Affine Volterra processes and models for rough volatility

Martin Larsson

Department of Mathematics, ETH Zurich

(joint work with Eduardo Abi Jaber and Sergio Pulido)

Advances in Stochastic Analysis for Risk Modeling 13–17 November 2017, Luminy

Rough volatility models

- Empirical studies indicate volatility is rougher than BM: Gatheral, Jaisson & Rosenbaum ('14); Bennedsen, Lunde, Pakkanen ('16), ...
- Subsequent development of stochastic models with this feature: Gatheral, Jaisson & Rosenbaum ('14); Guennoun, Jacquier & Roome ('14); Bayer, Friz & Gatheral (15); Bennedsen, Lunde, Pakkanen ('16); El Euch & Rosenbaum ('16,'17), ...
- Further literature: sites.google.com/site/roughvol/home/risks-1
- These models are able to
 - match roughness of time series data
 - fit implied volatility skew remarkably well
 - admit in some cases microstructural justification

Heston model

$$\begin{aligned} \frac{dS_t}{S_t} &= \sqrt{X_t} d\widetilde{W}_t \\ X_t &= X_0 + \int_0^t \left(\kappa(\theta - X_s) ds + \sigma \sqrt{X_s} dW_s \right) \end{aligned}$$

Heston model

$$\begin{aligned} \frac{dS_t}{S_t} &= \sqrt{X_t} d\widetilde{W}_t \\ X_t &= X_0 + \int_0^t \left(\kappa(\theta - X_s) ds + \sigma \sqrt{X_s} dW_s \right) \end{aligned}$$

Theorem (Heston, '93). Let $S_0 = 1$. Fix $u \in i\mathbb{R}$. Assume ψ solves the **Riccati equation**

$$\psi' = \frac{1}{2}(u^2 - u) - (u\rho\sigma - \kappa)\psi + \frac{\sigma^2}{2}\psi^2, \qquad \psi(0) = 0,$$

and define $\phi(T) = \int_0^T \kappa \theta \psi(t) dt$. Then

$$\mathbb{E}[e^{u\log S_T}] = e^{\phi(T) + \psi(T)X_0}$$

$$\begin{aligned} \frac{dS_t}{S_t} &= \sqrt{X_t} d\widetilde{W}_t \\ X_t &= X_0 + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \Big(\kappa(\theta - X_s) ds + \sigma \sqrt{X_s} dW_s \Big) \end{aligned}$$

$$\frac{dS_t}{S_t} = \sqrt{X_t} d\widetilde{W}_t$$
$$X_t = X_0 + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \left(\kappa(\theta - X_s)ds + \sigma\sqrt{X_s}dW_s\right)$$

- Similar to Riemann–Liouville fractional Brownian. Lévy ('53).
- Hölder continuous paths of any order less than $H = \alpha \frac{1}{2}$
- Microstructural foundation as scaling limit of Hawkes processes

$$\frac{dS_t}{S_t} = \sqrt{X_t} d\widetilde{W}_t$$
$$X_t = X_0 + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \left(\kappa(\theta - X_s)ds + \sigma\sqrt{X_s}dW_s\right)$$

- Similar to Riemann–Liouville fractional Brownian. Lévy ('53).
- Hölder continuous paths of any order less than $H = \alpha \frac{1}{2}$
- Microstructural foundation as scaling limit of Hawkes processes
 But:
 - Existence and uniqueness is non-trivial.
 - Not a semimartingale, not Markovian ...
 - ... not clear how to usefully describe its law.

$$\begin{aligned} \frac{dS_t}{S_t} &= \sqrt{X_t} d\widetilde{W}_t \\ X_t &= X_0 + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \Big(\kappa(\theta - X_s) ds + \sigma \sqrt{X_s} dW_s \Big) \end{aligned}$$

$$\frac{dS_t}{S_t} = \sqrt{X_t} d\widetilde{W}_t$$
$$X_t = X_0 + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \left(\kappa(\theta - X_s) ds + \sigma \sqrt{X_s} dW_s \right)$$

with $\alpha \in (\frac{1}{2}, 1)$. Notation: $D^{\alpha}h(t) = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dt}\int_0^t (t-s)^{-\alpha}h(s)ds$

$$\frac{dS_t}{S_t} = \sqrt{X_t} d\widetilde{W}_t$$
$$X_t = X_0 + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} \Big(\kappa(\theta - X_s)ds + \sigma\sqrt{X_s}dW_s\Big)$$

with $\alpha \in (\frac{1}{2}, 1)$. Notation: $D^{\alpha}h(t) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_0^t (t-s)^{-\alpha}h(s)ds$

Theorem (El Euch & Rosenbaum, '16). Let $S_0 = 1$. Fix $u \in i\mathbb{R}$. Assume ψ solves the **fractional Riccati equation**

$$D^{\alpha}\psi = \frac{1}{2}(u^2 - u) + (u\rho\sigma - \kappa)\psi + \frac{\sigma^2}{2}\psi^2, \qquad \psi(0) = 0,$$

and define $\phi(T) = \int_0^T \kappa \theta \chi(t) dt$ and $\chi(T) = \int_0^T D^\alpha \psi(t) dt$. Then

$$\mathbb{E}[e^{u\log S_T}] = e^{\phi(T) + \chi(T)X_0}$$

Why?

