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ODE’s, SDE’s, PDE’s

X(t, x) ∈ Rn, X(0, x) = x, t ∈ [0, T ]

ODE ∂tX(t, x) = v(t,X(t, x))

SDE dX(t, x) = µdt+ σ(t,X(t, x))dWt

In both cases, the mass distribution ρ(t, x) is defined by

X(0, ·) ∼ ρ0

∀ϕ,
∫
Rn
ϕ(x)dρ(t, x) = E(ϕ(X(t, x)))

Corresponding pde’s (mass conservation)

ODE: ∂tρ+∇ · (ρv) = 0 continuity equation

SDE: ∂tρ+∇ · (ρµ)− ∂ij( 1
2Σijρ) = 0 forward Kolmogorov equation

For the stochastic case let µ = 0, v = 1
2σ

2, n = 1
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General reconstruction problem

Find v(t, x) and ρ(t, x)) to minimize

A(ρ, v) =

∫ T

0

L(ρ, v)dt

under the constraints

ρ(t = 0) = ρ0

ρ(t = T ) = ρT

∂tρ+ ∂x(ρv) = 0 or ∂tρ− ∂xx(ρv) = 0

Example:

L =

∫
Rn

1

2
ρF (v)dx+G(ρ)

for F,G convex.

For G = 0, equivalent to L = E
∫ T
0
F (v(t))
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Convexification

The problem can be made convex:

1

2
ρ|v|2 =

|J |2

2ρ
= sup
c+|m|2/2≤0

{ρc+ J ·m}

is convex in (ρ, J)

More generally

ρF (v) = ρF

(
J

ρ

)
= sup
c+F∗(m)≤0

{ρc+ J ·m}

where F ∗ is the Legendre transform of F

L and A become now convex in (ρ, J). The constraints (initial and final density,
conservation of mass) define a convex set among all pairs ρ, J .

Convex functional under linear constraints allows the use of classical tool of
convex analysis.
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The reconstruction problem in cosmology

We know today the density of matter in the Universe (at least partially).

We also know that after the baryons/photons decoupling (just after Big Bang) the
density was quasi-uniform

Question : From that, can we infer the initial positions of ”particles” (galaxies
...) and their initial and current speed? (Peebles, 1989)

the motion is described in co-moving coordinates : deviations from a uniformly
expanding motion.

→ notions of initial position and velocity therefore make sense.

Answer : One can answer mathematically to this question. The reconstruction is
unique, except in collapsed areas, where particles are indistinguishable.
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The gravitational Euler-Poisson system

∂tρ+∇ · (ρv) = 0 (1)

∂t(ρv) +∇ · (ρv ⊗ v) = −ρ∇p (2)

∆p = ρ− 1 (3)

The reconstruction problem consists in finding solutions to this system
knowing ρ(t = 0) and ρ(t = T ).

The system (1, 2, 3) is Hamiltonian,

H(ρ, v) =
1

2

∫
Td
ρ(t, x)|v(t, x)|2 − |∇p(t, x)|2dx.

The Lagrangien is

L(ρ, v) =

∫
Td
ρ(t, x)|v(t, x)|2 + |∇p(t, x)|2 dx.
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The critical points for the the action of the Lagrangian1

A =

∫ T

0

L(ρ(t), v(t)) dt

under constraints of mass conservation, initial and final densities will be solutions
of (EP ).

The Lagrangian is convex by choosing wisely the variables (i.e. ρ, J and not ρ, v

Critical points of A will be minimisers.

G Loeper (Monash CQFIS) Reconstruction by optimal transport: applications in cosmology and finance November, 2017 7 / 45



The minimisation problem

Minimise the action

A(ρ, v, p) =
1

2

∫ T

0

∫
Td
ρ(t, x)|v(t, x)|2 + |∇p(t, x)|2 dxdt,

Problem

Find ρ̄, v̄, p̄ such that

A(ρ̄, v̄, p̄) = inf A(ρ, v, p)

among all ρ, v, p satisfying

∂tρ+∇ · (ρv) = 0,

∆p = ρ− 1

ρ|t=0 = ρ0, ρ|t=T = ρT .
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The dual problem (Fenchel-Rockafellar duality theorem)

Assume one can find an admissible triplet (ρ, J, p) i.e. such that

∂tρ+∇ · J = 0, ∆p = ρ− 1

ρ|t=0 = ρ0, ρ|t=T = ρT

A(ρ, v, p) < +∞

• One can find such a triplet if ρ0, ρT ∈ L
2d
d+2 . Otherwise ???

