Mean Field Game Analysis of Tournaments

Yuchong Zhang 1 (Joint works with M. Nutz¹, E. Bayraktar² and J. Cvitanic³)

¹Columbia University

²University of Michigan

 $^{3}Caltech$

Advances in Stochastic Analysis for Risk Modeling CIRM, November 16, 2017

Introduction	The Poissonian model 00000000	The diffusion model	Conclusion O
Outline			

2 The Poissonian model (with M. Nutz)

3 The diffusion model (with E. Bayraktar and J. Cvitanić)

Introduction •00	The Poissonian model	The diffusion model	Conclusion O
N A			

Motivation

- Rank-based criteria is everywhere:
 - sports, R&D, admission, ... any "competition"
 - people's utility often depends on relative performance
- May have a mixture of absolute and relative performance criteria.
- Goal: analyze large population competition of "timing"
 - stochastic control rather than stopping problems
 - want a model with tractability
 - describe equilibrium behavior
 - tournament design
- MFG where agents interact through the ranking of the hitting times

Mean Field	Camos		
000	The Poissonian model	The diffusion model	Conclusion O

- Introduced by Lasry-Lions and Huang-Malhamé-Caines, 2006
- Nash equilibria for $N o \infty$ players
- $\bullet\,$ Interaction through empirical distribution ν of the private states
- Typical setting: each player controls a diffusion with some reward and cost-of-effort which depend on ν
- Coupled system: HJB and Kolmogorov PDEs, or FBSDEs
- Only Linear-Quadratic control can be solved explicitly
- Cardaliaguet, Carmona, Delarue, Fouque, Lacker, Yam, ...
- Mean field games of timing: Carmona-Delarue-Lacker, Nutz
- Toy example of Lasry-Lions, "When Does the Meeting Start?"
- Principal-agent problem: Élie, Mastrolia & Possaimai

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

General strategy for finding a Nash equilibrium

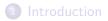
Best-response step:

Solve a standard stochastic control problem for a representative player, given the strategy or performance of all other players.

Fixed-point step:

Find a fixed point of the best-response mapping.

Introduction 000	The Poissonian model	The diffusion model	Conclusion O
Outline			



2 The Poissonian model (with M. Nutz)

3 The diffusion model (with E. Bayraktar and J. Cvitanić)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Introduction	The Poissonian model	The diffusion model	Conclusion
000	●0000000		O
The Poissor	nian model		

- A continuum of agents $i \in (I, \mathcal{I}, \mu)$; atomless
- Each agent controls intensity λ of her independent Poisson process
- Quadratic instantaneous cost $c\lambda_t^2 dt$
- Goal is reached if process jumps (once)

Agents...

- are ranked according to their completion times
- are paid a rank-based reward $R: [0,1] \rightarrow \mathbb{R}_+$ (decreasing, piecewise Lipschitz and left-continuous at r = 1)
- maximize expected reward minus cost

Interaction:

- Agents observe ρ(t) = μ{i : τⁱ ≤ t} = proportion of agents completed by time t, and choose feedback control λ(ρ(t))
- Reward $R(\rho(\tau_i))$ and cost $c(\rho(t))$ depend on rank/proportion

- 31

Solving th	ne MEG		
Introduction	The Poissonian model	The diffusion model	Conclusion
000	0●000000		O

• The representative player's problem:

$$v(r) = \sup_{\lambda \in \Lambda} E\left[R(\rho(\tau_{\lambda})) - \int_{0}^{\tau_{\lambda}} c(\rho(t)) \lambda(\rho(t))^{2} dt \middle| \rho(0) = r \right]$$

where Λ =set of feedback controls (piecewise Lipschitz),

$$ho(t) = \int_0^t ar\lambda(
ho(s))(1-
ho(s))\,ds$$

• The fixed-point problem:

$$ar{\lambda}\mapsto
ho\mapsto {\sf optimal}\;\lambda$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Agent space (I, \mathcal{I}, μ) is atomless
- Hence this is Nash: no single agent influences ρ

