Perfect hedging under endogenous permanent market impacts

Masaaki Fukasawa

Osaka University Joint work with Mitja Stadje (Ulm University)

16 Nov. 2017 at CIRM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

• Itô integral as Profit & Loss :

$$\int_0^T H_t \mathrm{d}S_t \approx \sum_{i=1}^n H_{t_{i-1}}(S_{t_i} - S_{t_{i-1}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(buy $H_{t_{i-1}}$ units of S at t_{i-1} and sell them at t_i).

- The P&L is linear in the strategy H.
- The price process *S* is exogenously modeled.
- Reality ?

Limit order book

Strat. El	44.60	979 AL ED
元数重	10段	貝奴里
	成行	
78385700	OVER	
496900	194-2	
629700	194-1	
738900	194.0	
736800	193.9	
797000	193.8	
917200	193.7	
794300	193.6	
858700	193.5	
	193.4	7600
	193.3	807400
	193.2	1079100
	193-1	2130600
	193.0	6794600
	192.9	493200
	192.8	775800
	192.7	232700
	UNDER	17880600

Price is nonlinear !

Nonlinear Profit & Loss

- 1. Denote by Θ the value of a security at future time T.
- 2. Let Y be a simple predictable process with $Y_0 = 0$, representing a trading strategy (holding Y_t units at time t).
- Denote by P_t(y) the market quote (price) for the quantity y of the security at time t.
- 4. The P&L = terminal value total amount of money paid :

$$I(Y) = Y_T \Theta - \sum_{0 \le t < T} P_t(\Delta Y_t)$$

5. If $P_t(y) = yS_t$ for a semimartingale S with $S_T = \Theta$, then

$$I(Y) = Y_T S_T - \sum_{0 \le t < T} \Delta Y_t S_t = \int_0^T Y_t \mathrm{d}S_t$$

by integration-by-parts.

How to think about a market ?

Market is not big enough ...

- You (large trader) are not a price taker anymore.
- Price is nonlinear due to market (price) impact.

Market is still big ...

- The market doesn't care of your utility and your endowment (your payoff to hedge), to reach an equilibrium.
- You are a noise trader.
- The Bertrand competition among the liquidity suppliers
 - Bank and Kramkov (2013,2014)
 - Utility-indifference pricing
- A representative agent with concave, cash-additive utility.

- ex. exponential utility
- ambiguity aversion
- Horst et al (2010)

(Concave, cash-additive) g-expectation

 (Ω, \mathcal{F}, P) : a prob. space supporting a Brownian motion $\{W_t\}$. Let $\{\mathcal{F}_t\}$ be the augmentation of the natural filtration.

Let $g: \Omega \times [0, T] \times \mathbb{R} \to \mathbb{R}$ be a progressively measurable map with $g(\omega, t, 0) = 0$ and $z \mapsto g(\omega, t, z)$ being convex.

A map $D_T \ni X \mapsto \Pi = \{\Pi_t(X)\}$ is called the *g* expectation if there exists Z = Z(X) such that (Π, Z) solves the BSDE

$$X = \Pi_t + \int_t^T g(\cdot, s, Z_s) \mathrm{d}s - \int_t^T Z_s \mathrm{d}W_s, \ t \in [0, T]$$

where $\mathcal{D}_{\mathcal{T}}$ is a vector space of $\mathcal{F}_{\mathcal{T}}$ random variables.

Ex. $\Pi_t = E[X|\mathcal{F}_t]$ is the g expectation with g = 0, $D_T = L^2(\mathcal{F}_T)$.

Utility

If (and essentially only if) $X \mapsto \Pi(X)$ is the g expectation, then

1.
$$\Pi_t(0) = 0$$

2. $\Pi_t(X + X') = \Pi_t(X) + X'$ if X' is \mathcal{F}_t measurable

- 3. $\Pi_t(\lambda X + (1-\lambda)X') \ge 0$ if $\lambda \in [0,1]$, $\Pi_t(X) \ge 0$, $\Pi_t(X') \ge 0$
- 4. $\Pi_t(X) \ge \Pi_t(X')$ if $\Pi_s(X) \ge \Pi_s(X')$ for some $s \ge t$

 Π can be called time-consistent monetary utility function. $-\Pi$ is a dynamic risk measure.

Consider a representative liquidity supplier ("market") to make a price quote $P_t(y)$ according to the utility indifference principle:

$$P_t(y) = \inf\{p \in \mathbb{R}; \Pi_t(H_M + (Z_t - y)\Theta + p) \ge \Pi_t(H_M + Z_t\Theta)\}$$

= $\Pi_t(H_M + Z_t\Theta) - \Pi_t(H_M + (Z_t - y)\Theta)$

where H_M and Z_t are resp. the initial endowment and inventory.

Nonlinear price

Concave cash-additive utility indifference price $P_t(y) = P_t(Z_t, y)$,

$$P_t(z,y) := \Pi_t(H_M + z\Theta) - \Pi_t(H_M + (z-y)\Theta).$$

 H_M and Θ are exogenous, \mathcal{F}_T m'ble random variables. Z_t : inventory of the security Θ at time t ($Z_0 = 0$).