Consider an affine diffusion

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t$$

with b(x) and $a(x) = \sigma(x)^2$ affine in x. How to derive its c.f.?

Consider an affine diffusion

 $dX_t = b(X_t)dt + \sigma(X_t)dW_t$

with b(x) and $a(x) = \sigma(x)^2$ affine in x. How to derive its c.f.?

- (i) Define $M_t = e^{\phi(T-t) + \psi(T-t)X_t}$ with ϕ , ψ from Riccati.
- (ii) Itô and Riccati imply M is local martingale. $M_T = e^{uX_T}$.
- (iii) If true martingale, then $\mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = e^{\phi(T-t) + \psi(T-t)X_t}$.

Consider an affine diffusion

 $dX_t = b(X_t)dt + \sigma(X_t)dW_t$

with b(x) and $a(x) = \sigma(x)^2$ affine in x. How to derive its c.f.?

- (i) Define $M_t = e^{\phi(T-t) + \psi(T-t)X_t}$ with ϕ , ψ from Riccati.
- (ii) Itô and Riccati imply M is local martingale. $M_T = e^{uX_T}$.
- (iii) If true martingale, then $\mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = e^{\phi(T-t) + \psi(T-t)X_t}$.

Won't work for the rough CIR.

Consider an affine diffusion

 $dX_t = b(X_t)dt + \sigma(X_t)dW_t$

with b(x) and $a(x) = \sigma(x)^2$ affine in x. How to derive its c.f.?

- (i) Define $M_t = e^{\phi(T-t) + \psi(T-t)X_t}$ with ϕ , ψ from Riccati.
- (ii) Itô and Riccati imply M is local martingale. $M_T = e^{uX_T}$.
- (iii) If true martingale, then $\mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = e^{\phi(T-t) + \psi(T-t)X_t}$.

Won't work for the rough CIR. Instead, use representation

$$\log \mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = \mathbb{E}[uX_T \mid \mathcal{F}_t] + \frac{1}{2} \int_t^T \psi(T-s)^2 a(\mathbb{E}[uX_s \mid \mathcal{F}_t]) ds.$$

Consider an affine diffusion

 $dX_t = b(X_t)dt + \sigma(X_t)dW_t$

with b(x) and $a(x) = \sigma(x)^2$ affine in x. How to derive its c.f.?

- (i) Define $M_t = e^{\phi(T-t) + \psi(T-t)X_t}$ with ϕ , ψ from Riccati.
- (ii) Itô and Riccati imply M is local martingale. $M_T = e^{uX_T}$.
- (iii) If true martingale, then $\mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = e^{\phi(T-t) + \psi(T-t)X_t}$.

Won't work for the rough CIR. Instead, use representation

$$\log \mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = \mathbb{E}[uX_T \mid \mathcal{F}_t] + \frac{1}{2} \int_t^T \psi(T-s)^2 a(\mathbb{E}[uX_s \mid \mathcal{F}_t]) ds.$$

Here there is hope.

Affine Volterra processes

A continuous E-valued solution X of the stochastic Volterra equation

$$X_t = X_0 + \int_0^t K(t-s)b(X_s)ds + \int_0^t K(t-s)\sigma(X_s)dW_s$$

is called an affine Volterra process (of convolution type). Data:

• State space $E \subseteq \mathbb{R}^d$ and initial condition $X_0 \in E$.

Affine diffusion and drift coefficients

$$a(x) = A^0 + A^1 x_1 + \dots + A^d x_d$$

$$b(x) = b^0 + b^1 x_1 + \dots + b^d x_d$$

with $A^i \in \mathbb{S}^d$, $b^i \in \mathbb{R}^d$, and $a(x) = \sigma(x)\sigma(x)^\top$ for all $x \in E$.

• Matrix-valued kernel $K \in L^2_{loc}(\mathbb{R}_+, \mathbb{R}^{d \times d})$.

Affine Volterra processes

$$X_{t} = X_{0} + \int_{0}^{t} K(t-s)b(X_{s})ds + \int_{0}^{t} K(t-s)\sigma(X_{s})dW_{s}$$

• **Example:** $K(t) \equiv id$ gives standard affine diffusions.

