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Part I

Motivation
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Semi-static replication of variance swaps

Variance-Swap replication (Neuberger 1994, Carr and Madan 2001)

Let S be a continuous local martingale. Then the variance swap
Hswap
T = 〈log S , logS〉T can be replicated by dynamic trading in S and

static positions in European puts and calls, i.e.

Hswap
T = 2

∫ T

0

(
1

St
− 1

S0

)
dSt︸ ︷︷ ︸

dynamic part

+ 2

∫ S 0

0

(K − ST )+

K 2
dK︸ ︷︷ ︸

static part (puts)

+ 2

∫ ∞
S 0

(ST − K )+

K 2
dK︸ ︷︷ ︸

static part (calls)

.

Note: Infinitesimally small positions in infinitely many options.
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Semi-static replication of variance swaps (II)

Questions:

What is the optimal semi-static hedge for finite number n (e.g.
n = 30) of hedging assets?

How many assets d < n are enough for a ‘reasonably small’ hedging
error?

Remarks:

Optimality criterion for first question: Variance-optimality.

Second question: Related to variable selection in high-dimensional
regression.
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Part II

Variance-Optimal Semi-Static Hedging
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(Classic) Variance-optimal hedging

Claim H0 in L2(Q), to be hedged with underlying S .
Identify claim H0 with martingale

H0
t = E

[
H0
∣∣Ft

]
, t ∈ [0,T ]

Set of all admissible dynamic strategies:

L2(S) :=

{
ϑ predictable and R-valued: E

[∫ T

0
|ϑt |2d〈S , S〉t

]
< +∞

}
.

Variance-optimal hedging (Föllmer and Schweizer 1986)

Variance-optimal hedge ϑ with initial capital c of claim H0 is solution of
the minimization problem

ε2 = min
ϑ∈L2(S),c∈R

E

[(
c +

∫ T

0
ϑtdSt − H0

T

)2
]
.
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Galtchouk-Kunita-Watanabe (GKW)-decomposition

The variance-optimal hedging problem is solved by the
GKW-decomposition

H0
t = c +

∫ t

0
ϑ0sdSs + L0t ,

where L0 is a local martingale orthogonal to S , i.e. 〈S , L0〉 = 0.
Optimal strategy ϑ can be recovered as

〈H0, S〉t =

∫ t

0
ϑ0s d〈S ,S〉s ,

i.e. as the Radon-Nikodym derivative

ϑ0t =
d〈H0, S〉t
d〈S ,S〉t

.
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Semi-static variance-optimal hedging

In addition to H0: Hedging assets H = (H1, . . . ,Hn) with associated
martingales

H i
t = E

[
H i
∣∣Ft

]
, t ∈ [0,T ]

Use: dynamic position ϑ in S , static positions v = (v1, . . . , vn) in
H = (H1, . . . ,Hn).

Semi-static variance-optimal hedging

Variance-optimal semi-static hedge (ϑ, v) ∈ L2(S)× Rn with initial capital
c of claim H0 is solution of the minimization problem

ε2 = min
(ϑ,v)∈L2(S)×Rn,c∈R

E

[(
c − v>E [HT ] +

∫ T

0

ϑtdSt − (H0
T − v>HT )

)2]
.
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Semi-static variance-optimal hedging (II)

The semi-static problem can be decomposed into inner and outer problem:

(?)

ε2(v) = minϑ∈L2(S),c∈R E
[(

c − v>E [HT ] +
∫ T

0
ϑtdSt − (H0

T − v>HT )
)2]

,

ε2 = minv∈Rn ε(v)2.

Inner problem is a classic variance-optimal hedging problem

Outer problem is a finite-dimensional quadratic optimization problem

Denote the GKW-decompositions of (H1, . . . ,Hn) by

H i
t = c +

∫ t

0
ϑisdSs + Lit

and introduce vector notation

Lt = (L1t , . . . L
n
t ), ϑt = (ϑ1t , . . . , ϑ

n
t ).
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Semi-static variance-optimal hedging (III)

Theorem (Di Tella, Haubold and K.-R. (2017))

Consider the variance-optimal semi-static hedging problem and set

A := Var[L 0
T ], B := Cov[LT , L

0
T ], C := Cov[LT , LT ] .

Under a non-redundancy condition, C is invertible and the unique solution
of the semi-static hedging problem is given by

c = E
[
H0
T

]
, v = C−1B, ϑv = ϑ0 − v>ϑ.

The minimal squared hedging error is given by

ε2 = A− B>C−1B.

. . .
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Semi-static variance-optimal hedging (IV)

Theorem (continued.)

Moreover, the elements of A, B and C can be expressed as

E
[
LiTL

j
T

]
= E

[
〈H i ,H j〉T −

∫ T

0
ϑitϑ

j
t d〈S , S〉t

]
, i , j = 0, . . . , n .

