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Motivation

Rank-based criteria is everywhere:

e sports, R&D, admission, ... any “competition”
e people’s utility often depends on relative performance

@ May have a mixture of absolute and relative performance criteria.
@ Goal: analyze large population competition of “timing”

e stochastic control rather than stopping problems

e want a model with tractability

o describe equilibrium behavior

e tournament design
@ MFG where agents interact through the ranking of the hitting

times
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Mean Field Games

Introduced by Lasry—Lions and Huang—Malhamé—Caines, 2006
Nash equilibria for N — oo players
Interaction through empirical distribution v of the private states

Typical setting: each player controls a diffusion with some reward
and cost-of-effort which depend on v

Coupled system: HJB and Kolmogorov PDEs, or FBSDEs

@ Only Linear-Quadratic control can be solved explicitly

Cardaliaguet, Carmona, Delarue, Fouque, Lacker, Yam, ...
Mean field games of timing: Carmona—Delarue—Lacker, Nutz
Toy example of Lasry—Lions, “When Does the Meeting Start?”

Principal-agent problem: Elie, Mastrolia & Possaimai
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General strategy for finding a Nash equilibrium

© Best-response step:
Solve a standard stochastic control problem for a representative
player, given the strategy or performance of all other players.

@ Fixed-point step:
Find a fixed point of the best-response mapping.
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The Poissonian model

A continuum of agents i € (/,Z, u); atomless
Each agent controls intensity A of her independent Poisson process
Quadratic instantaneous cost c\? dt

Goal is reached if process jumps (once)

Agents. ..
@ are ranked according to their completion times

@ are paid a rank-based reward R : [0,1] — R
(decreasing, piecewise Lipschitz and left-continuous at r = 1)

@ maximize expected reward minus cost
Interaction:

e Agents observe p(t) = u{i: 7/ < t} = proportion of agents
completed by time ¢, and choose feedback control A(p(t))

@ Reward R(p(7;)) and cost c(p(t)) depend on rank/proportion
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Solving the MFG

@ The representative player’'s problem:

AEA

o(r) = sup E [R(pm)) - [ el ot o

p(0) =1

where A\ =set of feedback controls (piecewise Lipschitz),

o) = [ “R(o(9)(1  pls)) ds

@ The fixed-point problem:
X\ — p — optimal A

o Agent space (/,Z, ) is atomless
e Hence this is Nash: no single agent influences p
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Existence and uniqueness

There exists a unique (a.e.) equilibrium optimal control \* € A,

fl R(y

N(r) = BN

2e(r) , rejo,1)

In equilibrium, the value function of any agent before completion is

_ 1 ' R(y)
V(r)_z\/l—r/, \/1_ydy, rel0,1)

o Value of a freshly started game: V = v(0) = 1 01 \/Rgdy

@ V is independent of c: higher cost = smaller optlmal effort =
state p is slowed down=- same reward
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Example: no cut-off

Reward R Equilibrium effort A*
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Example: cut-off at a = 60%

Reward R Equilibrium effort A*
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The principal’s problem

Given R, there exists a unique, deterministic equilibrium state p

Time until a-fraction of the population has completed:

To(R) =inf{t > 0: p(t) > a} € (0, 0]

Given a € (0,1) and budget B > 0,

1
minimize T,(R) subject to / R(r)dr <B
0

What reward scheme R* > 0 can attain T} = infg To(R)?

A constrained calculus of variation problem
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Theorem

Suppose C(r%(_lfr) is decreasing. Given a fixed reward budget B > 0 and

a € (0,1), the optimal non-negative rank-based reward scheme to
minimize T,(R) is

and the minimum a-completion time is

2 a 2 _
T = £, where C := 1/ Mdr.
B 2 Jo 1—r

The corresponding equilibrium effort is

N (r)

= (1)
2C /2= e




The Poissonian model
ooe

Plots for a = 25%, 50%, 75%, with ¢ constant

Optimal reward

Equlibrium effort
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The diffusion model

@ Reward function: R(t,r) = 1< 7yH(r) + 11¢- 130,
e Assume agents are homogeneous: (xg, ¢, o).

