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Rough volatility models

I Empirical studies indicate volatility is rougher than BM: Gatheral,
Jaisson & Rosenbaum (’14); Bennedsen, Lunde, Pakkanen (’16), . . .

I Subsequent development of stochastic models with this feature:
Gatheral, Jaisson & Rosenbaum (’14); Guennoun, Jacquier &
Roome (’14); Bayer, Friz & Gatheral (15); Bennedsen, Lunde,
Pakkanen (’16); El Euch & Rosenbaum (’16,’17), . . .

I Further literature: sites.google.com/site/roughvol/home/risks-1

I These models are able to

• match roughness of time series data
• fit implied volatility skew remarkably well
• admit in some cases microstructural justification
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Heston model

dSt
St

=
√
XtdW̃t

Xt = X0 +

∫ t

0

(
κ(θ −Xs)ds+ σ

√
XsdWs

)

Theorem (Heston, ’93). Let S0 = 1. Fix u ∈ iR. Assume ψ
solves the Riccati equation

ψ′ =
1

2
(u2 − u)− (uρσ − κ)ψ +

σ2

2
ψ2, ψ(0) = 0,

and define φ(T ) =
∫ T

0
κθψ(t)dt. Then

E[eu logST ] = eφ(T )+ψ(T )X0
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Rough Heston model of El Euch & Rosenbaum (’16)

dSt
St

=
√
XtdW̃t

Xt = X0 +

∫ t

0

(t− s)α−1

Γ(α)

(
κ(θ −Xs)ds+ σ

√
XsdWs

)
with α ∈ ( 1

2 , 1).
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I Similar to Riemann–Liouville fractional Brownian. Lévy (’53).

I Hölder continuous paths of any order less than H = α− 1
2

I Microstructural foundation as scaling limit of Hawkes processes
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(t− s)α−1
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(
κ(θ −Xs)ds+ σ

√
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with α ∈ ( 1

2 , 1).

I Similar to Riemann–Liouville fractional Brownian. Lévy (’53).

I Hölder continuous paths of any order less than H = α− 1
2

I Microstructural foundation as scaling limit of Hawkes processes

But:

I Existence and uniqueness is non-trivial.

I Not a semimartingale, not Markovian . . .

I . . . not clear how to usefully describe its law.
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(
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d
dt
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0
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Rough Heston model of El Euch & Rosenbaum (’16)

dSt
St

=
√
XtdW̃t

Xt = X0 +

∫ t

0

(t− s)α−1

Γ(α)

(
κ(θ −Xs)ds+ σ

√
XsdWs

)
with α ∈ ( 1

2 , 1). Notation: Dαh(t) = 1
Γ(1−α)

d
dt

∫ t
0
(t− s)−αh(s)ds

Theorem (El Euch & Rosenbaum, ’16). Let S0 = 1. Fix u ∈ iR.
Assume ψ solves the fractional Riccati equation

Dαψ =
1

2
(u2 − u) + (uρσ − κ)ψ +

σ2

2
ψ2, ψ(0) = 0,

and define φ(T ) =
∫ T

0
κθχ(t)dt and χ(T ) =

∫ T
0
Dαψ(t)dt. Then

E[eu logST ] = eφ(T )+χ(T )X0
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Why?
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Characteristic function of affine diffusions

Consider an affine diffusion

dXt = b(Xt)dt+ σ(Xt)dWt

with b(x) and a(x) = σ(x)2 affine in x. How to derive its c.f.?

(i) Define Mt = eφ(T−t)+ψ(T−t)Xt with φ, ψ from Riccati.

(ii) Itô and Riccati imply M is local martingale. MT = euXT .

(iii) If true martingale, then E[euXT | Ft] = eφ(T−t)+ψ(T−t)Xt .

Won’t work for the rough CIR. Instead, use representation

logE[euXT | Ft] = E[uXT | Ft] +
1

2

∫ T

t

ψ(T − s)2a(E[uXs | Ft])ds.

Here there is hope.
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Affine Volterra processes

A continuous E-valued solution X of the stochastic Volterra equation

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

is called an affine Volterra process (of convolution type). Data:

I State space E ⊆ Rd and initial condition X0 ∈ E.

I Affine diffusion and drift coefficients

a(x) = A0 +A1x1 + · · ·+Adxd

b(x) = b0 + b1x1 + · · ·+ bdxd

with Ai ∈ Sd, bi ∈ Rd, and a(x) = σ(x)σ(x)> for all x ∈ E.

I Matrix-valued kernel K ∈ L2
loc(R+,Rd×d).
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Affine Volterra processes

Xt = X0 +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

I Example: K(t) ≡ id gives standard affine diffusions.

I Example: The rough CIR process of Rosenbaum & El Euch uses

K(t) =
1

Γ(α)
tα−1

I Example: The full rough Heston model uses d = 2 and

K(t) =

(
1 0
0 1

Γ(α) t
α−1

)
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Conditional characteristic function

Theorem (∗). Fix a row vector u ∈ (Cd)∗. Assume the function
ψ ∈ L2

loc(R+, (Cd)∗) solves the Riccati–Volterra equation

ψ = uK +
(
ψB +

1

2
A(ψ)

)
∗K

where A(ψ) = (ψA1ψ>, . . . , ψAdψ>). Fix T <∞ and define

Yt = E[uXT | Ft] +
1

2

∫ T

t

ψ(T − s)a(E[Xs | Ft])ψ(T − s)>ds.

