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Motivation

Rank-based criteria is everywhere:

sports, R&D, admission, ... any “competition”
people’s utility often depends on relative performance

May have a mixture of absolute and relative performance criteria.

Goal: analyze large population competition of “timing”

stochastic control rather than stopping problems
want a model with tractability
describe equilibrium behavior
tournament design

MFG where agents interact through the ranking of the hitting
times
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Mean Field Games

Introduced by Lasry–Lions and Huang–Malhamé–Caines, 2006

Nash equilibria for N →∞ players

Interaction through empirical distribution ν of the private states

Typical setting: each player controls a diffusion with some reward
and cost-of-effort which depend on ν

Coupled system: HJB and Kolmogorov PDEs, or FBSDEs

Only Linear-Quadratic control can be solved explicitly

Cardaliaguet, Carmona, Delarue, Fouque, Lacker, Yam, . . .

Mean field games of timing: Carmona–Delarue–Lacker, Nutz

Toy example of Lasry–Lions, “When Does the Meeting Start?”

Principal-agent problem: Élie, Mastrolia & Possaimai
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General strategy for finding a Nash equilibrium

1 Best-response step:
Solve a standard stochastic control problem for a representative
player, given the strategy or performance of all other players.

2 Fixed-point step:
Find a fixed point of the best-response mapping.
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The Poissonian model

A continuum of agents i ∈ (I , I, µ); atomless

Each agent controls intensity λ of her independent Poisson process

Quadratic instantaneous cost cλ2
t dt

Goal is reached if process jumps (once)

Agents. . .

are ranked according to their completion times

are paid a rank-based reward R : [0, 1]→ R+

(decreasing, piecewise Lipschitz and left-continuous at r = 1)

maximize expected reward minus cost

Interaction:

Agents observe ρ(t) = µ{i : τ i ≤ t} = proportion of agents
completed by time t, and choose feedback control λ(ρ(t))

Reward R(ρ(τi )) and cost c(ρ(t)) depend on rank/proportion
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Solving the MFG

The representative player’s problem:

v(r) = sup
λ∈Λ

E

[
R(ρ(τλ))−

∫ τλ

0
c(ρ(t))λ(ρ(t))2 dt

∣∣∣∣ρ(0) = r

]
where Λ =set of feedback controls (piecewise Lipschitz),

ρ(t) =

∫ t

0
λ̄(ρ(s))(1− ρ(s)) ds

The fixed-point problem:

λ̄ 7→ ρ 7→ optimal λ

Agent space (I , I, µ) is atomless
Hence this is Nash: no single agent influences ρ
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Existence and uniqueness

Theorem

There exists a unique (a.e.) equilibrium optimal control λ∗ ∈ Λ,

λ∗(r) =
R(r)− 1

2
√

1−r

∫ 1
r

R(y)√
1−y dy

2c(r)
, r ∈ [0, 1)

In equilibrium, the value function of any agent before completion is

v(r) =
1

2
√

1− r

∫ 1

r

R(y)√
1− y

dy , r ∈ [0, 1)

Value of a freshly started game: V = v(0) = 1
2

∫ 1
0

R(y)√
1−y dy .

V is independent of c: higher cost ⇒ smaller optimal effort ⇒
state ρ is slowed down⇒ same reward
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Example: no cut-off

Reward R Equilibrium effort λ∗

0 0.2 0.4 0.6 0.8 1

r

0

0.5

1

1.5

R
(r

)

q=0.5

0 0.2 0.4 0.6 0.8 1

ρ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ
∗

(ρ
)

q=0.5

0 0.2 0.4 0.6 0.8 1

r

0

0.5

1

1.5

2

R
(r

)

q=1

0 0.2 0.4 0.6 0.8 1

ρ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ
∗

(ρ
)

q=1

0 0.2 0.4 0.6 0.8 1

r

0

0.5

1

1.5

2

2.5

3

R
(r

)

q=2

0 0.2 0.4 0.6 0.8 1

ρ

0

0.2

0.4

0.6

0.8

1

1.2

λ
∗

(ρ
)

q=2



Introduction The Poissonian model The diffusion model Conclusion

Example: cut-off at α = 60%
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The principal’s problem

Given R, there exists a unique, deterministic equilibrium state ρ

Time until α-fraction of the population has completed:

Tα(R) = inf{t ≥ 0 : ρ(t) ≥ α} ∈ (0,∞]

Given α ∈ (0, 1) and budget B > 0,

minimize Tα(R) subject to

∫ 1

0
R(r) dr ≤ B

What reward scheme R∗ ≥ 0 can attain T ∗α = infR Tα(R)?

A constrained calculus of variation problem
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Theorem

Suppose c(r)(1−r)
2−r is decreasing. Given a fixed reward budget B > 0 and

α ∈ (0, 1), the optimal non-negative rank-based reward scheme to
minimize Tα(R) is

R∗(r) =
B

C

{√
c(r)

2− r
+

1

2

∫ α

r

1

1− s

√
c(s)

2− s
ds

}
1[0,α](r),

and the minimum α-completion time is

T ∗α =
4C 2

B
, where C :=

1

2

∫ α

0

√
c(r)(2− r)

1− r
dr .

The corresponding equilibrium effort is

λ∗(r) =
B

2C

1√
(2− r)c(r)

1[0,α](r)
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Plots for α = 25%, 50%, 75%, with c constant
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The diffusion model

Reward function: R(t, r) = 1{t≤T}H(r) + 1{t>T}0.

