by a pair:

2(t) =1{p(0, KD}

The improved estimate of the measurement outcome:

' AT T 7\ p(t) L E(t) :
P, = —IPOUEO] - F— e
S T [Qnp (1)UL E(t)] : W\!/\MMW

: y 't T'timi

S. Gammelmark et al., PRL 111, 160401 (2013) density matrix effect matrix



Field evolution measurement

Prepare a coherent field in the cavity:
Poisson photon-number distribution
on average 6 photons

- Send a long sequence of QND probes
dephasing per photon nt/4, i.e. distinguish from 0 to 7 photons

- Each detection projects the field into a new state:
- take into account detection result
- take into account decoherence from the last detection (~0.2 ms)

- Goal: estimate evolution of the photon-number distribution on a single
quantum trajectory



{a) 15 4 1.0
= 038
€ il —_—> forward 06
: ' | .. - Broad initial distribution
S 54 :
g 02 - 8-photon measurement
04 . ..
(b) 0 T p_— periodicity
% 0s] - Some noise
'“'ELE f'%{‘ )
0.0 & &':!r;i Lot _“ﬁ*\:h& B2 Mo pM .h P Al
) 20 40 60 80 100 200 300 400 500
Time, t (ms)

- Properties similar to
forward analysis

- Narrower distributions
(smaller uncertainty on n)

- No periodicity problems
- Reduced noise

P/t (n,t) < P’ (n,t) P’(n,t)



Quantum jump detection

Simple measurement protocol:

- use empty cavity (no photons);

- inject a single photon with a resonant atom at time t = O;

- try to detect this photon with dispersive QND probes sent before and after t.

one-photon injection
2.0 ‘l’ "
_ v forward
. i backward
1.5- . ult\  forward-backward
- delayed detection, noise . T |
- advanced detection, noise IS 1040000t '
- detection on time, (almost)
No noise 0.5
_;E
0.0 -t
-100

one random realization Time, t (ms)



Quantum jump detection

Simple measurement protocol:

- use empty cavity (no photons);

- inject a single photonwith a resonant atom at time = 0;

- try to detect this photon with dispersive QND probes sent before and after ¢

one-photon injection

1.5 ‘l’
AN forward
N backward
e \\, forward-backward
- delayed detection, noise 1.0+
/\
- advanced detection, noise I\s
- detection on time, (almost) no 05.
noise '
0.0 : : : 1 : : ‘ . . : :
-100 0 100 200

average over many realizations Time, t (Ms)



Photon-number lifetimes

Do these “jumps” make sense?

Statistics of individual quantum jumps
from initial coherent field of 6 photons

Lifetime of different n-states

T.
T, =
n(l+mnp) +np(n+1)

Survival probability

\ —3
\ —4
_f:. —5
' —6
—7
——38
-9
—10
0.1
— T ’ T —— T i g 1
0 50 100 150
Time, t (ms)
)
E
E"-::
g
= 10-
= i
= ]
4n

Photon number, n




Summary on past quantum state

Approaches similar to the past quantum state method:
- forward-backward algorithm

- guantum state smoothing

- _ T. Rybarczyk et al, PRA 91,062116 (2015)
At no additional “experimental” cost:

- we (almost) get rid of noise and obtain purer quantum properties

- we overcome some measurement limitations (like fundamental periodicity of
interferometric measurement) and access previously hardly accessible states

- we improve detection of quantum state changes

Applications ?
- to get more precise property evolution, e.g. for parameter estimation and metrology

- to learn about the property “in the past”, e.g. for state reconstruction and post-
selecting data



Summary |: Photon-number measurement

» Photon box
high-quality cavity storing photons for long
time and single circular Rydberg atoms with
control on the atom-cavity interaction

» QND photon-number measurement
dispersive atom-cavity interaction and
photon-number dependent phase shift;
individual weak measurements lead to the
ideal projective one

» Past quantum state
use results of measurements performed both | |
before and after some moment in order to e e
better estimate of a real quantum trajectory

2100 0 100 200



~

Basics of atorm-cavity interaction : a spring and a spin
cxperimental setup : Photon box
(AND photon nurnber rneasurernent

Past quantum states

» Quantum control
Quantum feedback stabilizing photon number states

Adaptive QND measurement



Challenges In experimenting with quantum systems

Preparation of individual quantum objects and systems

Individual atoms, ions, photons, nuclear or electron spins,
guantum dots, superconducting circulits, ...