Still: Challenging to compute E
[
LiTL

j
T

]
numerically.

Martin Keller-Ressel (TU Dresden) Semi-Static Sparse Hedging November 17, 2017 9 / 32



Part IV

Sparse Semi-static hedging
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Sparse Semi-static Hedging problem

On Rn define

Usual `1-norm: ‖v‖1 =
∑n

i=1 |vi |
(Non-convex) `0-quasinorm ‖v‖0: counts the number of non-zero
elements of v .

Sparse Variance-Optimal Semi-Static Hedging

The sparse variance-optimal semi-static hedge (ϑ, v) ∈ L2(S)× Rn with
effective portfolio size d < n and its optimal initial capital c ∈ R are the
solution of the minimization problem (?), with the outer problem replaced
by

ε2 = min
v∈Rn,v≥0

(v>Cv − 2v>B + A), subj. to ‖v‖0 ≤ d .
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`1-relaxed problem

`1-relaxed Sparse Semi-static Hedging Problem

For the `1-relaxation of the sparse hedging problem the outer problem in
(?) is replaced by

ε2 = min
v∈Rn,v≥0

(v>Cv − 2v>B + A) + λ ‖v‖1 ,

where λ > 0 is a tuning parameter that replaces d .

In both problems, we allow for long/short contains of the form

p>v ≥ 0,

for some p ∈ Rn.

Martin Keller-Ressel (TU Dresden) Semi-Static Sparse Hedging November 17, 2017 11 / 32



Sparse Semi-static Hedging problems (II)

Remarks:

`0-problem:

Non-convex; hard to solve exactly for large n
Equivalent to variable selection problem in high-dimensional linear
regression

`1-problem:

Convex, efficient solvers; often a good approximation to `0-problem
Equivalent to LASSO regression (Tibshirani (1996))
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Sparse Semi-static Hedging problems (III)

Solution/Approximation methods for the `0-problem:

Brute-Force: Iterate over all
(d
n

)
subsets of size d ; not efficient and

completely infeasible for large n.

Leaps-and-Bounds: Branch-and-bound algorithm introduced by
Furnival and Wilson (1974). Gives exact solution to `0-problem
without testing all possible subsets.

Greedy Forward Selection: Assume that the optimal subsets of
different cardinality are nested. Solve first for d = 1 then for d = 2,
etc. Fast, but no guarantee of being close the exact solution can be
given.
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Part V

Numerical computation of the

GKW-decomposition
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Numerical computation of GKW-decomposition

Problem: Given European payoffs H i = f i (ST ) with associated
martingales H i

t , how can we numerically compute

ϑi , and E
[
LiTL

j
T

]
?

Idea: Combine Fourier representation

f i (u) =
1

2π i

∫ +∞

−∞
exp( ux)f̃ i (x)dx

with a model SX where the characteristic function is explicitly known:

Lévy processes (Hubalek, Kallsen and Krawczyk (2006))

Affine processes (Kallsen and Pauwels (2006, 2010))

Semimartingale and Markovian Semimartingale models (Di Tella,
Haubold, K.-R. (2017))

Technically challenging!

Martin Keller-Ressel (TU Dresden) Semi-Static Sparse Hedging November 17, 2017 14 / 32



Numerical computation of GKW-decomposition (II)

Theorem (Di Tella, Haubold and K.-R. (2017))

Consider stoch. vol model (S = eX ,V ) and let H0 be a variance swap and
let (H1, . . . ,Hn) be European options with Fourier representations.
Assume that (S ,V ) are continuous square-integrable semi-martingales and
that there exist functions h(u, t,Vt), γ(t,Vt), such that

Ht(u) := E
[
euXT

∣∣Ft

]
= euXth(u,T − t,Vt),

Ft := E [ [X ,X ]T − [X ,X ]t | Ft ] = γ(T − t,Vt).

Then the following holds true:

A = E [AT ]

Bi =

∫
S(Ri )

E [BT (u)] f̃i (u)du,

Cij =

∫
S(Ri )

∫
S(Rj )

E [CT (u1, u2)] f̃i (u1)f̃j(u2)du1du2,
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Numerical computation of GKW-decomposition (III)

Theorem (continued)

The processes A,B, C can be written as

dAt = (∂vγ(T − t,Vt))2 dQt ,

dBt(u) = euXt ∂vh(u,T − t,Vt) ∂vγ(T − t,Vt) dQt

dCt(u1, u2) = e(u1+u2)Xt ∂vh(u1,T − t,Vt) ∂vh(u2,T − t,Vt) dQt

where

dQ = d[V ,V ]− d[X ,V ]

d[X ,X ]
d[X ,V ].
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Part VI

Numerical Results
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Model Setup (I)

We consider the Heston model S = eX , where

dX t = −1

2
V tdt +

√
V tdW

1
t ,

dV t = −λ(V t − κ)dt + σ
√
V tdW

2
t ,

with parameters calibrated in Gatheral (2006):

κ = 0.0354 λ = 1.3253 ρ = −0.7165

σ = 0.3877 V0 = 0.0174

and S0 = 100.
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Model Setup (II)

The supplementary assets are 21 OTM-puts and OTM-calls with strikes
ranging from

Kmin = 50 to Kmax = 150 in steps of ∆K = 5.