Example: The rough CIR process of Rosenbaum & El Euch uses

$$K(t) = \frac{1}{\Gamma(\alpha)} t^{\alpha - 1}$$

Example: The full rough Heston model uses d = 2 and

$$K(t) = \begin{pmatrix} 1 & 0\\ 0 & \frac{1}{\Gamma(\alpha)} t^{\alpha - 1} \end{pmatrix}$$

Conditional characteristic function

Theorem (*). Fix a row vector $u \in (\mathbb{C}^d)^*$. Assume the function $\psi \in L^2_{\text{loc}}(\mathbb{R}_+, (\mathbb{C}^d)^*)$ solves the **Riccati–Volterra equation**

$$\psi = uK + \left(\psi B + \frac{1}{2}A(\psi)\right) * K$$

where $A(\psi) = (\psi A^1 \psi^\top, \dots, \psi A^d \psi^\top).$ Fix $T < \infty$ and define

$$Y_t = \mathbb{E}[uX_T \mid \mathcal{F}_t] + \frac{1}{2} \int_t^T \psi(T-s)a(\mathbb{E}[X_s \mid \mathcal{F}_t])\psi(T-s)^\top ds.$$

Then $\{\exp(Y_t),\, 0\leq t\leq T\}$ is a local martingale and, if it is a true martingale, one has

$$\mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = e^{Y_t}, \quad t \le T.$$

Conditional expectations

Take expectations in

$$X_{t} = X_{0} + \int_{0}^{t} K(t-s)(b^{0} + BX_{s})ds + \int_{0}^{t} K(t-s)\sigma(X_{s})dW_{s}$$

to obtain

$$\mathbb{E}[X] = X_0 + (K * 1) b^0 + (KB) * \mathbb{E}[X]$$

- Get $\mathbb{E}[X_t]$ by variation of constants formula using resolvent of KB.
- Conditional expectations are similar.

Concrete specifications

Given a specification of E, K(t), a(x), b(x), three things need proof:

- Existence of X (hence uniqueness of ψ)
- Existence of ψ (hence uniqueness of X)
- Martingale condition

Concrete specifications

Given a specification of E, K(t), a(x), b(x), three things need proof:

- Existence of X (hence uniqueness of ψ)
- Existence of ψ (hence uniqueness of X)
- Martingale condition

We do this for three classes of specifications:

- ▶ Volterra Ornstein–Uhlenbeck: $E = \mathbb{R}^d$
- Volterra square-root: $E = \mathbb{R}^d_+$
- Volterra Heston: $E = \mathbb{R} \times \mathbb{R}_+$

• Dynamics with $\kappa \theta \ge 0$, $\sigma \ge 0$, $d\langle \widetilde{W}, W \rangle_t = \rho dt$:

$$\begin{split} \frac{dS_t}{S_t} &= \sqrt{V_t} \, d\widetilde{W}_t \\ V_t &= V_0 + \int_0^t K(t-s) \left(\kappa(\theta - V_s) ds + \sigma \sqrt{V_s} \, dW_s \right) \end{split}$$

• Dynamics with $\kappa \theta \ge 0$, $\sigma \ge 0$, $d\langle \widetilde{W}, W \rangle_t = \rho dt$:

$$\begin{split} \frac{dS_t}{S_t} &= \sqrt{V_t} \, d\widetilde{W}_t \\ V_t &= V_0 + \int_0^t K(t-s) \left(\kappa(\theta - V_s) ds + \sigma \sqrt{V_s} \, dW_s \right) \end{split}$$

Riccati–Volterra equation:

$$\psi_1 = u_1$$

$$\psi_2 = u_2 K + K * \left(\frac{1}{2} \left(u_1^2 - u_1\right) + (\rho \sigma u_1 - \kappa)\psi_2 + \frac{1}{2} \sigma^2 \psi_2^2\right)$$

• Dynamics with $\kappa \theta \ge 0$, $\sigma \ge 0$, $d\langle \widetilde{W}, W \rangle_t = \rho dt$:

$$\begin{aligned} \frac{dS_t}{S_t} &= \sqrt{V_t} \, d\widetilde{W}_t \\ V_t &= V_0 + \int_0^t K(t-s) \left(\kappa(\theta - V_s)ds + \sigma\sqrt{V_s} \, dW_s\right) \end{aligned}$$

Riccati–Volterra equation:

$$\psi_1 = u_1$$

$$\psi_2 = u_2 K + K * \left(\frac{1}{2} \left(u_1^2 - u_1\right) + (\rho \sigma u_1 - \kappa)\psi_2 + \frac{1}{2} \sigma^2 \psi_2^2\right)$$

Assumption: K is completely monotone and

 $t \mapsto t^{\gamma} K(t)$ is locally Lipschitz on $[0,\infty)$

for some $\gamma < 1/2$.

Theorem.

