McKean FBSDE applied to the management of microgrid emmanuel.gobet@polytechnique.edu

> Centre de Mathématiques Appliquées, and FiME, Ecole Polytechnique and CNRS Université Paris-Saclay

Joint work with Maxime Grangereau (with the support of Siebel Energy Institute and within the framework of ANR CAESARS ANR-15-CE05-0024).

Solar modeling with Jordi Badosa and Daeyoung Kim (TREND-X).

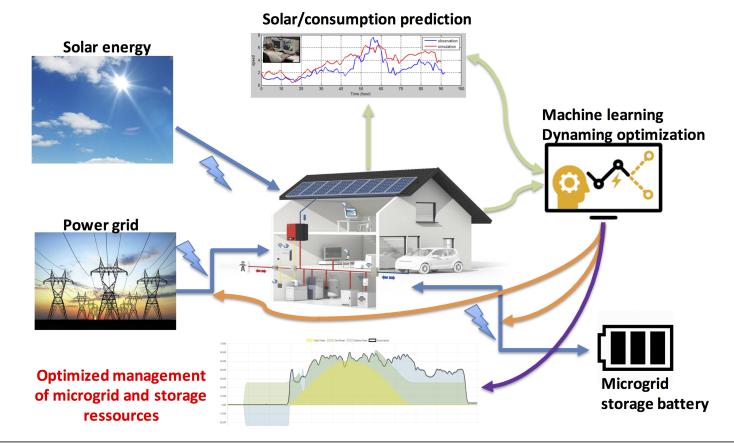
Contents

1	Mo	deling the micro-grid	3
	1.1	Context	3
	1.2	The system	4
	1.3	Ingredients for designing the micro-grid management	6
2			
2	Op	timal stochastic control of McKean type	13
2	Op [•] 2.1	timal stochastic control of McKean type Necessary conditions	13 14
Z			
2	2.1	Necessary conditions	14

1 Modeling the micro-grid

1.1 Context

Recent deep transformations in the mechanisms of energy purchase / sale, distribution / consumption: Renewable Energies, storage, aggregation, home automation, setting up of microgrids...



1.2 The system

- \checkmark Context: management of smart building
 - ▶ equipped with solar panels
 - ▶ connected to a "public" grid providing electricity
 - ▶ equipped with a battery
- \checkmark State variables:
 - ▶ power from the grid (P_{grid})
 - ► State of Charge of the battery (SOC)
 - ▶ weather variables (irradiance, humidity, outside temperature)
 - ▶ inside temperature
 - ▶ building consumption (HVAC, appliances, lighting...)
- \checkmark Uncertainty: building consumption, PV production
- ✓ Controls: HVAC, lighting, battery

- $\checkmark\,$ Battery: plays the role of a buffer, absorbing both
 - ▶ the unpredictable part of the consumption
 - ▶ the intermittency of the PV production
- Different economic models for the use of battery are possible...

Economic criterion 1. Prosumer.

Store PV electricity and sell it when electricity prices are at the highest Economic criterion 2. Uncertainty reduction of the demand on the grid load.

- Grid manager: better sizing of energy-production units
- Consumer: contract with lower electricity price
- ➡ Our choice...

1.3 Ingredients for designing the micro-grid management

Goal: How to minimize the variability of the grid load?