Assume agents are homogeneous: (x0, c , σ).

Optimization problem for a representative player:

sup
a

E

[
Rµ(τµ)−

∫ τµ∧T

0
ca2

t dt

]
where Rµ(t) = R(t,Fµ(t)) = 1{t≤T}H(Fµ(t)),

dXt = −atdt + σdBt , X0 = x0,

τµ = inf{t ≥ 0 : Xt = 0}.

Nash equilibrium: fixed points of µ 7→ L(τ∗µ).
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Finding the best-response

Given µ, the best-response can be computed by solving the HJB
equation for the value function:

vt + sup
a≥0

{
−avx +

1

2
σ2vxx − ca2

}
= 0,

v(t, 0) = H(Fµ(t)), v(T , x) = 0.

The nonlinear HJB equation can be linearized using the Cole-Hopf
transformation u = exp( v

2cσ2 ). u has stochastic representation:

u(t, x) = E

[
exp

(
Rµ(t + τ◦x/σ)

2cσ2

)]
,

where τ◦m is the BM first passage time to level m.

The optimal feedback control a∗ = −σ2ux/u.
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Explicit Nash equilibrium

Proposition. The fixed point equation (for µ) is :

fµ(t) =
u(t, 0;µ)

u(0, x0;µ)
fτ◦

x0/σ
(t).

Theorem (T =∞)

There is a unique equilibrium completion time distribution µ given
in terms of its quantile function r 7→ Tµ

r by

Tµ
r = F−1

τ◦
x0/σ

∫ r

0
exp

(
−H(z)

2cσ2

)
dz∫ 1

0
exp

(
−H(z)

2cσ2

)
dz

 .

Moreover, the value of the game is given by

V∞ = −2cσ2 ln

(∫ 1

0

exp

(
−H(z)

2cσ2

)
dz

)
.
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.
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Theorem (T <∞)

There is a unique equilibrium completion time distribution µ given
in terms of its quantile function r 7→ Tµ

r by

Tµ
r = F−1

τ◦
x0/σ

(
1− Fτ◦

x0/σ
(T )

1− Fµ(T )

∫ r

0

exp

(
−H(z)

2cσ2

)
dz

)
, r ∈ [0,Fµ(T )],

where the equilibrium terminal completion rate Fµ(T ) ∈ (0, 1) is
the unique solution of

Fτ◦
x0/σ

(T ) =
1− Fτ◦

x0/σ
(T )

1− Fµ(T )

∫ Fµ(T )

0

exp

(
−H(z)

2cσ2

)
dz .

Moreover, the value of the game is given by

V = 2cσ2 ln

(
1− Fτ◦

x0/σ
(T )

1− Fµ(T )

)
.
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Dependence on the cost parameter

(One-stage) Poissonian: game value is independent of c .

Diffusion: game value is increasing in c when T =∞, and
non-monotone in c when T <∞.
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x0 = 1, σ = 0.25, H(r) = 6(1− r)2.

Efficiency does not necessarily make people happier.
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x0 = c = 1, σ = 0.25, H(r) = 6(1− r)2.
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x0 = c = 1, σ = 0.25, H = 5 · 1[0,0.25) + 2 · 1[0.25,0.5) + 1[0.5,1].
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Minimizing the α-quantile

Objective: Given limited reward budget K , what (non-negative)
reward scheme minimizes the time it takes α ∈ (0, 1) fraction of
the population to complete their projects in equilibrium?

Theorem: regardless of the tournament horizon, the unique (up to
a.e. equivalence) optimal reward scheme is the uniform scheme
with cutoff rank α:

H∗(r) =
K

α
1[0,α](r).

cf. Poissonian competition.
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x0 = c = 1, σ = 0.25, K = 2, α = 0.5, T = 1.
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Maximizing profit

Objective: Suppose each project completed at time t generates a profit
g(t) for the principal. What reward scheme maximizes the aggregate net
profit E [g(τ)− Rµ(τ)], τ ∼ µ for the principal?

Theorem: Suppose T =∞. Given a non-constant decreasing profit
function g ∈ Cb(R+), an optimal reward scheme H∗ ≥ 0 is given by

H∗(r) = g(F−1
µ∗ (r) ∧ t∗b )− g(t∗b ),

where t∗b = argmax of a one-dimension static optimization problem, and
fµ∗ has an explicit formula involving t∗b .

In equilibrium, the agents receive g(t ∧ t∗b )− g(t∗b ) for finishing at time
t. It is optimal for the principal to align his interest with that of the
agents.

Optimizing over the set of feasible µ.
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Optimal reward

g(t) = x0e
−0.1t , x0 = c = 1, σ = 0.25. The participation reward
constraint starts to be binding at rank 0.61.
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Conclusion

Two tractable mean field models of competition

Unique equilibrium in semi-closed form

Poissonian: game value is independent of c
Diffusion: game value is increasing in c (when T =∞)

Principal-agent problem explicitly solvable via calculus of variation

Poissonian: quantile-minimizing scheme is not uniform
Diffusion: quantile-minimizing scheme is uniform

Open questions: multi-stage Poissonian model, heterogeneous
agents, time-consistent formulation of the principal’s problem,
un-fixed pie, multiple tournaments, ...
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Thank you for your attention!
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