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Motivation: Relative Performance Evaluation (RPE)
Holmstrom (82): market shocks, which are not affected by managers,
should be removed from managerial compensations.

RPE: Investors filter the market return from the firm’s output to
compensate managers.

Agent (Manager)
I u(c) = − 1

γ e
−γc

I reservation utility u(R0)
I exert effort α with cost h(α) = 1

2α
2

Output

X = I + M, I ∼ N(α, σI ),M ∼ N(0, σM),M,N indep.

Principal (Investor)
I Risk neutral
I observe X and M, not α
I Pay Agent via the following linear contract

ξ = a + bX + cM,

where a, b, c are constants.
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The optimal contract
Agent’s optimization problem:

max
α

E
[
− 1

γ exp
(
− γ
(
ξ − h(α)

))]
.

Equivalent to

max
α

{
bα− h(α)− γ

2

(
b2σ2

I + (b + c)2σ2
M

)}
.

α∗ = b, a = R0 − 1
2b

2 + γ
2

[
b2σ2

I + (b + c)2σ2
M

]
Principal’s optimization problem:

max
b,c

E
[
α∗ − ξ

]
.

Equivalent to

max
b,c

{
α∗ − 1

2 (α∗)2 − γ
2

[
b2σ2

I + (b + c)2σ2
M

]}
.

Therefore, c∗ = −b∗, RPE ξ = a + b∗(X −M) is the best!
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Empirical tests of RPE
Homlstrom (82) assumes that Managers do not hedge.

I Managers sell stocks to diversify Ofek-Yermack (00), trades financial
derivatives Bettis-Bizjak-Lemmon (01)

I Cvitanić-Henderson-Lazrak (14): observable hedging

Testing RPE:

Is there a negative relationship between compensation and market return?

Results are mixed:

I Negative: Antle-Smith (86), Barro-Barro (90), Jensen-Murphy (90),
Janakiraman-Lambert-Larcker (92), Aggrwal and Samwick (99)...

I Positive: Gong-Li-Shin (11), Albuquerque-De Franco-Verdi (13)
I Jenter-Kanaan (15): CEOs are more likely to be fired when the

peers/market perform badly.

Messages from the empirical literatue:

I Difficult to provide incentive when managers hedge
I The market return is not completely filtered out from compensation
I The relationship between CEO turnover and RPE is puzzling
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Unobservable Managerial Hedging

Project Agent

Private
Portfolio
Choice

Effort

Com
pensation Consu

m
ptio

n

(Moral hazard I): hidden effort
(Moral harzard II): unobservable saving & hedging: may offset incentives
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Economic contributions

Our model imposes limited liability restriction for contract compensation.

No negative compensation!

I Inefficient liquidation

I Risk-neutral principal is endogenously risk averse

I Principal shares market risk with agent

I Market contract sensitivity can be positive near liquidation boundary

Main contributions:

I Contract sensitivities are state dependent

Compensation ∼ dYt = Z (Yt) output + U(Yt) market,

where Y is called Agent’s contract value.

I When Y is close to liquidation boundary, U(Y ) can be positive

market ↓ ⇒ Y ↓ ⇒ Liquidation probability ↑ .
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“Impossible Trinity in Contracting”

Risk Aversion

Liquidation Boundary Private Saving

San
niko

v
(0

8)

H-M
(87)

He
(11)

W
illiam

s (15)

S-DT
(16)

D-S (06)
He (09)

I Use agent’s certainty equivalence as the state variable

I Principal’s problem is stochastic control with regular + singular
controls
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Model

A risk-free bond with rate r

A market portfolio with return process

dRt = mdt + σdBt .

The output process of the project

dXt = (µ+ At)dt + ρψdBt +
√

1− ρ2ψdB⊥t ,

X and R are observable to the principal continuously.
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Agent’s problem
Agent’s private wealth process

dSt = rStdt + πt(m − r)dt + πtσdBt + dIt − h(At)dt − ctdt,

I π: monetary value invested in the market
I I : cumulative compensation, nondecreasing (limited liability)
I h(A) = κ

2A
2 + bA: monetary cost for agent’s effort A

I c : private consumption rate
I Admissibility: transversality condition: limT→∞ E[e−δ̄T e−rγST ] = 0.