Manipulation of individual quantum systems in a well-
controlled way
Sophisticated measurements at the quantum limit

Isolation from the environment
Vacuum, electric/magnetic/light traps for particles,
cryogenic environment, low noise equipment, ...

If the isolation is not ideal, use active control on the system to
maintain its state, i.e. implement quantum feedback loop



Control of a classical system

Use of feedback loops

Py

e Sensor: measures the current state of the system
 Controller: compares to the set-point and chooses feedback control

 Actuator: acts on the system to bring it closer to the target



Control of a classical system

Use of feedback loops

Controller
\ gas flow ==
set € /

Example: temperature control
<€

e Sensor: measures the current state of the system
 Controller: compares to the set-point and chooses feedback control

 Actuator: acts on the system to bring it closer to the target



Control of a quantum system

Use of feedback loops ?

C I
ontroller \ c e /&
pt € / system \/

e Sensor: measures the current state of the system ...

The measurement modifies

the state of the quantum system to be controlled !



Control of a guantum system

Use of feedback loops

EAN {)\Q)m (/ﬁ

Filter

Nl

Py

NN

e« Sensor: measures the current state of the system
» Filter: estimates system’s state using all available knowledge
 Controller: compares to the set-point and chooses feedback control

 Actuator: acts on the system to bring it closer to the target



Quantum jumps and Relaxation

Real-time repetitive non-destructive photon number measurement

| | 1 | | /Io"fl ' | v | ' | ’ | J | ! | ’ | '
7 - 1.0
6 B 0.8
= 5-
S 0.6
@] ol
2 4
= 0.4
c
S 2-
= 1 0.2
D_ -
0+ Y 0.0
1 | I 771 ’ | y | ! | ! N\
6 810 50 100 150 200 250\ 3§ 400 450

Time, T [ms]
Projection onto a random

photon-number state |n) Cascade of quantum jumps

due to decoherence



Quantum jumps and Relaxation

Robust and deterministic preparation Protection against decoherence
of quantum states

| | 1 | | fllfl ’ | ' | ' | ’ | ' | ' | ’ | v
7 - 1.0
iy _ 0.8
= 5

c 5 - 0.4
c -
g =7
D- -
U 0.0

/[
| | | I 7 /1 : | g | . : N
0 2/46 810 50 100 150 200 250\ 30 400 450
Time, T [ms]

Projection onto a random

photon-number state |n) Cascade of quantum jumps

due to decoherence



Quantum feedback loops

Quantum control

» System: light trapped in a cavity

» Set point: fixed number of photons
» Sensor: single atoms performing weak measurements of photon number
» Filter/controller: state estimation and optimal feedback action

» Actuator classical: injection of coherent fields with controlled amplitude
» Actuator quantum: injection or subtraction of a photon by resonant atoms



Quantum feedback with quantum actuators

Actuators: resonant atoms

Challenges:

- switch between different interactions in
real time

- accurately calibrate resonant interaction

- properly take it into account all relevant
experimental imperfections

(b) I [ Corﬂrolle_r chooses betweerl: |
sensor (lg)+|e), dispersive) << no correction required
emitfer - [ ]Ten (|e), resonant) < too few photons
o [ [T (l9), resonant) < too many photons

Eo time

Atomic state is set by the microwave injection S; into R;

Interaction type is set by the Stark shift controlled by potential V



Filter: estimation of a field’s state

- In each feedback loop k, the filter performs real-time estimation p, of the state of
the field based on:
- actual field's state p, , estimated at the end of the previous loop,
- actual measurement result on sensor and actuator atoms,
- last feedback action,

- free state evolution (relaxation) during the loop duration.

- Initially, the field in the cavity is in the state of density matrix p, prepared by us

(e.g. vacuum or coherent)



Filter I: measurement sensors

For every detected atom: outcome u € {e, g}

Mule
Tr(MM_pM,T,,)

Pproj — Mf,cn/o —

« ldeal » description:
does not take into account the imperfections of the experimental setup !



Filter I: measurement sensors

Difficulty : imperfections of the experimental setup

 Detection efficiency e: e
1
atom can miss detection (65% chance) ?
* Detection errors n, and n:
state can be wrongly attributed (12% chance) ?