Evictorica	and uniqueness		
000	000000	0000000000	0
Introduction	The Poissonian model	The diffusion model	Conclusion

Existence and uniqueness

Theorem

There exists a unique (a.e.) equilibrium optimal control $\lambda^* \in \Lambda$,

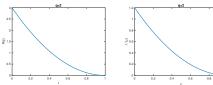
$$\lambda^{*}(r) = \frac{R(r) - \frac{1}{2\sqrt{1-r}} \int_{r}^{1} \frac{R(y)}{\sqrt{1-y}} \, dy}{2c(r)}, \quad r \in [0,1)$$

In equilibrium, the value function of any agent before completion is

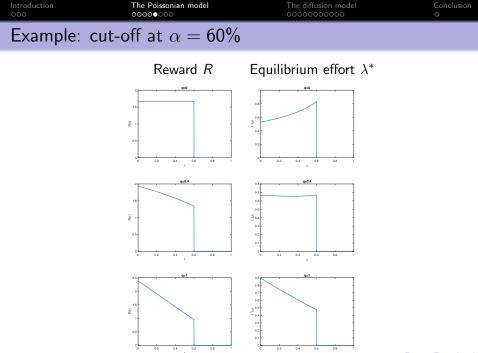
$$v(r) = rac{1}{2\sqrt{1-r}} \int_{r}^{1} rac{R(y)}{\sqrt{1-y}} \, dy, \quad r \in [0,1)$$

- Value of a freshly started game: $V = v(0) = \frac{1}{2} \int_0^1 \frac{R(y)}{\sqrt{1-y}} dy$.
- V is independent of c: higher cost ⇒ smaller optimal effort ⇒ state ρ is slowed down⇒ same reward

Introduction 000	The Poissonian model 000●0000	The diffusion model	Conclusion O
Example:	no cut-off		
	Reward R	Equilibrium effort λ^*	



(:) ▲ ∃ ▲ ∃ ● ��



The princip	oal's problem		
Introduction	The Poissonian model	The diffusion model	Conclusion
000	○○○○○●○○		O

- $\bullet\,$ Given R, there exists a unique, deterministic equilibrium state ρ
- Time until α -fraction of the population has completed:

$$T_{lpha}(R) = \inf\{t \ge 0: \
ho(t) \ge lpha\} \in (0,\infty]$$

• Given
$$lpha \in (0,1)$$
 and budget $B>0$,

minimize
$$T_{\alpha}(R)$$
 subject to $\int_0^1 R(r) dr \le B$

- What reward scheme $R^* \ge 0$ can attain $T^*_{\alpha} = \inf_R T_{\alpha}(R)$?
- A constrained calculus of variation problem

The diffusion model

Theorem

Suppose $\frac{c(r)(1-r)}{2-r}$ is decreasing. Given a fixed reward budget B > 0 and $\alpha \in (0, 1)$, the optimal non-negative rank-based reward scheme to minimize $T_{\alpha}(R)$ is

$$R^{*}(r) = \frac{B}{C} \left\{ \sqrt{\frac{c(r)}{2-r}} + \frac{1}{2} \int_{r}^{\alpha} \frac{1}{1-s} \sqrt{\frac{c(s)}{2-s}} ds \right\} \mathbf{1}_{[0,\alpha]}(r),$$

and the minimum $\alpha\text{-completion}$ time is

$$T^*_{lpha}=rac{4C^2}{B}, \quad ext{where} \quad C:=rac{1}{2}\int_0^{lpha}rac{\sqrt{c(r)(2-r)}}{1-r}dr.$$

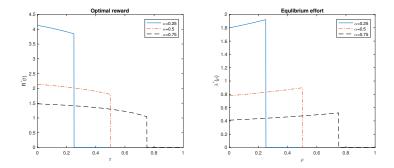
The corresponding equilibrium effort is

$$\lambda^*(r) = \frac{B}{2C} \frac{1}{\sqrt{(2-r)c(r)}} \mathbf{1}_{[0,\alpha]}(r)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Poissonian model 0000000