Properties

- $y \mapsto P_t(z, y)$ is convex and increasing with $P_t(z, 0) = 0$
- In particular,

$$-P_t(z,-y) \leq P_t(z,y)$$

• zero round-trip-cost (no arbitrage) :

$$P_t(z,y) + P_t(z-y,-y) = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• nonlinear permanent market impact (cf. Guéant 2014)

Nonlinear stochastic integral

By clearing between you and the market, it holds $Z_t = -Y_t$ and so,

$$egin{aligned} \mathcal{H}(\mathbf{Y}) &= \mathbf{Y}_T \Theta - \sum_{0 \leq t < T} \mathcal{P}_t(Z_t, \Delta \mathbf{Y}_t) \ &= \mathbf{Y}_T \Theta - \sum_{0 \leq t < T} \Pi_t(\mathcal{H}_M - \mathbf{Y}_t \Theta) - \Pi_t(\mathcal{H}_M - \mathbf{Y}_{t+} \Theta) \ &= \mathbf{Y}_T \Theta - \sum_{j=1}^n (\Pi_{ au_j}(\mathcal{H}_M - \mathbf{Y}_{ au_j} \Theta) - \Pi_{ au_j}(\mathcal{H}_M - \mathbf{Y}_{ au_{j+1}} \Theta)) \ &= \mathcal{H}_M - \Pi_0(\mathcal{H}_M) \ &- \sum_{j=0}^n (\Pi_{ au_{j+1}}(\mathcal{H}_M - \mathbf{Y}_{ au_{j+1}} \Theta) - \Pi_{ au_j}(\mathcal{H}_M - \mathbf{Y}_{ au_{j+1}} \Theta)), \end{aligned}$$

where τ_j is the *j*-th transaction time, $\tau_0 = 0$ and $\tau_{n+1} = T$. Earlier works: Kunita (1990), Bank and Kramkov (2013,2014)

Representation in terms of BSDE

Since

$$\Pi_{\tau_{j+1}}(H_M - y\Theta) - \Pi_{\tau_j}(H_M - y\Theta) = \int_{\tau_j}^{\tau_{j+1}} g(s, Z_s^y) \mathrm{d}s - \int_{\tau_j}^{\tau_{j+1}} Z_s^y \mathrm{d}W_s,$$

where Z^{y} is a part of the BSDE solution for $\Pi(H_{M} - y\Theta)$.

Lemma. Assume there exist a progressively measurable map

 $Z:\Omega\times[0,T]\times\mathbb{R}\to\mathbb{R}$

and $\Omega_0 \in \mathcal{F}$ with $P(\Omega_0) = 1$ such that $Z(\omega, t, y) = Z_t^y(\omega)$ for all $(\omega, t, y) \in \Omega_0 \times [0, T] \times \mathbb{R}$. Then,

$$I(Y) = H_M - \Pi_0(H_M) - \int_0^T g(s, Z_s^Y) \mathrm{d}s + \int_0^T Z_s^Y \mathrm{d}W_s,$$

where $Z_s^Y(\omega) = Z(\omega, s, Y_s(\omega)).$

(日)、(型)、(E)、(E)、(E)、(O)への

Hedging Theorem

Extend the domain of the nonlinear integral I(Y):

$$\mathcal{S} = \left\{ Y: \Omega imes [0,\,T] o \mathbb{R}; ext{adapted with } \int_0^T |Z^Y_s|^2 \mathrm{d} s < \infty
ight\}.$$

Theorem. In addition to the assumption of Lemma, if there exist a progressively measurable map

$$Z^-: \Omega \times [0, T] \times \mathbb{R} \to \mathbb{R}$$

and $\Omega_0 \in \mathcal{F}$ with $P(\Omega_0) = 1$ such that $Z(\omega, t, Z^-(\omega, t, z)) = z$ for all $(\omega, t, z) \in \Omega_0 \times [0, T] \times \mathbb{R}$. Then, for any $-H_L \in \mathcal{D}_T$, we have

$$-H_L = \Pi_0(H_M) - \Pi_0(H_M + H_L) + I(Y^*),$$

where $Y_t^*(\omega) = Z^-(\omega, t, Z_t(H_M + H_L)(\omega)).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Proof

Since Π is the g expectation, there exists $Z^* := Z(H_M + H_L)$ s.t.

$$H_M + H_L = \Pi_0(H_M + H_L) + \int_0^T g(s, Z_s^*) \mathrm{d}s - \int_0^T Z_s^* \mathrm{d}W_s.$$

Define Y^* by $Y^*_t(\omega) = Z^-(\omega, t, Z^*_t(\omega))$. Then,

$$Z_t^{Y^*}(\omega) = Z(\omega, t, Y_t^*(\omega)) = Z_t^*(\omega).$$

Therefore by Lemma,

$$I(Y^*) = H_M - \Pi_0(H_M) - \int_0^T g(s, Z_s^*) \mathrm{d}s + \int_0^T Z_s^* \mathrm{d}W_s,$$

which implies the result.