A CARA agent with u(c) = − 1
γ e
−γc

Discounting rate δ̄

Agent’s outside option:

V t = ess supc,πEt

[
δ̄

∫ ∞
t

e−δ̄(s−t)u(cs)ds
]
,

where dSt = rStdt + πt(m − r)dt + πtσdBt − ctdt.
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Agent’s problem

u(Gt) = ess supA,π,cEt

[
δ̄

∫ τ

t

e−δ(s−t)u(ct)dt + e−δ̄(τ−t)u(rSτ − `)
]
,

where
τ = inf{u ≥ 0 : Gu ≤ rSu − `}.

I G is Agent’s certainty equivalence

I The project is liquided when Agent’s certainty equivalence reaches
his outside option

Define
Gt = rSt − `+ rYt .

Contract’s additional value to the agent is Y , the Agent’s contract value.
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Principal’s problem

Principal is risk neutral

Discounting rate δ

Principal’s problem:

sup
I

E
[
δ

∫ τ

0

e−δt
(
(µ+ A∗)dt − dIt

)
+ e−δτφµ

]
.

φ ∈ (0, 1] is the liquidation discount

We choose Y as Principal’s unique state variable.

Principal does not know Agent’s private wealth S .

CARA utility assumption is essential.

Goal: Find Principal’s optimal contract I ∗, Agent’s optimal effort A∗.
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Dynamics of Y
Suppose that the dynamics of Y follows

dYt = dHt + ZtdXt + UtdRt

H can be determined by the Martingale Principal:
El Karoui-Rouge (00), Hu-Imkeller-Muller (05)

1. e−δ̄tu(Gt) + δ̄
∫ t

0
e−δ̄su(cs)ds is a supermartingale until τ for

arbitrary strategy A, π, c ;

2. it is a martingale for the optimal strategy.

dYt =
[
rYt +

rγ

2
ψ2(1− ρ2)Z 2

t + h(A∗(Zt)) + (m − r)ζt
]
dt − dIt

+ ζtσdBt + Zt

√
1− ρ2ψdB⊥t

I ζ = ρψ
σ Z + U is the agent’s exposure to the market

I Agent’s optimal portfolio is π∗ = m−r
rγσ2 − ζ

I τ = inf{t ≥ 0 : Yt ≤ 0} is the liquidation time

I A∗(Z ) = arg min{h(A)− ZA}

12 / 20



Dynamics of Y
Suppose that the dynamics of Y follows

dYt = dHt + ZtdXt + UtdRt

H can be determined by the Martingale Principal:
El Karoui-Rouge (00), Hu-Imkeller-Muller (05)

1. e−δ̄tu(Gt) + δ̄
∫ t

0
e−δ̄su(cs)ds is a supermartingale until τ for

arbitrary strategy A, π, c ;

2. it is a martingale for the optimal strategy.

dYt =
[
rYt +

rγ

2
ψ2(1− ρ2)Z 2

t + h(A∗(Zt)) + (m − r)ζt
]
dt − dIt

+ ζtσdBt + Zt

√
1− ρ2ψdB⊥t

I ζ = ρψ
σ Z + U is the agent’s exposure to the market

I Agent’s optimal portfolio is π∗ = m−r
rγσ2 − ζ

I τ = inf{t ≥ 0 : Yt ≤ 0} is the liquidation time

I A∗(Z ) = arg min{h(A)− ZA}

12 / 20



Dynamics of Y
Suppose that the dynamics of Y follows

dYt = dHt + ZtdXt + UtdRt

H can be determined by the Martingale Principal:
El Karoui-Rouge (00), Hu-Imkeller-Muller (05)

1. e−δ̄tu(Gt) + δ̄
∫ t

0
e−δ̄su(cs)ds is a supermartingale until τ for

arbitrary strategy A, π, c ;

2. it is a martingale for the optimal strategy.