Plots for $\alpha = 25\%$, 50%, 75%, with c constant



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

The Poissonian mode

The diffusion model

Outline

2 The Poissonian model (with M. Nutz)

3 The diffusion model (with E. Bayraktar and J. Cvitanić)

4 Conclusion

Introduction	The Poissonian model	The diffusion model	Conclusion
000		●0000000000	O
The diffusio	n model		

- Reward function: $R(t, r) = 1_{\{t \le T\}} H(r) + 1_{\{t > T\}} 0.$
- Assume agents are homogeneous: (x_0, c, σ) .
- Optimization problem for a representative player:

$$\sup_{a} E\left[R_{\mu}(\tau_{\mu}) - \int_{0}^{\tau_{\mu} \wedge T} c a_{t}^{2} dt\right]$$

where $R_{\mu}(t) = R(t, F_{\mu}(t)) = \mathbb{1}_{\{t \leq T\}} H(F_{\mu}(t))$,

$$dX_t = -a_t dt + \sigma dB_t, \ X_0 = x_0, \tau_{\mu} = \inf\{t \ge 0 : X_t = 0\}.$$

• Nash equilibrium: fixed points of $\mu \mapsto \mathcal{L}(\tau_{\mu}^*)$.

	best-response		
Introduction	The Poissonian model	The diffusion model	Conclusion

• Given μ , the best-response can be computed by solving the HJB equation for the value function:

$$\begin{aligned} v_t + \sup_{a\geq 0} \left\{ -av_x + \frac{1}{2}\sigma^2 v_{xx} - ca^2 \right\} &= 0, \\ v(t,0) &= H(F_\mu(t)), \quad v(T,x) = 0. \end{aligned}$$

• The nonlinear HJB equation can be linearized using the Cole-Hopf transformation $u = \exp(\frac{v}{2c\sigma^2})$. *u* has stochastic representation:

$$u(t,x) = E\left[\exp\left(\frac{R_{\mu}(t+\tau_{x/\sigma}^{\circ})}{2c\sigma^{2}}\right)\right],$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where τ_m° is the BM first passage time to level *m*.

• The optimal feedback control $a^* = -\sigma^2 u_x/u$.

Explicit Nas	h equilibrium		
Introduction	The Poissonian model	The diffusion model	Conclusion
000	00000000	00●00000000	O

Proposition. The fixed point equation (for μ) is :

$$f_{\mu}(t) = rac{u(t,0;\mu)}{u(0,x_{0};\mu)} f_{\tau^{\circ}_{x_{0}/\sigma}}(t).$$

Theorem ($T=\infty)$

There is a **unique** equilibrium completion time distribution μ given in terms of its quantile function $r \mapsto T_r^{\mu}$ by

$$T_r^{\mu} = F_{\tau_{x_0/\sigma}^{\circ}}^{-1} \left(\frac{\int_0^r \exp\left(-\frac{H(z)}{2c\sigma^2}\right) dz}{\int_0^1 \exp\left(-\frac{H(z)}{2c\sigma^2}\right) dz} \right)$$

Moreover, the value of the game is given by

$$V_{\infty} = -2c\sigma^2 \ln\left(\int_0^1 \exp\left(-\frac{H(z)}{2c\sigma^2}\right) dz\right).$$

Explicit Nash	n equilibrium		
Introduction	The Poissonian model	The diffusion model	Conclusion
000	00000000	00●00000000	O

Proposition. The fixed point equation (for μ) is :

$$f_{\mu}(t)=rac{u(t,0;\mu)}{u(0,x_0;\mu)}f_{ au_{x_0/\sigma}^\circ}(t).$$

Theorem ($T = \infty$)