1. Consider an optimization criterion

For instance: over T = 1 day horizon,

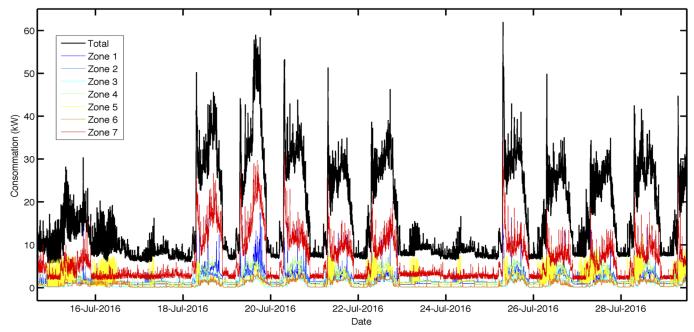
$$\min_{\mathbf{control}_{t}} \int_{\mathbf{0}}^{\mathbf{T}} \left(\kappa \operatorname{\mathbb{V}ar}\left[\operatorname{P}_{\mathtt{grid}}(t) \right] + \mu \operatorname{\mathbb{E}}\left[\operatorname{P}_{\mathtt{bat}}^{\mathbf{2}}(t) \right] + \nu \operatorname{\mathbb{E}}\left[\left(\operatorname{SOC}(t) - \frac{1}{2} \right)^{\mathbf{2}} \right] \right) \mathrm{d}t$$

- \checkmark Compromise between
 - ▶ variability of P_{grid} averaged over the day
 - ▶ and large charge/discharge of the battery (aging effect)
- ✓ Ideally: $SOC(0) = SOC(T) = \frac{1}{2}$. Relaxation of the constraint by adding a penalization with parameter $\nu \to +\infty$.
- \checkmark In the case of linear dynamics, see $[Yong,\,SICON\,\,2013]$
- ✓ Optimal stochastic control problem of McKean type (involving the distribution of the State Variables and of the Control), see
 [Carmona-Delarue, AoP 2015, etc]

2. Building consumption:

$$\mathbf{P}_{\text{cons}}(t) = \mathbf{P}_{\text{HVAC}}(t) + \mathbf{P}_{\text{Appliance}}(t) + \mathbf{P}_{\text{Lighting}}(t).$$

- \checkmark Lighting: automatic mode (working building), depends on the season and the hour of the day. Negatively correlated to the irradiance.
- ✓ HVAC: automatic mode to maintain a inside temperature within a range (e.g. $[19^{\circ}C 20^{\circ}C]$). Correlated to the weather conditions.
- ✓ Usually modeled with mean-reverting process with jumps (when switch off-on devices). See e.g. [Aswani, Master, Taneja, Culler, Tomlin, IEEE 2011].



Advances in Stochastic Analysis for Risk Modeling - CIRM - November 17th, 2017

3. Power balance:

$$\mathbf{P}_{\texttt{cons}}(t) = \mathbf{P}_{\texttt{bat}}(t) + \mathbf{P}_{\texttt{sun}}(t) + \mathbf{P}_{\texttt{grid}}(t)$$

with $P_{\text{bat}} \ge 0$, $P_{\text{sun}} \ge 0$, $P_{\text{grid}} \ge 0$ (no selling of extra production).

 $\checkmark~P_{\tt sun}$: depend on irradiance (see later), humidity, temperature, PV panel...

- \checkmark P_{bat}: depend on the controller u_t
 - ► SOC: the State Of Charge variable.
 - ▶ Power delivered by the battery:

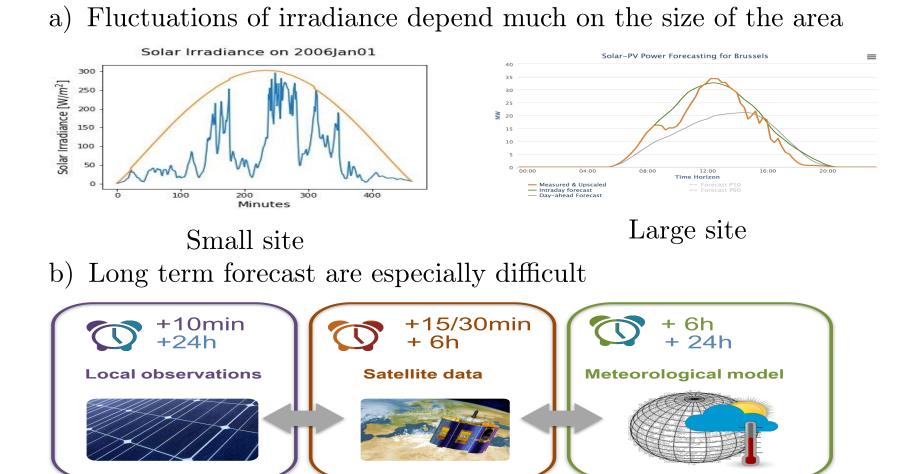
$$\mathbf{P}_{\mathtt{bat}}(t) = \phi^{\mathtt{bat}}(u_t, \mathtt{SOC}(t)).$$