dYt =
[
rYt +

rγ

2
ψ2(1− ρ2)Z 2

t + h(A∗(Zt)) + (m − r)ζt
]
dt − dIt

+ ζtσdBt + Zt

√
1− ρ2ψdB⊥t

I ζ = ρψ
σ Z + U is the agent’s exposure to the market

I Agent’s optimal portfolio is π∗ = m−r
rγσ2 − ζ

I τ = inf{t ≥ 0 : Yt ≤ 0} is the liquidation time

I A∗(Z ) = arg min{h(A)− ZA}
12 / 20



Principal’s problem

Consider Y as Principal’s unique state variable

W (y) = sup
I ,Z ,ζ

E
[
δ

∫ τ

0

e−δt
(
(µ+ A∗(Zt))dt − dIt

)
+ e−δτµ

]
,

where τ = inf{t ≥ 0 : Yt ≤ 0}
I Z , ζ: regular control, Z ∈ [Z ,Z ]

I I : singular control
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Variational inequality

min
{
δW − sup

Z ,ζ

{
δ
(
µ+ A∗(Z )) +

(
ry + g(Z , ζ)

)
W ′

+ 1
2

[
σ2ζ2 + (1− ρ2)ψ2Z 2

]
W ′′

}
,

W ′ + δ
}

= 0,

where
g(Z , ζ) = rγ

2 ψ
2(1− ρ2)Z 2 + (m − r)ζ︸ ︷︷ ︸

Cost of hedging

+ h(A∗(Z ))︸ ︷︷ ︸
Cost of effort

.

A free boundary problem:

δW = sup
Z ,ζ

{
δ
(
µ+ A∗(Z )) +

(
ry + g(Z , ζ)

)
W ′ + 1

2

[
σ2ζ2 + (1− ρ2)ψ2Z 2

]
W ′′

}
, y < ȳ ,

W ′(ȳ) = −δ, W ′′(ȳ) = 0,

W (0) = φµ.
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Main result

Theorem
Assume that

I r > δ (ensure ȳ is finite),

I Z > 0 (ensure the HJB is uniform elliptic).

There is a unique solution W ∈ C 2(0,∞) of the variational inequality.
Moreover,

I W is strictly concave on (0, ȳ),

I W satisfies the free boundary problem,

I The optimal contract is a “local time” type, which reflects Y at ȳ .

15 / 20



Risk sharing and incentive provision
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Economic results

1. W is concave, principal is endogenously risk averse

2. The optimal exposure to the market is

ζ∗ = −m − r

σ2

W ′(y)

W ′′(y)
.

When m > r ,
I When Y is close to the liquidation boundary: W ′ > 0 =⇒ ζ∗ > 0
I When Y is close to the payment boundary: W ′ < 0 =⇒ ζ∗ < 0

3. U∗ = ζ∗ − ρψ
σ Z∗ can be positive when Y is close to the liquidation

boundary

4.
dYt = dHt + ZtdXt + UtdRt .

When Y is close to 0, positive U implies

dRt < 0 =⇒ Yt closer to 0 =⇒ P(liquidation) ↑
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Conclusion

I A model with unobservable managerial hedging

I Market contract sensitivity is dynamic and can be positive; OuYang
(05), Ozdenoren-Yuan (17)

I Risk aversion + private saving/investment + liquidation

I Positive market contract sensitivity implies more liquidation when
market falls

Thanks for your attention!
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Model comparison

dYt = dHt + ZtdXt + UtdRt .

I APE: U ≡ 0
I RPE: U = −ρψσ Z
I OPE: U can be chosen freely
I Benchmark: observable hedging, unobservable effort
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Proofs

min
{
δW − sup

Z ,ζ

{
δ
(
µ+ A∗(Z )) +

(
ry + g(Z , ζ)

)
W ′ + 1

2 Σ(Z , ζ)W ′′
}
,

W ′ + δ
}

= 0

1. W ≤W ≤W , where W (y) = µ− δy + supZ ,ζ{A∗(Z )− g(Z , ζ)}
and W (y) = φµ− δy .

2. W is viscosity solution (DPP)

3. unique viscosity solution with linear growth (controls need to be
bounded), hence W is continuous

4. W̃ (y) = µ− ry + supZ ,ζ{A∗(Z )− g(Z , ζ)}. The free boundary is

before the intersection of W and W̃ (r > δ)

5. W is concave

W ′′ = inf
Z ,ζ

{δW − δ[µ+ A∗(Z )− (ry + g(Z , ζ))
]
W ′

1
2 Σ(Z , ζ)

}
6. W is C 2 (uniformly elliptic) Strulovici-Szydlowski (2015), Pham (09)
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