Completeness condition

When does Z^- exist ?

• In the linear case, i.e., $g(t,z) = G_t z$, then

$$\Pi_t(X) = E^Q[X|\mathcal{F}_t], \quad \frac{\mathrm{d}Q}{\mathrm{d}P} = \exp\left\{\int_0^T G_t \mathrm{d}W_t - \frac{1}{2}\int_0^T G_t^2 \mathrm{d}t\right\}$$

and so, $P_t(y) = yS_t$ with $S_t = E^Q[\Theta|\mathcal{F}_t]$ and

$$Z_t^{\boldsymbol{y}} = \boldsymbol{y} \frac{\mathrm{d}}{\mathrm{d}t} \langle \boldsymbol{S}, \boldsymbol{W} \rangle_t.$$

This means that Z^- exists iff the volatility is positive.

• In the quadratic case, i.e., $g(t,z)=\gamma z^2/2$, $\gamma>$ 0, we have

$$\Pi_t(X) = -\frac{1}{\gamma} \log E[\exp\{-\gamma X\} | \mathcal{F}_t]$$

with $\mathcal{D}_{\mathcal{T}} := \{X \in L^1(\mathcal{F}_{\mathcal{T}}); E[\exp\{a|X|\}] < \infty, \forall a > 0\}, \text{ so } \dots$

The case of exponential utilities

Proposition: Let $\Theta = s(W_T)$ and $H_M = h_M(W_T)$. Then,

- 1. The assumptions of Lemma and Theorem are satisfied if s and h_M are of linear growth and s is strictly monotone on \mathbb{R} .
- 2. If $s(w) = (w k)_+$ with $k \in \mathbb{R}$, then

$$\lim_{y \to \infty} Z_t^y = \infty, \quad \lim_{y \to -\infty} Z_t^y = -\frac{\phi\left(\frac{k-W_t}{\sqrt{T-t}}\right)}{\gamma\sqrt{T-t}\Phi\left(\frac{k-W_t}{\sqrt{T-t}}\right)}.$$

In particular Z^- does not exist.

Markov Lipschitz cases \rightarrow Fukasawa and Stadje, to appear in FS.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bachelier-type model

Let $\Theta = b + cW_T$, c > 0, $H_M = aW_T$ and $H_L = h_L(\Theta)$ (European payoff for a normally distributed asset). Let $g(t, z) = \gamma z^2/2$ (an exponential utility). Then,

$$\Pi_t (H_M - y\Theta) = -\frac{1}{\gamma} \log E[\exp\{-\gamma(a - y)(b + cW_T)\}|W_t]$$
$$= (a - y)(b + cW_t) - \frac{T - t}{2}\gamma(a - y)^2c^2$$

and so,

$$Z_t^y = -(a-y)c, \quad Z^-(\omega,t,z) = a + \frac{z}{c}.$$

The hedging strategy for $-h_L(\Theta)$ is

$$Y_t^* = a - \frac{1}{c}u(W_t, t),$$

where *u* is a solution of Burgers' equation $u_t + u_{xx}/2 = \gamma u u_x$.

Example : Put-like payoff

Suppose $\gamma > 0$, a = 0 and consider to hedge

$$2\lambda(K-\Theta)_+pprox\lambda\left(K-\Theta+rac{1}{\lambda\gamma}\log\cosh(-\lambda\gamma(K-\Theta))
ight)=:-h_L(\Theta).$$

Since

$$h'_L(s) = \lambda(1 - \tanh(-\lambda\gamma(K - s))),$$

and the solution u of (backward) Burgers' equation

$$u_t(x,t) + \frac{1}{2}u_{xx}(x,t) = \gamma u u_x, \quad u(x,T) = ac + ch'_L(b+cx)$$

is given by

$$u(x,t) = \lambda c(1 - \tanh(\gamma \lambda c x + \gamma^2 \lambda^2 c^2 t + \delta)),$$

where $\delta = \lambda \gamma (b - K) - \gamma^2 \lambda^2 c^2 T$, the hedging strategy is

$$Y_t^* = -\lambda(1 - \tanh(\gamma\lambda(b + cW_t - K) - \gamma^2\lambda^2c^2(T - t))).$$

The delta of a call option under the Bachelier model

A solution of the heat equation (diffusion).

Hedging strategy under $g(t,z) = \frac{\gamma}{2}z^2$

A solution of Burgers' equation (shockwave).

Comment : backward stochastic flow

The existence of Z^- (roughly) $\Leftrightarrow y \mapsto Z_t^y$ is a bijection for all t.

Recall $(\Pi(H_M - y\Theta), Z^y)$ is the solution of the BSDE with terminal condition $H_M - y\Theta$

In Markov cases, e.g., $H_M = h_M(W_T)$ and $\Theta = s(W_T)$, then a BSDE with terminal condition $h'_M(W_T) - ys'(W_T)$ has a solution (Z^y, \hat{Z}^y) . The comparison theorem is applicable if s' > 0 to show the monotonicity of Z^y in y.

Regularity: Ankirchner et al (2007)

Future work : the flow property of $y \mapsto Z^y$