- * u and P_{bat} have the same signs
- * if SOC(t) = 0 and $u_t > 0$, no extra discharge ($P_{bat}(t) = 0$). And vice-versa.
- ► Evolution of SOC:

$$\frac{\mathrm{d}\mathrm{SOC}^{u}(t)}{\mathrm{d}t} = \phi^{\mathrm{SOC}}(u_t, \mathrm{SOC}^{u}(t)).$$

▶ Rough approximation: linear dynamics

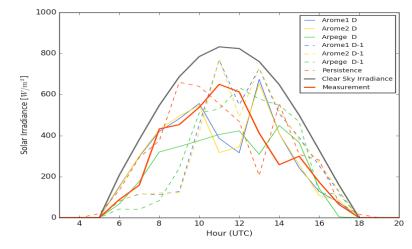
4. Irradiance



Here we mainly need forecast other several hours → data from MeteoFrance.c) We need probabilistic forecast (and not only a pointwise forecast)

How to design a stochastic model?

- $\checkmark\,$ No stationarity property in weather variables
- \checkmark We shall take advantage of day-ahead forecasts (performed on day D-1)



Different MeteoFrance forecasts (AROME, ARPEGE). Horizons: Day=D, Day before=D-1.

 \checkmark We shall account for the maximal irradiance (Clear Sky Model).

✓ Clear Sky Index:
$$X_t = \frac{I(t)}{I^{\text{clear sky model}}(t)} \in [0, 1]$$

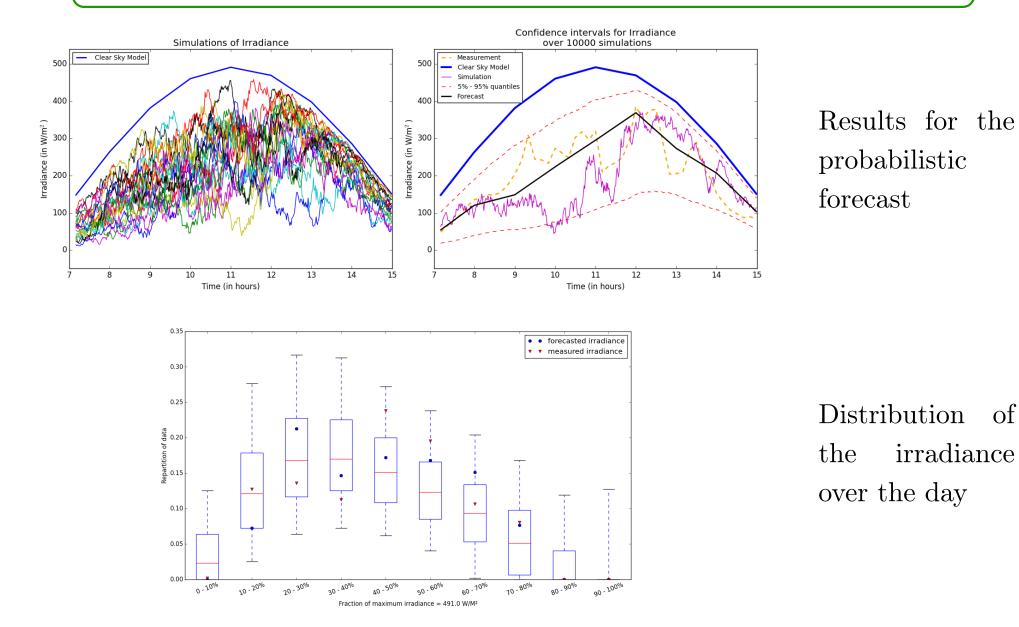
✓ Expected CSI: $x_t^{\text{forecast}} := \frac{I^{\text{forecast}}(t)}{I^{\text{clear sky model}}(t)} \in [0, 1].$