To be hedged: Variance swap with price given by

E [〈X ,X 〉T ] =

∫ T

0
E [Vt ] dt = κT + (V0 − κ)

1− e−λT

λ
= 0.025427.

Hedging quality assessed by relative hedging error ε/k∗ in percentage
points.
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Goals of the numerical example

Goals:

Comparing the different methods for sparse semi-static hedging
problem:

Greedy forward selection (with and without short-sale constraints)
Leaps-and-Bounds (with and without short-sale constraints)
LASSO

Analyze dependency of hedging error and portfolio composition on
effective portfolio size d ;

Analyze dependency of hedging error and optimal portfolio
composition on the leverage parameter ρ.
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Results: Relative Hedging Error

Figure: Shown is relative hedging error (on log-scale) of LASSO (green circles),
Greedy forward selection (red diamonds) and Leaps-and-Bounds (blue x’s).
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Comparison of Methods

Observations:

LASSO surprisingly bad

Greedy forward selection very fast and surprisingly good

Leaps-and-Bounds gives exact solutions; runtime is tolerable but
model-sensitive

Reason for LASSO’s bad performance: Bad condition of matrix C
(reciprocal condition number: 1.11× 10−6).
Options with neighboring strikes are highly correlated!
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Results: Relative Hedging Error (II)

Figure: Shown is relative hedging error (on log-scale) of LASSO (green circles),
Greedy forward selection (red diamonds) and Leaps-and-Bounds (blue x’s).
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Relative Hedging Error vs. Effective Portfolio Size

Reduction of hedging error:

Effective portfolio size Relative hedging error

d = 0 (no static pos.) 59.7 %
d = 3 5.7 %
d = 6 3.4 %

d = 21 (all avail. assets) 1.6 %

d →∞, Kmin = 0, Kmax =∞ 0 %
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Portfolio Composition

Focus on optimal portfolio composition and compare:

Leaps-and-Bounds without short-sale constraints

Leaps-and-Bounds with short-sale constraints

Greedy-forward selection with short-sale constraints

LASSO (without constraints)
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Portfolio Composition: Leaps-and-Bounds I

Figure: Leaps-and-Bounds without short-sale constraints

Martin Keller-Ressel (TU Dresden) Semi-Static Sparse Hedging November 17, 2017 25 / 32



Portfolio Composition: Leaps-and-Bounds II

Figure: Leaps-and-Bounds with short-sale constraints
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Portfolio Composition: Greedy forward selection

Figure: Greedy forward selection with short-sale constraints
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Portfolio Composition: LASSO

Figure: LASSO (no constraints)
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Portfolio Composition (summary)

Observations:

With the exception of put K = 55 only long positions are observed;

Positions in OTM puts (K < 100) are larger than in OTM calls
(K > 100), in line with Neuberger’s replicating portfolio;

General pattern (going from d = 1 to 21):

Start with (approximately) ATM option
Proceed by selecting both OTM puts and calls, going outwards as d
increases until the limit Kmin = 50 is reached
Put more weight on OTM puts (K < 100)
Continue by adding OTM calls and by filling up the gaps from earlier
stages.
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Comparison with infinitesimal portfolio (I)

How does the variance-optimal portfolio compare with Neuberger’s
infinitesimal portfolio?
Neuberger’s replicating portfolio places infinitesimal weight of

v(K )dK =
1

K 2
dK

on each option with strike K . In doubly logarithmic coordinates, this
becomes

log v(K ) = −2 logK ,

i.e. the portfolio weights should form a line of downward slope −2.
Compare with sparse variance-optimal portfolio of size d = 3, 6, 12.
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Comparison with infinitesimal portfolio (II)

Figure: Portfolio weights vK in the optimal hedging portfolios of effective size
d = 3 (black crosses), d = 6 (green circles) and d = 12 (red x’s) in doubly
logarithmic coordinates.
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Summary

Framework to solve semi-static hedging problem under
variance-optimality criterion

Sparsity constraints allow to select small subset of suitable hedging
instruments

Tractable implementation in the Heston model

Under realistic assumptions a variance swap can reasonably hedged
with 3 puts/calls (+ underlying)

Extensions: Other models (non-affine, rough), other payoffs, minimize
P-error instead of Q-error, include transaction costs in dynamic
strategy?
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Thank you for your attention!
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