The dual problem

sup
φ,q
{
∫
Td
ρTφ(T )− ρ0φ(0) dx+

∫
Td×[0,T ]

ρq +∇p · ∇q − |∇q|2/2 dtdx}

among pairs (φ, q) such that ∂tφ+ |∇φ|2
2 + q ≤ 0.
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Properties of the optimizer

The infimum is attained for some pair ρ, J = ρv

φ and q are the Lagrange multipliers of the constraints of mass conservation and
Poisson coupling

If (ρ, J = ρv, p) is an optimal solution, then for all maximizing sequence φε, qε∫
[0,T ]×Td

1

2
ρ|v −∇φε|2 +

1

2
|∇p−∇qε|2 dtdx→ 0

Implies uniqueness
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MAK Reconstruction

Densities are represented by N points of equal masses. numerical solution by
assignment algorithm (Bertseakas)

complexity: O(N3)

MAK reconstruction tested on
N-body simulation. Yellow
points indicate a failed
reconstruction. 60 % of points

accurately reconstructed.

Alternative approach (Rapetti, Loeper (2005)): direct solution of the
Monge-Ampere equation

⇒ optimal cost O(N logN), N number of grid points
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Financial modelling (j.w. with Ivan Guo and Shiyi Wang,
Monash)

Stock price modelled by random process St(ω), t ≥ 0, ω ∈ Ω living on a
probability space Ω,F,P
Option: contract that pays Φ(ST ) at time T

Call: (ST −K)+, Put (K − ST )+

Fundamental theorem of asset pricing: Options can be priced by taking
expectations under a risk neutral measure:

P (s, t) = EQ(Φ(ST ))

where, under the probability Q, St follows

dSt
St

= σtdW
Q
t

.

This work is about calibrating σ
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Calibration

Calibration: if σ follows a model with parameters, find the parameters from
observed market prices

Observed market prices: Calls and puts at maturities Ti (monthly) and strikes
not too far from the money:

We assume that we know the law of St at time Ti under the risk neutral
measure (equiv. to assuming that we observe calls and puts of all strikes)

Choice of the model: local volatility model

σt = σ(St, t)

Simplest model that allows to match any admissible surface of call and put
prices
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Dupire’s formula

Knowing all prices of ”vanilla options” (all strikes and maturities) one can
find directly (Dupire’s formula) the local volatility σ(s, t) that would lead to
those prices...

industry practice is to

reduce to a finite dimensional description of vanilla prices surfaces
use it extrapolate a sparse set of option prices to construct a price surface...
and then apply this formula...

not entirely satisfactory as it can lead to unstable local volatilities (either
σ = 0 or +∞)...

still it is used extensively by option traders.
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An alternative variational approach

Look for σ(s, t) that realises

inf E
∫ Ti+1

Ti

L(σ(Sσt , t))dt

where the infimum is taken over surfaces σ(s, t) such that the solution to

dSσt
Sσt

= σ(Sσt , t)dWt

with Law(SσTi) = µi satisfies Law(SσTi+1
) = µi+1.
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Dual formulation

Let L(t, s, σ) above be equal to F (t, s, v) for v = 1
2σ

2, F convex in v

Dual problem

In this case, on [0, T ], the dual problem becomes

sup
φ,∂tφ+F∗(∂xxφ)≤0

∫
R
dρTφ(T )− dρ0φ(0)

The infimum is therefore taken over φ supersolutions of ∂tφ+ F ∗(∂xxφ) = 0
Formally on can assume equality
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Numerical solution after Benamou & Brenier

In the quadratic case define the Lagrangian:

L(φ, ρ,m) =

∫
D

∫ 1

0

|m|2

2ρ
+ φ(∂tρ− ∂xxm) dtdx,

where m = ρv. ρ0, ρT given.

Saddle-point problem:
inf
ρ,m

sup
φ
L(φ, ρ,m)

If the optimal solution is (φ∗, ρ∗,m∗), we have:

∂φL|(φ∗,ρ∗,m∗) = 0⇔

{
∂tρ
∗ − ∂xxm∗ = 0

ρ∗(0, ·) = ρ0, ρ
∗(1, ·) = ρ1

∂ρL|(φ∗,ρ∗,m∗) = 0⇔ ∂tφ
∗ +
|m∗|2

2ρ∗2
= 0,

∂mL|(φ∗,ρ∗,m∗) = 0⇔ m∗

ρ∗
= ∂xxφ

∗.