 \checkmark SDE model (like Fisher-Wright or Jacobi process):

$$\mathrm{d}X_t = -a(X_t - x_t^{\text{forecast}})\mathrm{d}t + \sigma X_t^{\alpha}(1 - X_t)^{\beta}\mathrm{d}W_t$$

with $\alpha, \beta \in [1/2, 1]$.

- \checkmark Parameter estimations:
 - ▶ $a \approx 0.75h^{-1}$: estimated from autocorrelogram
 - $\blacktriangleright (\alpha, \beta) \approx (\mathbf{0.8}, \mathbf{0.7})$
 - ▶ the volatility σ is adjusted everyday as a function of the averaged increments of the D 1-forecast



2 Optimal stochastic control of McKean type

Accounting on the distribution of the system (through its **moments**): set

$$\begin{aligned} X_t^u &= \begin{pmatrix} \operatorname{SOC}^u(t) \\ \operatorname{P}_{\operatorname{load}}(t) \end{pmatrix} \text{ and} \\ \mathcal{J}(\mathbf{u}) &= \mathbb{E}\left[\int_0^T l\left(u_t, X_t^u, \mathbb{E}\left[g(t, u_t, X_t^u)\right]\right) \mathrm{d}t + \psi(X_T^u) \right] \longrightarrow \min_u. \end{aligned}$$

References of such a problem (without the distribution on the control): [Yong 2013], [Carmona, Delarue, Lachapelle, 2013], [Carmona, Delarue, 2015] ...

Our strategy of analysis, using Pontryagin principle:

- 1. necessary conditions by Gateaux differentiability Im McKean Forward Backward SDE
- 2. well-posedness of the McKean FBSDE
- 3. sufficient conditions under convexity conditions

2.1 Necessary conditions

Theorem (Gâteaux derivatives). Let $u \in \mathbb{H}^2$ and set $g_t^u := g(t, u_t, X_t^u)$. Assume smooth coefficients, define the FBSDE (Y, M)

$$\begin{cases} -\mathrm{d}Y_t = \left[\phi_{\mathsf{SOC}}^{\mathsf{SOC}}(t, u_t, \mathsf{SOC}^u(t))Y_t + l_{\mathsf{SOC}}(t, u_t, X_t^u, g_t^u) + \mathbb{E}\left[l_g(t, u_t, X_t^u, g_t^u)\right]g_{\mathsf{SOC}}(t, u_t, X_t^u)\right]\mathrm{d}t - \mathrm{d}M_t, \\ Y_T = \psi_{\mathsf{SOC}}(X_T^u) \end{cases}$$

and assume that it has a square integrable solution (Y, M). Then, for any $v \in \mathbb{H}^2$,

$$\begin{split} \partial_{\varepsilon}\mathcal{J}(\mathbf{u}+\epsilon\mathbf{v})|_{\varepsilon=\mathbf{0}} &= \mathbb{E}\left[\int_{\mathbf{0}}^{\mathbf{T}}\mathbf{v}_{t}\bigg\{\mathbf{l}_{\mathbf{u}}(\mathbf{t},\mathbf{u}_{t},\mathbf{X}_{t}^{\mathbf{u}},\mathbf{g}_{t}^{\mathbf{u}}) + \mathbb{E}\left[\mathbf{l}_{\mathbf{g}}(\mathbf{t},\mathbf{u}_{t},\mathbf{X}_{t}^{\mathbf{u}},\mathbf{g}_{t}^{\mathbf{u}})\right]\mathbf{g}_{\mathbf{u}}(\mathbf{t},\mathbf{u}_{t},\mathbf{X}_{t}^{\mathbf{u}}) \\ &+ \mathbf{Y}_{t}\phi_{\mathbf{u}}^{\mathtt{SOC}}(\mathbf{t},\mathbf{u}_{t},\mathbf{X}_{t}^{\mathbf{u}})\bigg\}\mathrm{d}\mathbf{t}\right]. \end{split}$$