Then {exp(Yt), 0 ≤ t ≤ T} is a local martingale and, if it is a true
martingale, one has

E[euXT | Ft] = eYt , t ≤ T.
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Conditional expectations

I Take expectations in

Xt = X0 +

∫ t

0

K(t− s)(b0 +BXs)ds+

∫ t

0

K(t− s)σ(Xs)dWs

to obtain

E[X] = X0 + (K ∗ 1) b0 + (KB) ∗ E[X]

I Get E[Xt] by variation of constants formula using resolvent of KB.

I Conditional expectations are similar.
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Concrete specifications

Given a specification of E, K(t), a(x), b(x), three things need proof:

I Existence of X (hence uniqueness of ψ)

I Existence of ψ (hence uniqueness of X)

I Martingale condition

We do this for three classes of specifications:

I Volterra Ornstein–Uhlenbeck: E = Rd

I Volterra square-root: E = Rd+
I Volterra Heston: E = R× R+
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Volterra Heston model

I Dynamics with κθ ≥ 0, σ ≥ 0, d〈W̃ ,W 〉t = ρ dt:

dSt
St

=
√
Vt dW̃t

Vt = V0 +

∫ t

0

K(t− s)
(
κ(θ − Vs)ds+ σ

√
Vs dWs

)
I Riccati–Volterra equation:

ψ1 = u1

ψ2 = u2K +K ∗
(

1

2

(
u2

1 − u1

)
+ (ρσu1 − κ)ψ2 +

1

2
σ2ψ2

2

)
I Assumption: K is completely monotone and

t 7→ tγK(t) is locally Lipschitz on [0,∞)

for some γ < 1/2.
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Volterra Heston model

Theorem.

I The stochastic Volterra equation has a unique in law
R× R+-valued continuous weak solution (logS, V ) for any
initial condition (logS0, V0) ∈ R× R+. The paths of V are
Hölder continuous of any order less than H = 1/2− γ.

I For any u ∈ (C2)∗ such that

Reu1 ∈ [0, 1] and Reu2 ≤ 0,

the Riccati–Volterra equation has a unique global solution
ψ ∈ L2

loc(R+, (C∗)2), which satisfies Reψ2 ≤ 0.

I The martingale condition in Theorem (∗) holds, as does the
affine transform formula.

I The process S is a martingale.
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Why complete monotonicity?

I A resolvent of the first kind of K is a kernel L such that

K ∗ L = L ∗K ≡ id

In general L is a measure, for instance L(dt) = δ0(dt) if K ≡ id.

I Example: If K(t) = 1
Γ(α) t

α−1, α ∈ ( 1
2 , 1), then

L(t) =
1

Γ(1− α)
t−α

I Example: If K is completely monotone, then L exists and is the
sum of a point mass in zero and a completely monotone function.

14/17



Why complete monotonicity?

I A resolvent of the first kind of K is a kernel L such that

K ∗ L = L ∗K ≡ id

In general L is a measure, for instance L(dt) = δ0(dt) if K ≡ id.

I Example: If K(t) = 1
Γ(α) t

α−1, α ∈ ( 1
2 , 1), then

L(t) =
1

Γ(1− α)
t−α

I Example: If K is completely monotone, then L exists and is the
sum of a point mass in zero and a completely monotone function.

14/17



Why complete monotonicity?

I A resolvent of the first kind of K is a kernel L such that

K ∗ L = L ∗K ≡ id

In general L is a measure, for instance L(dt) = δ0(dt) if K ≡ id.

I Example: If K(t) = 1
Γ(α) t

α−1, α ∈ ( 1
2 , 1), then

L(t) =
1

Γ(1− α)
t−α

I Example: If K is completely monotone, then L exists and is the
sum of a point mass in zero and a completely monotone function.

14/17



Why complete monotonicity?

Shift operator: ∆hf(t) = f(t+ h)

Lemma. Setting of Theorem (∗). Assume K has resolvent of the
first kind L. Define

πh = ∆hψ ∗ L−∆h(ψ ∗ L),

and assume πh ∈ BVloc(R+) ∩ C(R+) for h = T − t. Then

Yt = φ(h) + (∆hψ ∗ L)(0)Xt − πh(t)X0 + (dπh ∗X)t

with h = T − t and φ(h) =
∫ h

0

(
ψ(s)b0 + 1

2ψ(s)A0ψ(s)>
)
ds.

In particular: For E = Rd+, verify martingale condition by controlling the
signs of the real parts of (∆hψ ∗ L)(0), πh(t), and dπh.
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Why complete monotonicity?

Moreover: Fourier–Laplace transform exponential-affine in {Xs : s ≤ t},

E[euXT | Ft] = exp
(
φ(h) + (∆hψ ∗ L)(0)Xt − πh(t)X0 + (dπh ∗X)t

)
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Conclusion

I Affine Volterra processes admit affine transform formulas despite
lack of semimartingale and Markov properties

I Tools from deterministic theory of Volterra equations, e.g. resolvents
of first and second kind. Read the spectacular book Volterra integral
and functional equations, 1990, by Gripenberg, Londen, Staffans.

I Unknown or in progress :

I Regularity of ψ (currently L2
loc)

I Pathwise uniqueness for X (currently uniqueness in law)
I Numerical methods for ψ
I Numerical methods for X
I Boundary attainment for Volterra square-root processes
I Non-convolution kernels K(t, s)
I Stationary case Xt =

∫ t
−∞(· · · )

I Etc.
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