► The stochastic Volterra equation has a unique in law $\mathbb{R} \times \mathbb{R}_+$ -valued continuous weak solution $(\log S, V)$ for any initial condition $(\log S_0, V_0) \in \mathbb{R} \times \mathbb{R}_+$. The paths of V are Hölder continuous of any order less than $H = 1/2 - \gamma$.

• For any
$$u \in (\mathbb{C}^2)^*$$
 such that

$$\operatorname{Re} u_1 \in [0,1]$$
 and $\operatorname{Re} u_2 \leq 0$,

the Riccati–Volterra equation has a unique global solution $\psi \in L^2_{loc}(\mathbb{R}_+, (\mathbb{C}^*)^2)$, which satisfies $\operatorname{Re} \psi_2 \leq 0$.

- The martingale condition in Theorem (*) holds, as does the affine transform formula.
- ► The process *S* is a martingale.

► A resolvent of the first kind of K is a kernel L such that

$$K * L = L * K \equiv id$$

In general L is a measure, for instance $L(dt) = \delta_0(dt)$ if $K \equiv id$.

► A resolvent of the first kind of K is a kernel L such that

$$K * L = L * K \equiv id$$

In general L is a measure, for instance $L(dt) = \delta_0(dt)$ if $K \equiv id$.

• **Example:** If $K(t) = \frac{1}{\Gamma(\alpha)}t^{\alpha-1}$, $\alpha \in (\frac{1}{2}, 1)$, then

$$L(t) = \frac{1}{\Gamma(1-\alpha)} t^{-\alpha}$$

► A resolvent of the first kind of K is a kernel L such that

$$K * L = L * K \equiv id$$

In general L is a measure, for instance $L(dt) = \delta_0(dt)$ if $K \equiv id$.

• Example: If
$$K(t) = \frac{1}{\Gamma(\alpha)}t^{\alpha-1}$$
, $\alpha \in (\frac{1}{2}, 1)$, then
$$L(t) = \frac{1}{\Gamma(1-\alpha)}t^{-\alpha}$$

Example: If *K* is **completely monotone**, then *L* exists and is the sum of a point mass in zero and a completely monotone function.

Shift operator: $\Delta_h f(t) = f(t+h)$

Shift operator: $\Delta_h f(t) = f(t+h)$

Lemma. Setting of Theorem (*). Assume K has resolvent of the first kind L. Define

 $\pi_h = \Delta_h \psi * L - \Delta_h (\psi * L),$

and assume $\pi_h \in BV_{loc}(\mathbb{R}_+) \cap C(\mathbb{R}_+)$ for h = T - t. Then

 $Y_{t} = \phi(h) + (\Delta_{h}\psi * L)(0)X_{t} - \pi_{h}(t)X_{0} + (d\pi_{h} * X)_{t}$

with h = T - t and $\phi(h) = \int_0^h \left(\psi(s)b^0 + \frac{1}{2}\psi(s)A^0\psi(s)^\top\right) ds$.

Shift operator: $\Delta_h f(t) = f(t+h)$

Lemma. Setting of Theorem (*). Assume K has resolvent of the first kind L. Define

 $\pi_h = \Delta_h \psi * L - \Delta_h (\psi * L),$

and assume $\pi_h \in BV_{loc}(\mathbb{R}_+) \cap C(\mathbb{R}_+)$ for h = T - t. Then

 $Y_t = \phi(h) + (\Delta_h \psi * L)(0)X_t - \pi_h(t)X_0 + (d\pi_h * X)_t$

with h = T - t and $\phi(h) = \int_0^h \left(\psi(s)b^0 + \frac{1}{2}\psi(s)A^0\psi(s)^\top\right) ds$.

In particular: For $E = \mathbb{R}^d_+$, verify martingale condition by controlling the signs of the real parts of $(\Delta_h \psi * L)(0)$, $\pi_h(t)$, and $d\pi_h$.

Moreover: Fourier–Laplace transform exponential-affine in $\{X_s : s \le t\}$,

$$\mathbb{E}[e^{uX_T} \mid \mathcal{F}_t] = \exp\left(\phi(h) + (\Delta_h \psi * L)(0)X_t - \pi_h(t)X_0 + (d\pi_h * X)_t\right)$$

Conclusion

- Affine Volterra processes admit affine transform formulas despite lack of semimartingale and Markov properties
- Tools from deterministic theory of Volterra equations, e.g. resolvents of first and second kind. Read the spectacular book *Volterra integral* and functional equations, 1990, by Gripenberg, Londen, Staffans.
- Unknown or in progress :
 - Regularity of ψ (currently L^2_{loc})
 - Pathwise uniqueness for X (currently uniqueness in law)
 - Numerical methods for ψ
 - Numerical methods for X
 - Boundary attainment for Volterra square-root processes
 - Non-convolution kernels K(t,s)
 - Stationary case $X_t = \int_{-\infty}^t (\cdots)$
 - Etc.