2.2 McKean FBSDE

Theorem (Existence, uniqueness). Under technical assumptions, the optimal control must fulfill

$$\begin{split} \mathbf{Y_t} &= \mathbb{E}\left[\mathbf{\Psi}'(\mathbf{X_T^u}) + \int_t^T \mathbf{h_1}\left(\mathbf{Y_s}, \mathbf{u_s}, \mathbf{X_s^u}, \mathbb{E}\left[\mathbf{h_2}(\mathbf{u_s}, \mathbf{X_s^u})\right]\right) \mathrm{ds} \mid \mathcal{F}_t \right], \\ & \mathbf{h_3}\left(\mathbf{Y_t}, \mathbf{u_t}, \mathbf{X_t^u}, \mathbb{E}\left[\mathbf{h_4}(\mathbf{u_t}, \mathbf{X_t^u}, \mathsf{P}_{\mathsf{load}}(\mathbf{t}))\right]\right) = \mathbf{0}, \end{split}$$

for some h_1 , h_2 , h_3 , h_4 , and there exists a unique solution to the above system.

- $\checkmark\,$ For linear-quadratic problems, explicit solution through the solution of Ricatti equations.
- \checkmark In general, resolution via regression Monte Carlo (like for BSDEs)

2.3 Sufficient conditions

Assume

- 1. The terminal cost ψ is convex in the first variable.
- 2. The mapping

$$\mathcal{H}: \begin{cases} [0,T] \times \mathbb{H}^{2}(\mathbb{R}) \times \mathbb{S}^{2}(\mathbb{R}) \times \mathbb{S}^{2}(\mathbb{R}) \to \mathbb{R} \\ (t,u,X,Y) \mapsto \mathcal{H}(t,u,X,Y) := \mathbb{E} \left[l \left(t, u_{t}, \begin{pmatrix} X_{t} \\ \mathsf{P}_{\mathsf{load}}(t) \end{pmatrix}, \mathbb{E} \left[g \left(t, u_{t}, \begin{pmatrix} X_{t} \\ \mathsf{P}_{\mathsf{load}}(t) \end{pmatrix} \right) \right] \right) \right] \\ + \mathbb{E} \left[Y_{t} \phi^{\mathsf{SOC}}(t, u_{t}, X_{t}) \right] \end{cases}$$

is convex in (u, X) for any t and Y.

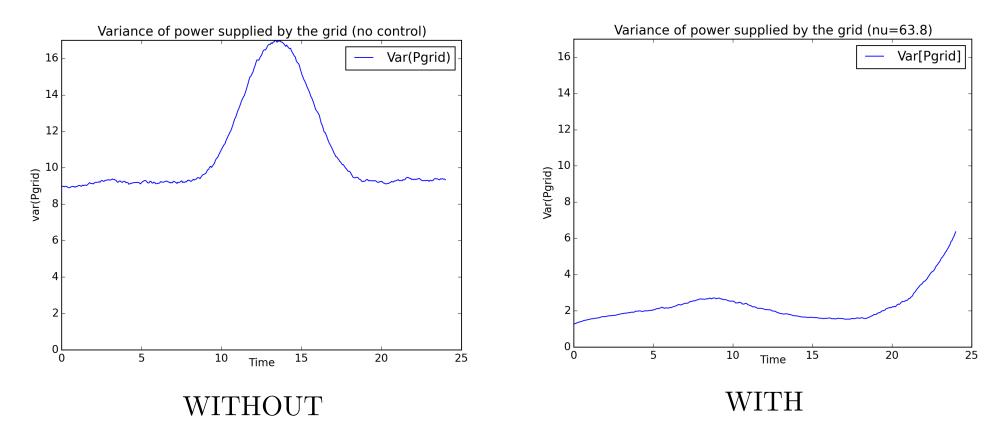
\mathbf{Y} Hamiltonian in expectation and not pathwise.