 Poissonian atom statistics:
random number of atoms per sample (0, 1 or even 2), so

nobody knows how many atoms have passed through the cavity



Filter I: measurement sensors

Poisson distribution P, of atom number in atomic samples

?f? n 1

To be considered: P,(n) =e " —
- mean atom number n, = 0.6
- include possible 0- and 2-atom events

Probability

- suppose negligible probability of more than 2 atoms

0.2

- consider a proper normalization for the Kraus operators |

Atom number

New set of Kraus operators: Ly = P,(0)I
Ly = Pa(1) M,
Le = VPu(1)M.
Lgg = \/T(Q)M(?
Lse = /2P,(2)M,M.
Lee = VPu(2)M



Filter I: measurement sensors

Detection efficiency ¢ and detection errors n, and n,

Statistical mixture of all possible states:

for every detection outcome 4 € {T,g,e,22,g¢,e¢}

> P L

sn . I ;
P = , Ly p = LupL],
Tr(X2, PGl Ly p) z !
/ (for the sake of simplicity)
our detection result of ideal
result detection

probabilities are given by the stochastic matrix :

J \] %) g e ge ee ge

1%} 1 1 —e 1 —¢ (1 —eg)? (1 —¢)? (1—¢)?

g 0 e(l —mng) EMNe 2e(1 —e)(1 —n,) 2e(1 — e)ne e(l —e)l —ne + n.)

e 0 £N, e(l —n,) 2e(1 —&)n, 2e(1 — &)1 —n,) e(l —e&)(1 —n, +n,)
g8 0 0 0 e2(1 —n,)* en; e ne(1 — ny)

ge 0 0 0 2e2n,(1 — 1) 2e*n,(1 — ne) e2((1 — ne)(1 — ne) + nme)
ee 0 0 0 82?}; e2(1 — n.)? e2ne(1 — 1n.)




Filter 1l: resonant corrections

ldeal Rabi oscillation

tow types of atoms: v = {absorber, emitter}

R)pR"'
state transformation M"’ =
T Tr (Rv pR:T)
detection results
Q,t

Rgm = Z COoS T |n) (nl , emitter failed

R;m )( | emitter succeeded

R4l — Sin_” n)(n+1|, absorber succeeded

‘ 2 = In) (n + 1]

Q,t
R;b = ZCOS N In+4+1)(n+ 1] + |0) (0] absorber failed



Filter IlI: resonant corrections

Imperfections

Dispersion in Rabi oscillations 08

0.6

_—
—

- get Rabi frequency Q, and damping T, from ”:m

calibration in different photon-number states

- here, consider only populations, but not

coherence of the field

- modify Kraus operators:

[R"p] = T+ e7"/™ cos(Q,1)] s
[R¢"p],, = 311 —e™"/™ 1 cos(Qum1 D]t a1,
[R"p],, = 301 — €7/™ cOS(QRuD)] 101+
(RS p],, = 311 4+ e/ cos(Qy-11)10nn,

Detection imperfections

t [us] t[ps]

- taken into account similar to the sensor atoms



Filter IlI: field relaxation

Coupling to environment results in a sudden loss/capture of photons

Characteristic time: lifetime of a photon 1. = 65ms
Loop duration: interval between atoms 1, = 82 us (E=T,/T.<1)
Thermal field:  ny, = 0.05

Result of the quantum master equation:
Tp = JopJo" + J\L,OJJf + JT,OJH

nochange: Jo= (1 —&ng/2)I —&(1/2+ ny)d'a,

jump operators

loss: J, = VE( +ny)a,

capture: Jy = /Eny al,



Filter IlI: field relaxation

Coupling to environment results in a sudden loss/capture of photons

Characteristic time: lifetime of a photon 1. = 65ms
Loop duration: interval between atoms 1, = 82 us (E=T,/T.<1)
Thermal field:  ny, = 0.05

If field coherence is not important, considered only P(n,t) evolution

f
dP’(n,1) _ ZKn,mPf(mat)

dt
nochange: K, ,=—kr[(1+np)n+ny(n+1)]

loss: Kn,n+1:/§(1—|—nb)(n—|— 1) relaxation matrix

capture: Ky n—1=Kknpn



Filter IV: putting all together

Quantum state estimated in a feedback loop k

not-yet-detected atoms
(s=3, flying between cavity and detector)

atom type o
initial state

ks ‘1'
]_[ (TN”*)H TM"" /

i=k+1 i=1
/

detection result

Challenge : perform these calculation fast

Use different approximations, operator properties, precalculated stuff, mathematical
tricks, etc



Controller: feedback action

Controller’s task is to find the actuator action minimizing the distance
between the actual p(n) and the target state n,

Distance to target: mean variance

V
d(ng, p(n)) = Z(i — nt)zp(i) = (}E — .ir'i't)2 + An?