@ Optimization problem for a representative player:

TuNT
sup E |:RH(TM) —/ cafdt}
a 0

where R, (t) = R(t, Fu(t)) = LTy H(Fu(2)),

dXt = —atdt + O'dBt7 X() = X0,
7, = inf{t > 0: X, = 0}.

o Nash equilibrium: fixed points of u > L(7}).
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Finding the best-response

@ Given p, the best-response can be computed by solving the HJB
equation for the value function:

1
Vs + sup {—avx + fa2vxx — ca2} =0,
a>0 2

v(t,0) = H(F.(t)), v(T,x)=0.

@ The nonlinear HJB equation can be linearized using the Cole-Hopf

transformation u = exp(5z). u has stochastic representation:

u(t,x)=E [exp <W>] )

where 7, is the BM first passage time to level m.

o The optimal feedback control a* = —o2u,/u.
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Explicit Nash equilibrium
Proposition. The fixed point equation (for p) is :

0= S )
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Explicit Nash equilibrium
Proposition. The fixed point equation (for ) is :

0= Sl )

Theorem (T = o0)

There is a unique equilibrium completion time distribution p given
in terms of its quantile function r — T} by

e (BB

o
r ol

Moreover, the value of the game is given by

Voo = —2¢0? In (/01 exp (-2’5{2) dz) ;
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Theorem (T < o0)

There is a unique equilibrium completion time distribution . given
in terms of its quantile function r — T}' by

1—Fre (T) fr —H(z)
T“ = F701 #/ N7 F T
¥ T/ ( 1-F.(T) Jo &P\ 2co? dz ), rel0FuT,

where the equilibrium terminal completion rate F,,(T) € (0,1) is
the unique solution of

1—Fro (T) pFu(T) —H(z)
Fro (T)= —20_— / ——2) dz.
D =T—Fm7 /, exp( 2¢02 ) ‘
Moreover, the value of the game is given by

v = 2c0in [ L Frae D)
=zzcoon| ——— 1 -
1= Fu(T)
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Dependence on the cost parameter

@ (One-stage) Poissonian: game value is independent of c.

o Diffusion: game value is increasing in ¢ when T = oo, and
non-monotone in ¢ when T < 0.

Game value (T=1) Game value (T=o00)

xo=1,0=025 H(r)=6(1-r)%

o Efficiency does not necessarily make people happier.
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Equilibrium ion time c.d.f. Contour of equilibrium value function
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Equilibrium effort Contour of equilibrium effort
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xo=c=1,06=0.25 H(r)=6(1—r)
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Minimizing the a-quantile

Objective: Given limited reward budget K, what (non-negative)
reward scheme minimizes the time it takes o € (0, 1) fraction of
the population to complete their projects in equilibrium?

Theorem: regardless of the tournament horizon, the unique (up to
a.e. equivalence) optimal reward scheme is the uniform scheme
with cutoff rank a:

. K
H*(r) = EI[O,a](r)'

o cf. Poissonian competition.
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Equilibrium completion time c.d.f. Contour of equilibrium value function
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Maximizing profit

Objective: Suppose each project completed at time t generates a profit
g(t) for the principal. What reward scheme maximizes the aggregate net
profit E[g(7) — Ru(7)], T ~ p for the principal?

Theorem: Suppose T = co. Given a non-constant decreasing profit
function g € Cp(R4.), an optimal reward scheme H* > 0 is given by
H*(r) = g(F 2 (r) A ty) — g(t}),

where t; = argmax of a one-dimension static optimization problem, and
f» has an explicit formula involving t.

@ In equilibrium, the agents receive g(t A t}) — g(t}) for finishing at time
t. It is optimal for the principal to align his interest with that of the
agents.

@ Optimizing over the set of feasible p.
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o018 Optimal ilibri ion time p.d.f. o Optimal reward
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g(t) = xpe ", xg = ¢ =1, 0 = 0.25. The participation reward
constraint starts to be binding at rank 0.61.
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Conclusion
@ Two tractable mean field models of competition
@ Unique equilibrium in semi-closed form
e Poissonian: game value is independent of ¢
o Diffusion: game value is increasing in ¢ (when T = c0)
@ Principal-agent problem explicitly solvable via calculus of variation

e Poissonian: quantile-minimizing scheme is not uniform
o Diffusion: quantile-minimizing scheme is uniform

@ Open questions: multi-stage Poissonian model, heterogeneous
agents, time-consistent formulation of the principal’s problem,
un-fixed pie, multiple tournaments, ...
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