Theorem. If (u, Y) is the solution of McKean FBSDE, then the control u is optimal.

All conditions are satisfied in the initial microgrid problem.

2.4 Numerical illustration: with or without battery command

Here we consider the Linear-Quadratic case (explicit solution).



- \checkmark Modeling micro-grid management
- \checkmark Optimization criterion: variability of $\mathtt{P}_{\tt grid}$
- $\checkmark\,$ New irradiance modeling: using SDE. Good probabilistic forecast.
- ✓ Optimal control: solution by a new type of Pontryagin principle, and McKean FBSDE.
- \checkmark Perspectives:
 - ▶ numerical solution in the general case
 - ▶ tests on real situation.

Thank you for your attention!

References

- [ACL13] R. Aïd, L. Campi, and N. Langrené. A structural risk-neutral model for pricing and hedging power derivatives. *Math. Finance*, 23(3):387–438, 2013.
- [ADSC15] S. Alessandrini, L. Delle Monache, S. Sperati, and G. Cervone. An analog ensemble for short-term probabilistic solar power forecast. *Applied energy*, 157:95–110, 2015.
- [Aid15] R. Aid. *Electricity derivatives*. Springer Briefs in Quantitative Finance, 2015.
- [AMT⁺12] A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tomlin. Reducing transient and steady state electricity consumption in hvac using learning-based model-predictive control. *Proceedings of the IEEE*, 100(1):240–253, 2012.
- [Ben88] A. Bensoussan. Perturbation methods in optimal control. Wiley/Gauthier-Villars
 Series in Modern Applied Mathematics. John Wiley & Sons Ltd., Chichester, 1988.
 Translated from the French by C. Tomson.
- [BH81] R.E. Bird and R.L. Hulstrom. Simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Technical report, Solar Energy Research Inst., Golden, CO (USA), 1981.
- [BSS05] B.M. Bibby, I.M. Skovgaard, and M. Sorensen. Diffusion-type models with given marginal distribution and autocorrelation function. *Bernoulli*, 11(2):191–220, 2005.
- [CD15] R. Carmona and F. Delarue. Forward-backward stochastic differential equations

and controlled McKean-Vlasov dynamics. Ann. Probab., 43(5):2647–2700, 2015.

- [CDL13] R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov dynamics versus mean field games. *Math. Financ. Econ.*, 7(2):131–166, 2013.
- [DFM15] M. Delfanti, D. Falabretti, and M. Merlo. Energy storage for PV power plant dispatching. *Renewable Energy*, 80:61–72, 2015.
- [DLD12] H.M. Diagne, P. Lauret, and M. David. Solar irradiation forecasting: state-of-the-art and proposition for future developments for small-scale insular grids. In WREF 2012-World Renewable Energy Forum, 2012.
- [EPQ97] N. El Karoui, S.G. Peng, and M.C. Quenez. Backward stochastic differential equations in finance. *Math. Finance*, 7(1):1–71, 1997.
- [Gär88] J. Gärtner. On the McKean-Vlasov limit for interacting diffusions. *Math. Nachr.*, 137:197–248, 1988.
- [GG17] E. Gobet and M. Grangereau. Optimal management under uncertainty of microgrid equipped with PV panels and battery: resolution using McKean-FBSDE. *preprint*, 2017.
- [GT16] E. Gobet and P. Turkedjiev. Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. *Math. Comp.*, 85(299):1359–1391, 2016.
- [Hae14] P. Haessig. Dimensionnement et gestion d'un stockage d'énergie pour l'atténuation

des incertitudes de production éolienne. PhD thesis, École normale supérieure de Cachan-ENS Cachan, 2014.