There is a <u>unique</u> equilibrium completion time distribution μ given in terms of its quantile function $r \mapsto T_r^{\mu}$ by

$$T_r^{\mu} = F_{\tau_{x_0/\sigma}^{\circ}}^{-1} \left(\frac{\int_0^r \exp\left(-\frac{H(z)}{2c\sigma^2}\right) dz}{\int_0^1 \exp\left(-\frac{H(z)}{2c\sigma^2}\right) dz} \right)$$

Moreover, the value of the game is given by

$$V_{\infty} = -2c\sigma^2 \ln\left(\int_0^1 \exp\left(-\frac{H(z)}{2c\sigma^2}\right) dz\right).$$

The diffusion model

Theorem ($T < \infty$)

There is a <u>unique</u> equilibrium completion time distribution μ given in terms of its quantile function $r \mapsto T_r^{\mu}$ by

$$T_r^{\mu} = F_{\tau_{x_0/\sigma}^{\circ}}^{-1} \left(\frac{1 - F_{\tau_{x_0/\sigma}^{\circ}}(T)}{1 - F_{\mu}(T)} \int_0^r \exp\left(\frac{-H(z)}{2c\sigma^2}\right) dz \right), \quad r \in [0, F_{\mu}(T)],$$

where the equilibrium terminal completion rate $F_{\mu}(T) \in (0,1)$ is the unique solution of

$$F_{\tau^{\circ}_{x_0/\sigma}}(T) = \frac{1 - F_{\tau^{\circ}_{x_0/\sigma}}(T)}{1 - F_{\mu}(T)} \int_0^{F_{\mu}(T)} \exp\left(\frac{-H(z)}{2c\sigma^2}\right) dz.$$

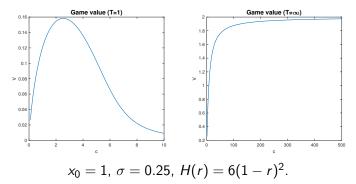
Moreover, the value of the game is given by

$$V = 2c\sigma^2 \ln\left(\frac{1 - F_{\tau_{\chi_0/\sigma}^\circ}(T)}{1 - F_{\mu}(T)}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Introduction 000	The Poissonian model	The diffusion model	Conclusion O	
Dependence on the cost parameter				

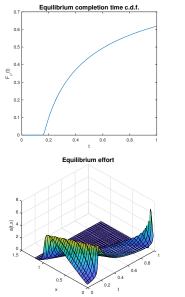
- (One-stage) Poissonian: game value is independent of c.
- Diffusion: game value is increasing in c when T = ∞, and non-monotone in c when T < ∞.

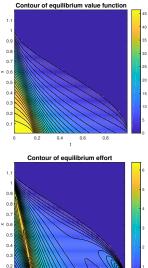


• Efficiency does not necessarily make people happier.

The Poissonian mode

The diffusion model





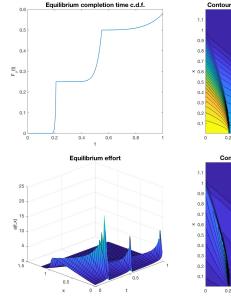
 $x_0 = c = 1, \ \sigma = 0.25, \ H(r) = 6(1 - r)^2.$

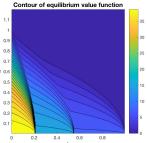
t

0.1

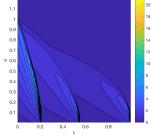
0 0.2 0.4 0.6 0.8

The Poissonian model





Contour of equilibrium effort



 $x_0 = c = 1, \ \sigma = 0.25, \ H = 5 \cdot 1_{[0,0.25)} + 2 \cdot 1_{[0.25,0.5)} + \frac{1}{2} \cdot 1_{[0.5,1]}$

Minimizing the α -quantile

Objective: Given limited reward budget K, what (non-negative) reward scheme minimizes the time it takes $\alpha \in (0, 1)$ fraction of the population to complete their projects in equilibrium?

