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Motivation
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Semi-static replication of variance swaps

Variance-Swap replication (Neuberger 1994, Carr and Madan 2001)

Let S be a continuous local martingale. Then the variance swap

H7P = (log S, logs) T can be replicated by dynamic trading in S and

statlc positions in European puts and calls, i.e.

Tri 1 (K -S7)t * (St —K)*
HeP = 2 2 = ak+42 | =L dk.
= /0 <5t 50>d5t+/ Skt /5 o

dynamic part static part (puts) static part (calls)

Note: Infinitesimally small positions in infinitely many options.
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Semi-static replication of variance swaps (II)

Questions:

e What is the optimal semi-static hedge for finite number n (e.g.
n = 30) of hedging assets?

@ How many assets d < n are enough for a ‘reasonably small’ hedging
error?
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Semi-static replication of variance swaps (II)

Questions:

e What is the optimal semi-static hedge for finite number n (e.g.
n = 30) of hedging assets?

@ How many assets d < n are enough for a ‘reasonably small’ hedging
error?

Remarks:
@ Optimality criterion for first question: Variance-optimality.

@ Second question: Related to variable selection in high-dimensional
regression.
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Part |l

Variance-Optimal Semi-Static Hedging
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(Classic) Variance-optimal hedging

Claim H° in L?(Q), to be hedged with underlying S.
Identify claim HO with martingale

H} =E [H°| 7], te[o,T]

Set of all admissible dynamic strategies:

T
L2(S) = {19 predictable and R-valued: E [/ |19t|2d(5,5>t] < +oo}.
0

Variance-optimal hedging (Follmer and Schweizer 1986)

Variance-optimal hedge ¥ with initial capital ¢ of claim H° is solution of

the minimization problem
T 2
2 <C +/ 19td5t — H?—)
0

€ = min E
J€EL?(S),ceR
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Galtchouk-Kunita-Watanabe (GKW)-decomposition

The variance-optimal hedging problem is solved by the
GKW-decomposition

t
H?:c—i—/ 99dSs + L9,
0

where L0 is a local martingale orthogonal to S, i.e. (S, L% = 0.
Optimal strategy 1 can be recovered as

t
<H07 S>t = / 19(5) d<57 5>S )
0
i.e. as the Radon-Nikodym derivative

d(H% S),

99 = .
d(S,S):
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Semi-static variance-optimal hedging

In addition to H°: Hedging assets H = (H*,..., H") with associated
martingales ' '

Hi=E[H|F], tel0,T]
Use: dynamic position ¢ in S, static positions v = (v1,...,Vy) in
H=(H,...,H").

Semi-static variance-optimal hedging

Variance-optimal semi-static hedge (9, v) € L2(S) x R” with initial capital
c of claim HO is solution of the minimization problem

e = mi E

- T )
E[H + 9 ’!0
(197V)EL2(S;’]X]R",CER (C v [ T] /0 tdSt ( T~V HT))
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Semi-static variance-optimal hedging (II)

The semi-static problem can be decomposed into inner and outer problem:

2
) 62(V) = minﬁeLZ(s)’ceR]E |:(C - VTE [HT] + fOT ﬂtdst - (H(-;— - VTHT)) :| y

€2 = min,crn e(v)2

(*

@ Inner problem is a classic variance-optimal hedging problem

@ Outer problem is a finite-dimensional quadratic optimization problem
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Semi-static variance-optimal hedging (II)

The semi-static problem can be decomposed into inner and outer problem:

2
(%) (v) = minger(s),cer E [(C —v'E[Hr] + fOT 0¢dS; — (H} — VTHT)) ] ,

€2 = min,crn e(v)2

@ Inner problem is a classic variance-optimal hedging problem

@ Outer problem is a finite-dimensional quadratic optimization problem
Denote the GKW-decompositions of (H*,..., H") by

t
H; = c+/ 9.dSs + L
0
and introduce vector notation
L= (L},...L7), 0= (9L,...,097).
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Semi-static variance-optimal hedging (III)

Theorem (Di Tella, Haubold and K.-R. (2017))
Consider the variance-optimal semi-static hedging problem and set
A:=Var[l%], B:=Cov[L7,L%], C:=Cov[Lt,L7].

Under a non-redundancy condition, C is invertible and the unique solution
of the semi-static hedging problem is given by

c=E[H}], v=C'B, ¢"=9"-v'v
The minimal squared hedging error is given by

e2=A-B'C1B.
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Semi-static variance-optimal hedging (IV)

Theorem (continued.)

Moreover, the elements of A, B and C can be expressed as

. . . . T . .
E[L'tL] :E[(H’,HJ>T—/O ﬁ;ﬁéd(S,S)t], i,j=0,...,n.