- [HBM⁺15] B. Heymann, J.F. Bonnans, P. Martinon, F.J. Silva, F. Lanas, and G. Jiménez-Estévez. Continuous optimal control approaches to microgrid energy management. *Energy Systems*, pages 1–19, 2015.
- [HBSJ16] B. Heymann, J.F. Bonnans, F. Silva, and G. Jimenez. A stochastic continuous time model for microgrid energy management. In *Control Conference (ECC), 2016 European*, pages 2084–2089. IEEE, 2016.
- [HKNF14] R. Hanna, J. Kleissl, A. Nottrott, and M. Ferry. Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. *Solar Energy*, 103:269–287, 2014.
- [HLG06] D. Heinemann, E. Lorenz, and M. Girodo. Solar irradiance forecasting for the management of solar energy systems. Energy and Semiconductor Research Laboratory, Energy Meteorology Group, Oldenburg University, 2006.
- [IMMM14] E.B. Iversen, J.M. Morales, J.K. Møller, and H. Madsen. Probabilistic forecasts of solar irradiance using stochastic differential equations. *Environmetrics*, 25(3):152–164, 2014.
- [Kle13] J. Kleissl. Solar energy forecasting and resource assessment. Academic Press, 2013.
- [MA16] A.A. Mohammed and Z. Aung. Ensemble learning approach for probabilistic

forecasting of solar power generation. Energies, 9(12):1017, 2016.

- [MBF⁺16] C.B. Martinez-Anido, B. Botor, A.R. Florita, C. Draxl, S. Lu, H.F. Hamann, and B.M. Hodge. The value of day-ahead solar power forecasting improvement. *Solar Energy*, 129:192–203, 2016.
- [MY99] J. Ma and J. Yong. Forward-Backward Stochastic Differential Equations. Lecture Notes in Mathematics, 1702, Springer-Verlag, 1999. A course on stochastic processes.
- [OAB⁺15] K.D. Orwig, M.L. Ahlstrom, V. Banunarayanan, J. Sharp, J.M. Wilczak,
 J. Freedman, S.E. Haupt, J. Cline, O. Bartholomy, H.F. Hamann, B.M. Hodge,
 C. Finley, D. Nakafuji, J.L. Peterson, D. Maggio, and M. Marquis. Recent trends in variable generation forecasting and its value to the power system. *IEEE Transactions on Sustainable Energy*, 6(3):924–933, 2015.
- [Pen90] S.G. Peng. A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim., 28(4):966–979, 1990.
- [PLP⁺13] R. Perez, E. Lorenz, S. Pelland, M. Beauharnois, G. Van Knowe, K. Hemker Jr,
 D. Heinemann, J. Remund, S.C. Müller, W. Traunmüller, G. Steinmauer, D. Prozo,
 J.A. Ruiz-Arias, V. Lara-Fanego, L. Ramirez-Santigosa, M. Gastin-Romero, and
 L.M. Pomares. Comparison of numerical weather prediction solar irradiance
 forecasts in the US, Canada and Europe. Solar Energy, 94:305–326, 2013.
- [SE10] T. Soubdhan and R. Emilion. Stochastic differential equation for modeling global

solar radiation sequences. In Proceedings of the IASTED International Conference: Modelling, Identification, and Control (AsiaMIC 2010), pages 14–17, 2010.

- [SLSN15] C.V.A. Silva, L. Lim, D. Stevens, and D Nakafuji. Probabilistic models for one-day ahead solar irradiance forecasting in renewable energy applications. In Machine Learning and Applications (ICMLA), 2015 IEEE 14th International Conference on, pages 1163–1168. IEEE, 2015.
- [TZH⁺15] A. Tuohy, J. Zack, S.E. Haupt, J. Sharp, M. Ahlstrom, S. Dise, E. Grimit,
 C. Mohrlen, M. Lange, M.G. Casado, J. Black, M. Marquis, and C. Collier. Solar forecasting: methods, challenges, and performance. *IEEE Power and Energy Magazine*, 13(6):50–59, 2015.
- [Yon13] J. Yong. Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM journal on Control and Optimization, 51(4):2809–2838, 2013.