Stopping Criteria: ∂tφ+ 1
2 |∂xxφ|

2 = 0 .
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Augmented Lagrangian

Use that
|m|2

2ρ
= sup{aρ+ b ·m, a+ |b|2/2 ≤ 0}

which makes L convex w,r,t ρ,m.

Augmented Lagrangian:

Lr(φ, q, µ) = F (q) +G(φ)+ < µ,∇t,xxφ− q >

+
r

2
< ∇t,xxφ− q,∇t,xxφ− q >

where

µ = {ρ,m}, q = {a, b}, r > 0 is the penalty parameter,

F (q) = 0, if a+ |b|2/2 ≤ 0, +∞ otherwise,

G(φ) =
∫
D
ρ0φ0 − ρTφT ,

∇t,xxφ = {∂tφ, ∂xxφ}
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Numerical solution
ADMM Algorithm

ADMM algorithm (alternating direction method of multipliers):
- Given (φn−1, qn−1, µn), errTol
- Step A: Find φn:

Lr(φ
n, qn−1, µn) ≤ Lr(φ, qn−1, µn), ∀φ.

- Step B: Find qn:

Lr(φ
n, qn, µn) ≤ Lr(φn, q, µn), ∀q.

- Step C: Pointwise update µn:

µn+1 = µn + r(∇t,xxφn − qn).

- If resn > errTol, go back to step A, where

resn = max abs
{
∂tφ+

1

2
|∂xxφ|2

}
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Numerical result
Example
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ρ0 = N(0.5, 0.05), ρ1 = N(0.5, 0.10)
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Numerical result
Example
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Numerical solution: other approach
Semimartingale Transport Problem Tan, Touzi (2013)

Go back to dual problem

sup
φ,∂tφ+F∗(∂xxφ)≤0

∫
R
dρTφ(T )− dρ0φ(0)

which is solved by a descent algorithm

To compute the functional for a given φ(T ) solve the HJB equation
∂tφ+ F ∗(∂xxφ) = 0
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“Robust” hedging

Robust Hedging (see Soner, Touzi, Zhang (2011), L. (2017)): The solution to

sup
σ

E
(

Φ(Sσ)−
∫ T

0

F (σ2
t )dt

)
.

is given by solving ∂tφ+ F ∗(∂xxφ) = 0, and taking σ2 = ∇σ2F ∗(∂xxφ)

Example :

F =

{
1
λ (a1/2 − σ̂)2 if a ≥ 0,
+∞ otherwise.

Volmin-Volmax F =

{
0 if a ∈ [a, ā],
+∞ otherwise.
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”Robust” Volatility Calibration

Extend the Benamou Brenier approach when we only know prices of a discrete set
of options

Let σ̂ be a given ”target” volatility profile.

inf
σ

E
(∫ T

0

Ft,Sσt ,σ̂2
t
(σ2
t )dt

)
, subject to: Φi(S

σ) = ci,∀i.

Saddle Point Problem:

sup
σ

inf
λ

E
(∑

i

λi(Φi(S
σ)− ci)−

∫ T

0

Ft,Sσt ,σ̂2
t
(σ2
t )dt

)
,
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The algorithm

Saddle Point Problem (cf. Avellaneda et al. (1997)):

sup
σ

inf
λ

E
(∑

i

λi(Φi(S
σ)− ci)−

∫ T

0

Ft,Sσt ,σ̂2
t
(σ2
t )dt

)
,

By duality equal to

inf
λ

sup
σ

E
(∑

i

λi(Φi(S
σ)− ci)−

∫ T

0

Ft,Sσt ,σ̂2
t
(σ2
t )dt

)
,

Solve the supσ(. . .) part by solving HJB (same problem as in robust hedging)

Gradient descent with respect to λ

Gradient of supσ(. . .) with respect to λ to given by

∂λi sup
σ

(. . .) = E(Φi(S
σ))− ci
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Simulations

Let F (t, s, σ̂, x) = (a(x− σ̂(t, s)))(1−p) + (b(x− σ̂(t, s)))p+1

We generate put option prices for 10 maturities × 11 strikes, then try to calibrate
the local volatility with different volatility profiles σ̂.