Still: Challenging to compute E[LiTLjT] numerically.
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Part IV

Sparse Semi-static hedging
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Sparse Semi-static Hedging problem

On R" define
e Usual f1-norm: |lv||; = > 71 |vi|
o (Non-convex) fo-quasinorm ||v||: counts the number of non-zero
elements of v.

Sparse Variance-Optimal Semi-Static Hedging

The sparse variance-optimal semi-static hedge (9, v) € L2(S) x R" with
effective portfolio size d < n and its optimal initial capital ¢ € R are the
solution of the minimization problem (x), with the outer problem replaced
by

= min (v Cv—2v'B+A), subj.to |v|,<d.
vERM,v>0
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/1-relaxed problem

(1-relaxed Sparse Semi-static Hedging Problem

For the /1-relaxation of the sparse hedging problem the outer problem in
(%) is replaced by

= min (vICv—2v'B+A)+A|v|;,
vER" v>0

where A > 0 is a tuning parameter that replaces d.

In both problems, we allow for long/short contains of the form
p'v >0,

for some p € R".
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Sparse Semi-static Hedging problems (I1)

Remarks:
@ /y-problem:

o Non-convex; hard to solve exactly for large n
o Equivalent to variable selection problem in high-dimensional linear
regression

@ /1-problem:

o Convex, efficient solvers; often a good approximation to ¢y-problem
o Equivalent to LASSO regression (Tibshirani (1996))
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Sparse Semi-static Hedging problems (I11)

Solution/Approximation methods for the ¢o-problem:

@ Brute-Force: lterate over all (;’) subsets of size d; not efficient and
completely infeasible for large n.

o Leaps-and-Bounds: Branch-and-bound algorithm introduced by
Furnival and Wilson (1974). Gives exact solution to £p-problem
without testing all possible subsets.

o Greedy Forward Selection: Assume that the optimal subsets of
different cardinality are nested. Solve first for d = 1 then for d = 2,
etc. Fast, but no guarantee of being close the exact solution can be
given.
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Part V

Numerical computation of the

GKW-decomposition
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Numerical computation of GKW-decomposition

Problem: Given European payoffs H' = f/(St) with associated
martingales H;, how can we numerically compute

9, and E[L"TLJ'T] ?

Idea: Combine Fourier representation
. 1 t+oo .
f'(u) = — exp( ux)f'(x)dx
211 J_ o

with a model SX where the characteristic function is explicitly known:

@ Lévy processes (Hubalek, Kallsen and Krawczyk (2006))

o Affine processes (Kallsen and Pauwels (2006, 2010))

@ Semimartingale and Markovian Semimartingale models (Di Tella,

Haubold, K.-R. (2017))

Technically challenging!
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Numerical computation of GKW-decomposition (I1)

Theorem (Di Tella, Haubold and K.-R. (2017))

Consider stoch. vol model (S = eX, V) and let H° be a variance swap and
let (HY, ..., H") be European options with Fourier representations.
Assume that (S, V') are continuous square-integrable semi-martingales and
that there exist functions h(u, t, V;), v(t, Vt), such that

He(u) :=E [e”T| F] = eth(u, T — t, V),
Fe=E[[X,X]1 — [X, X]e| Fe] = AT — t, Vo).

Then the following holds true:
A=E[Ar]

B — /S o BB (s

c,j:/ / E [Cr(ur, u)] (1) F(u2)dundus,
S(Ri) JS(R;)
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Numerical computation of GKW-decomposition (I11)

Theorem (continued)

The processes A, B,C can be written as
dA; = (0T — t, V4))? dQ,

dBe(u) = e d,h(u, T — t, V) O,4(T — t, Vi) dQ;
dC;(uy, up) = U)X g h(uy, T —t, Vi) Oy h(up, T — t, Vy) dQ;

where X, V]
dQ =d[V, V] - “—-d[X, V].
[ ) ] d[X, X] [ ) ]
4
Martin Keller-Ressel (TU Dresden) Semi-Static Sparse Hedging November 17, 2017 16 / 32




Part VI

Numerical Results
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Model Setup (I)

We consider the Heston model S = eX, where

1
dX, = —Evtdt + v/ VedW},
dVi = —A\Vi — k)dt + o/ VdW2,
with parameters calibrated in Gatheral (2006):

x = 0.0354 A =1.3253 p = —0.7165
o = 0.3877 Vo = 0.0174

and S = 100.
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Model Setup (II)

The supplementary assets are 21 OTM-puts and OTM-calls with strikes
ranging from

Kimin = 50 to Kmax = 150 in steps of AK =5.