Theorem: regardless of the tournament horizon, the unique (up to a.e. equivalence) optimal reward scheme is the uniform scheme with cutoff rank α :

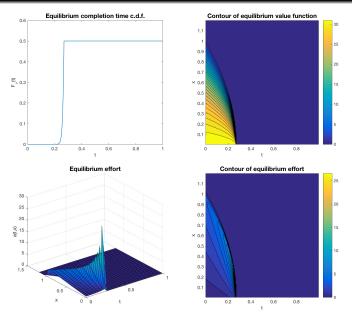
$$H^*(r) = \frac{\kappa}{\alpha} \mathbb{1}_{[0,\alpha]}(r).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• cf. Poissonian competition.

The Poissonian mode

The diffusion model



 $x_0=c=1, \ \sigma=0.25, \ K=2, \ lpha=0.5, \ T_{a}=1,$

Maximizing	profit		
Introduction 000	The Poissonian model	The diffusion model	Conclusion O

Objective: Suppose each project completed at time t generates a profit g(t) for the principal. What reward scheme maximizes the aggregate net profit $E[g(\tau) - R_{\mu}(\tau)], \tau \sim \mu$ for the principal?

Theorem: Suppose $T = \infty$. Given a non-constant decreasing profit function $g \in C_b(\mathbb{R}_+)$, an optimal reward scheme $H^* \ge 0$ is given by

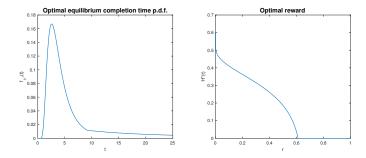
$$H^*(r) = g(F_{\mu^*}^{-1}(r) \wedge t_b^*) - g(t_b^*),$$

where $t_b^* = \operatorname{argmax} of a$ one-dimension static optimization problem, and f_{μ^*} has an explicit formula involving t_b^* .

• In equilibrium, the agents receive $g(t \wedge t_b^*) - g(t_b^*)$ for finishing at time t. It is optimal for the principal to align his interest with that of the agents.

• Optimizing over the set of feasible μ .

Introduction	The Poissonian model	The diffusion model	Conclusion
000		○○○○○○○○○●	O



 $g(t) = x_0 e^{-0.1t}$, $x_0 = c = 1$, $\sigma = 0.25$. The participation reward constraint starts to be binding at rank 0.61.

Introduction	The Poissonian model	The diffusion model	Conclusion
000	00000000		O
Outline			

2 The Poissonian model (with M. Nutz)

3 The diffusion model (with E. Bayraktar and J. Cvitanić)

Conclusion			
			•
Introduction	The Poissonian model	The diffusion model	Conclusion

- Two tractable mean field models of competition
- Unique equilibrium in semi-closed form
 - Poissonian: game value is independent of c
 - Diffusion: game value is increasing in c (when $T = \infty$)
- Principal-agent problem explicitly solvable via calculus of variation
 - Poissonian: quantile-minimizing scheme is not uniform
 - Diffusion: quantile-minimizing scheme is uniform
- Open questions: multi-stage Poissonian model, heterogeneous agents, time-consistent formulation of the principal's problem, un-fixed pie, multiple tournaments, ...

Introd	

Main references

- E. Bayraktar, J. Cvitanić, and Y. Zhang.

Mean field game analysis of tournaments.

In preparation.

- E. Bayraktar and Y. Zhang.

A rank-based mean field game in the strong formulation. *Electron. Commun. Probab.*, 21, paper no. 72:1–12, 2016.

R. Carmona and F. Delarue.

Probabilistic analysis of mean-field games. SIAM J. Control Optim., 51(4):2705–2734, 2013.

M. Nutz.

A mean field game of optimal stopping.

Preprint, arXiv:1605.09112v1, 2016.

M. Nutz and Y. Zhang.

A mean field competition.

Preprint, arXiv:1708.01308v1, 2017.

Thank you for your attention!