Prototype run in Matlab.
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Using Input Local Vol as Profile
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Constant Skew
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Smaller Constant Skew

0.18

3.8

0.185

0.19

4

0.195

04.2

0.2

0.1

V
o

la
ti
lit

y

4.4

0.205

0.2

Log Spot

0.3

0.21

4.6
0.4

0.215

Time

4.8 0.5

0.22

0.6
5

0.7
0.85.2

0.9
5.4 1

G Loeper (Monash CQFIS) Reconstruction by optimal transport: applications in cosmology and finance November, 2017 29 / 45



Constant Profile
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Local Stochastic Volatility Calibration

Given
dSt = σtStdWt, d[W,B]t = ρtdt.

and Vt driven by Bt (ex. Heston). Consider the problem

sup
σ,ρ

E
(

Φ(Sσ,ρT )−
∫ T

0

Ft,Sσt ,Vt(σ
2
t , σtρt)dt

)
.

This can be extended to the stochastic volatility calibration problem:

sup
σ,ρ

inf
λ

E
(∑

i

λi(Φi(S
σ)− ci)−

∫ T

0

Ft,Sσt ,Vt(σ
2
t , σtρt)dt

)
.
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Average Volatility Surface
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Difference with Local Volatility Results
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Mixed PDE-MC for Options Pricing

Given a model with stochastic rates and stochastic volatility

dSt = r(t, St, Vt)Stdt+ σ(t, St, Vt)StdWt,

where Vt is driven by Bt, we can compute the option prices as follows:

E(Φ(ST ) |St, Vt) = Et
(

E
(
Φ(ST )

∣∣St, V[t,T ]

)︸ ︷︷ ︸
Finite Difference to solve SPDE

)
︸ ︷︷ ︸

Monte Carlo simulations

.

Combined with Least Square Monte Carlo and Stochastic Duality (upper bound)
for American options:

min
β,γ

∫
x

(
U(t, x, v)−

∑
j

βjfj(x, v)−
∑
j

γjgj(x, v)′∆Bt

)2

w(x)dx.
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American Put Price
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Difference Between Upper and Lower Bounds
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Difference Between Upper and Lower Bounds

1

0.8

0.6

Time

0.4

0

0.002

0.2

0.004

0

0.006

Spot

0.008

50

0.01

P
ri
c
e

100

0.012

150 0

0.014

200

0.016

0.018

250

0.02

G Loeper (Monash CQFIS) Reconstruction by optimal transport: applications in cosmology and finance November, 2017 38 / 45



Mixed PDE-MC for LSV Adjustment

For the LSV model

dSt = r(t, St)Stdt+ ψ(t, St)
√
VtStdWt,

where Vt is driven by Bt, let pB(t, s) be the density of St given B:

E(Φ(St) |B) =

∫
x

Φ(x)pB(t, x)dx, E(pB(t, x)) = p(t, x).

Then derive the conditional forward SPDE:

dpB = −
(
∂x(rpB)dt+ ∂x(ψpB)ρ

√
VtdBt

)
+

1

2
∂xx(ψ2pB)Vtdt,

with mimicking formula

ψ2(t, x)E(pB(t, x)Vt) = σ2
LV (t, x)ρ(t, x).

Given a local volatility function σLV (t, x) or a density function p(t, x), we can
recursively find ψ.
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Fitted Density

0

3

0.5

1

3.5

1.5

0
4

2

0.1

D
e

n
s
it
y

2.5

0.24.5

Log Spot

0.3

3

0.45

3.5

Time

0.5

4

0.65.5
0.7

6 0.8
0.9

6.5 1

G Loeper (Monash CQFIS) Reconstruction by optimal transport: applications in cosmology and finance November, 2017 41 / 45



Difference
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Mixed PDE-MC for Stochastic Control

Given
dSt = σtStdWt, d[W,B]t = ρtdt.

and Vt driven by Bt. Consider the problem

sup
σ,ρ

E
(

Φ(Sσ,ρT )−
∫ T

0

Ft,Sσt ,Vt(σ
2
t , σtρt)dt

)
.

The solution to the HJB equation can be written as

dut + F ∗
(

1

2
x2∂xxEt(ut+dt(x, Vt+dt))dt, x∂xEt(ut+dt(x, Vt+dt)dBt)

)
= 0,

which is solved by the mixed method and least squares Monte Carlo.
This can be extended to the stochastic volatility calibration problem:

sup
σ,ρ

inf
λ

E
(∑

i

λi(Φi(S
σ)− ci)−

∫ T

0

Ft,Sσt ,Vt(σ
2
t , σtρt)dt

)
.
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Average Volatility Surface
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Difference with Local Volatility Results
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