I
Distance matrix

/ . R . !
D'y =Y (i —n)? i) (i d(ni, p(n)) = Tr[D',,p]
i
Distance to be minimized: B k+8
d{vk+8,Vk+?-_vk+6} — Tr @;t l_[ (TNM) )Ok:|
i=k+6
decides for the next 3 atoms in fly - k+8
minimizing distance .
9 ~Tr|D,(T) ] N" pk:|
- i=k+6




Feedback loop in action

» Vacuum state |0)

Sensor

» Initial preparation of |7)

» Detection of a quantum jump to |6)

» Correction and restoration of |7)

Distance, d

> and soon ...

ab em

Actuator

Deterministic preparation of
fragile photon-number states
(demonstrated up ton = 7)
and their stabilization
against decoherence

Photon number, n
O-=_2NWP,ARrOO N W

0.0

——
0 20 40 60 80 100 120 140
Time, t [ms]

Note: Lifetime of state |7)is only 9 ms



Photon-number distribution
Stationary regime:

ﬂm.m‘%w

e Each trajectory is terminated
at about 2T

/‘
c
-
g 10
7
=

0.8
S
O 06
AL
* An independent QND j‘c’: 04
measurement is performed. %
[ 0.2
c
g s
200
« Field state is reconstructed based ©-

] s I / > “"\if_j” L &
on the measurement results of
4000 individual trajectories.



Photon-number distribution

Stationary regime:

ensemble average of many trajectories has a steady P(n

,,,,,,,, -

..... e,
»

) distribution

T ,,,,,,,,,,,,, —
. . . c I N I | . .'
 Eachtrajectory is terminated & e I
at about 2T, Zos || .
®
% 06
fo*
* Anindependent QND 2 4
measurement is performed. g
c
%0.2
-~
@)
AL
« Field state is reconstructed based

on the measurement results of
4000 individual trajectories.



Photon-number distribution

100 120 140

80

Time [msl]

T T
@ M~
u

T T
0 w

‘Jaquin

T
<t
u

uojoyd

Use knowledge of the controller:

interrupt feedback loop

as soon as e.g. P(n,) > 0.8

State purity is improved



Photon-number distribution
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Preparation speed-up

1-0 1 I

08t 27 ms i = 3
O
g / _________________ ~ 63%
2| [ T 250 ms
S 04l |
8 quantum feedback

assive "trial-and-error"

D gl P :

00 A ] ] A ! . ] A

0 100 200 300 400 500

Active quantum feedback:

- prepare vacuum field

- activate feedback

- wait until P(n,)>0.8
Passive “trial-and-error”:

- prepare coherent field

- measure photon number

Time [ms]

Active preparation is 9 times
faster than passive for n,= 3.

Moreover, this difference
rapidly increases with n..

- if P(n,)<0.8, start from the beginning



Sequential preparation of quantum states

» An pre-set sequence of targets is chosen
» As soon as fidelity of the current target reaches 80%, the target is changed.

> lllustration of adaptive measurement

Arbitrary sequence {3,1,4,2,6,2,5}

1.0

0.8

0.6

0.4

Photon number, n

0.2

0.0

L} L] Ll L} ] I T I T T
0 20 40 60 80 100 120 140 160



Summary on Quantum feedback

Proposal and simulations:
I. Dotsenko, M. Mirrahimi, M. Brune, J.-M. Raimond, S. Haroche, & P. Rouchon,
« Quantum feedback by discrete QND measurements:
towards on-demand generation of photon-number states »,
Phys. Rev. A 80, 013805 (2009) coherent injection
Stability analysis:
M. Mirrahimi, |. Dotsenko & P. Rouchon, IEEE Conference on Decision and Control ,1451-1456 (2010)
A. Somaraju et al., Proceedings of the American Control Conference, 5084-5089 (2012)

coherent injection

Experiment:
C. Sayrin et al.,
« Real-time quantum feedback prepares and stabilizes photon number states »,
Nature 477, 73-77 (2011) coherent injection
X. Zhou et al.,

« Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections »,
Phys. Rev. Lett. 108, 243602 (2012)
B. Peaudecerf et al.,
« Quantum feedback experiments stabilizing Fock states of light in a cavity »,
Phys. Rev. A 87, 042320 (2013) review of both methods

resonant atoms



> Quanturm non-demolition measurement
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Adaptive QND measurement

So far:

for complete QND measurement we use a sequence of sensors with

4 alternative Ramsey phases (i.e. detection direction set by R,) in order to
be equally sensitive to all photon number from O to 7.

ldea:

for each sensor choose a detection direction which has a maximum chance
to give the most new information on the field in order not to waste time on
less useful measurements

Pr € {‘P'r‘Oa Pri, Pr2, 907°3}

/ —  We choose the measurement
which can still “surprise” us

B. Peaudecerf et al, PRL 112,080401 (2014)



1.0

0.0

Optimal phase choice

Example:

distribution P, (n)
after k detections:

0

Four available
measurements

Expected photon number distribution P,,,(n)

le)

|g)

1

2 3 4 5 6 7

useless




Entropy as information measure

Example:

distribution P, (n)
after k detections:

1.0
0.5

0.0

0123 456 7

Shannon entropy as a measure of knowledge P (n) on photon number:

S = — Z P(n)InP(n)

No information on photon number (uniform distribution):

S = Spax = —In(1/N) =21

0.5

0.0
01 2 3 4 5 6 7

Full information on a photon number (single peak distribution):

1.0
S = Smin =0

0.5

0-0“! 1 T 7T
01 2 3 4 5 6 7

Smaller entropy = more knowledge



1.0

0.5

0.0

Optimal phase choice

Example:

distribution P, (n)
after k detections:

0

Available Expected photon number distribution P,,,(n)
measurements le) 19)
S¢=0.50 Se:O.Bg,, =
N (Ser)=0.41

0 1 2 3 4 5 6 7

- N

0123 456 7

.-~ S4=1.05

01 2 3 4 5 6 7

S.=0.56

0 1 2 3 4 5 6 7

1

2 3 4 5 6 7

S, = 0.98

S,=0.95

01 2 3 4 5 6 7

S,=0.95 .-

(Sy21)=0.95

01 2 3 4 5 6 7

--.S,=0.56

0 1 2 3 4 5 6 7

S.=1.05 .

N (Sy,1)=0.74
(S,,1)=0.74

0 1 2 3 4 5 6 7




A Adaptive QND measurement

Algorithm: for each sensor choose a Ramsey phase which has a maximum
chance to minimize entropy

S=-—) P(n)lnP(n)

real-time
controller



Experimental sequence

We want to test phase adaptation in a context free from relaxation :

Initialization Adaptive Verification

measurement

projection onto
a random |n;)

independent

measurement of |n)
measurement of |n;)

(25 ms)

- SN

Select trajectories with no relaxation :
n; = Ny




Experimental sequence

We want to test phase adaptation in a context free from relaxation :

Phase, aligned orthogonally to a maximally probable n
(so-called mid-fringe setting, better distinguishability from its
neighbors), is chosen more often.

Controller’s measurement choice follows P(n)

1,04

] —1
0,8 2
0.6 3 measurement of
< 04- 4 state [n=2)
S L] | _5
" 02 | % °
0,04 S .\ 3 = Ve — 7
T T T T T T T T T 1
0 S 10 15 20 25
1

I T I T I T I T 1

0 5 10 15 20 25
time (ms)

adapted phase



Speed-up of iInformation acquisition

Time (ms)
0 5 10 15 20 25

"I L 1 1 1 1 i | L 1

Average entropy (normalized)

0,01 . .

T T l- | T - T
0 50 100 150 200 250 300
Atomic samples

Faster entropy reduction
If phase is adapted

—— passively alternated
— actively adapted

(dashed lines: simulations)

16 L 1 L 1 " 1 " |

Measurement speedup

T ! T g T ) T I
1.0 0.8 0.6 0.4 0.2 0.0
Average entropy (normalized)



Summary II: Quantum control

» Adaptive QND measurement
choosing in real time a Ramsey phase
for speeding-up information acquisition
(for faster state reduction/projection)

» Quantum feedback with coherent injection
preparation and stabilization of
photon-number states (up to 4)

» Quantum feedback with resonant atoms

faster feedback, thus higher
photon-number states (up to 7 so far)




Thank you for your

attention!
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