To be hedged: Variance swap with price given by

—AT

i
1 _
E[(X, X)7] :/ E[Vildt = 5T + (Vo — )" = 0.025427.
0

Hedging quality assessed by relative hedging error €/k, in percentage
points.
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Goals of the numerical example

Goals:
@ Comparing the different methods for sparse semi-static hedging
problem:
o Greedy forward selection (with and without short-sale constraints)
o Leaps-and-Bounds (with and without short-sale constraints)
o LASSO
@ Analyze dependency of hedging error and portfolio composition on
effective portfolio size d;

@ Analyze dependency of hedging error and optimal portfolio
composition on the leverage parameter p.
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Results: Relative Hedging Error
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Figure: Shown is relative hedging error (on log-scale) of LASSO (green circles),

Greedy forward selection (red diamonds) and Leaps-and-Bounds (blue x's).
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Comparison of Methods

Observations:

@ LASSO surprisingly bad
@ Greedy forward selection very fast and surprisingly good

o Leaps-and-Bounds gives exact solutions; runtime is tolerable but
model-sensitive

Reason for LASSO'’s bad performance: Bad condition of matrix C
(reciprocal condition number: 1.11 x 107°).
Options with neighboring strikes are highly correlated!
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Results: Relative Hedging Error (II)
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Figure: Shown is relative hedging error (on log-scale) of LASSO (green circles),

Greedy forward selection (red diamonds) and Leaps-and-Bounds (blue x's).
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Relative Hedging Error vs. Effective Portfolio Size

Reduction of hedging error:

Effective portfolio size Relative hedging error
d = 0 (no static pos.) 59.7%
d=3 5.7%
d=6 3.4%
d =21 (all avail. assets) 1.6 %
d — 00, Kmin = 0, Kmax = o0 | 0%
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Portfolio Composition

Focus on optimal portfolio composition and compare:

Leaps-and-Bounds without short-sale constraints

Leaps-and-Bounds with short-sale constraints

Greedy-forward selection with short-sale constraints

LASSO (without constraints)
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Portfolio Composition: Leaps-and-Bounds |

| [N I N o o e e e . 70
75
|| 80
[ | 85
|| 1 [ w0 o
5 =
|| 00 2
05 T
10 @
115
120
125
130
135
140
145
150
— o~ Ll =+ w w ~ -] [=23 o -— o~ (] =+ w w r~ w© o o —
2 5 &P ¥ P e k2 2 73 ¥

Effective Portfolio Size (d)

Figure: Leaps-and-Bounds without short-sale constraints
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Portfolio Composition: Leaps-and-Bounds I

!l ' /' | J ' [ [ | [ | | [ | [
- 55
1 60
65
| 1 1 [ [ [ [N L] 70
75
|| 80
| 85
| N N 90
95
[ | 100
1058
110
15
120
125
130
135
140
145
180

Strike (K)

- ™ L] -+ 0 @ ~ o @ o - o™ = w =] ~ © = o
- - - - = - - - - - & ™

Effective Portfolio Size (d)

Figure: Leaps-and-Bounds with short-sale constraints
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Portfolio Composition: Greedy forward selection
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Figure: Greedy forward selection with short-sale constraints
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Portfolio Composition: LASSO
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Figure: LASSO (no constraints)
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Portfolio Composition (summary)

Observations:
o With the exception of put K = 55 only long positions are observed;

@ Positions in OTM puts (K < 100) are larger than in OTM calls
(K > 100), in line with Neuberger's replicating portfolio;

@ General pattern (going from d =1 to 21):

o Start with (approximately) ATM option

e Proceed by selecting both OTM puts and calls, going outwards as d
increases until the limit K, = 50 is reached

o Put more weight on OTM puts (K < 100)

e Continue by adding OTM calls and by filling up the gaps from earlier
stages.
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Comparison with infinitesimal portfolio (I)

How does the variance-optimal portfolio compare with Neuberger's
infinitesimal portfolio?
Neuberger's replicating portfolio places infinitesimal weight of

on each option with strike K. In doubly logarithmic coordinates, this

becomes
log v(K) = —2log K,

i.e. the portfolio weights should form a line of downward slope —2.
Compare with sparse variance-optimal portfolio of size d = 3,6, 12.
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Comparison with infinitesimal portfolio (II)
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Figure: Portfolio weights vk in the optimal hedging portfolios of effective size
d = 3 (black crosses), d = 6 (green circles) and d = 12 (red x's) in doubly
logarithmic coordinates.
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@ Framework to solve semi-static hedging problem under
variance-optimality criterion

@ Sparsity constraints allow to select small subset of suitable hedging
instruments

@ Tractable implementation in the Heston model

@ Under realistic assumptions a variance swap can reasonably hedged
with 3 puts/calls (+ underlying)

e Extensions: Other models (non-affine, rough), other payoffs, minimize
P-error instead of Q-error, include transaction costs in dynamic
strategy?
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Thank you for your attention!
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