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Motivation

• Itô integral as Profit & Loss :∫ T

0
HtdSt ≈

n∑
i=1

Hti−1(Sti − Sti−1)

(buy Hti−1 units of S at ti−1 and sell them at ti ).

• The P&L is linear in the strategy H.

• The price process S is exogenously modeled.

• Reality ?



Limit order book

Price is nonlinear !



Nonlinear Profit & Loss

1. Denote by Θ the value of a security at future time T .

2. Let Y be a simple predictable process with Y0 = 0,
representing a trading strategy (holding Yt units at time t).

3. Denote by Pt(y) the market quote (price) for the quantity y
of the security at time t.

4. The P&L = terminal value - total amount of money paid :

I (Y ) = YTΘ−
∑

0≤t<T

Pt(∆Yt)

5. If Pt(y) = ySt for a semimartingale S with ST = Θ, then

I (Y ) = YTST −
∑

0≤t<T

∆YtSt =

∫ T

0
YtdSt

by integration-by-parts.



How to think about a market ?

Market is not big enough ...

• You (large trader) are not a price taker anymore.

• Price is nonlinear due to market (price) impact.

Market is still big ...

• The market doesn’t care of your utility and your endowment
(your payoff to hedge), to reach an equilibrium.

• You are a noise trader.

• The Bertrand competition among the liquidity suppliers
• Bank and Kramkov (2013,2014)
• Utility-indifference pricing

• A representative agent with concave, cash-additive utility.
• ex. exponential utility
• ambiguity aversion
• Horst et al (2010)



(Concave, cash-additive) g -expectation

(Ω,F ,P): a prob. space supporting a Brownian motion {Wt}.
Let {Ft} be the augmentation of the natural filtration.

Let g : Ω× [0,T ]× R → R be a progressively measurable map
with g(ω, t, 0) = 0 and z 7→ g(ω, t, z) being convex.

A map DT ∋ X 7→ Π = {Πt(X )} is called the g expectation if
there exists Z = Z (X ) such that (Π,Z ) solves the BSDE

X = Πt +

∫ T

t
g(·, s,Zs)ds −

∫ T

t
ZsdWs , t ∈ [0,T ]

where DT is a vector space of FT random variables.

Ex. Πt = E [X |Ft ] is the g expectation with g = 0, DT = L2(FT ).



Utility

If (and essentially only if) X 7→ Π(X ) is the g expectation, then

1. Πt(0) = 0

2. Πt(X + X ′) = Πt(X ) + X ′ if X ′ is Ft measurable

3. Πt(λX + (1− λ)X ′) ≥ 0 if λ ∈ [0, 1], Πt(X ) ≥ 0, Πt(X
′) ≥ 0

4. Πt(X ) ≥ Πt(X
′) if Πs(X ) ≥ Πs(X

′) for some s ≥ t

Π can be called time-consistent monetary utility function.
−Π is a dynamic risk measure.

Consider a representative liquidity supplier (“market”) to make a
price quote Pt(y) according to the utility indifference principle:

Pt(y) = inf{p ∈ R; Πt(HM + (Zt − y)Θ + p) ≥ Πt(HM + ZtΘ)}
= Πt(HM + ZtΘ)− Πt(HM + (Zt − y)Θ)

where HM and Zt are resp. the initial endowment and inventory.



Nonlinear price

Concave cash-additive utility indifference price Pt(y) = Pt(Zt , y),

Pt(z , y) := Πt(HM + zΘ)− Πt(HM + (z − y)Θ).

HM and Θ are exogenous, FT m’ble random variables.
Zt : inventory of the security Θ at time t (Z0 = 0).

Properties

• y 7→ Pt(z , y) is convex and increasing with Pt(z , 0) = 0

• In particular,
−Pt(z ,−y) ≤ Pt(z , y)

• zero round-trip-cost (no arbitrage) :

Pt(z , y) + Pt(z − y ,−y) = 0

• nonlinear permanent market impact (cf. Guéant 2014)



Nonlinear stochastic integral

By clearing between you and the market, it holds Zt = −Yt and so,

I (Y ) = YTΘ−
∑

0≤t<T

Pt(Zt ,∆Yt)

= YTΘ−
∑

0≤t<T

Πt(HM − YtΘ)− Πt(HM − Yt+Θ)

= YTΘ−
n∑

j=1

(Πτj (HM − YτjΘ)− Πτj (HM − Yτj+1Θ))

= HM − Π0(HM)

−
n∑

j=0

(Πτj+1(HM − Yτj+1Θ)− Πτj (HM − Yτj+1Θ)),

where τj is the j-th transaction time, τ0 = 0 and τn+1 = T .
Earlier works: Kunita (1990), Bank and Kramkov (2013,2014)



Representation in terms of BSDE
Since

Πτj+1(HM−yΘ)−Πτj (HM−yΘ) =

∫ τj+1

τj

g(s,Z y
s )ds−

∫ τj+1

τj

Z y
s dWs ,

where Z y is a part of the BSDE solution for Π(HM − yΘ).

Lemma. Assume there exist a progressively measurable map

Z : Ω× [0,T ]× R → R

and Ω0 ∈ F with P(Ω0) = 1 such that Z (ω, t, y) = Z y
t (ω) for all

(ω, t, y) ∈ Ω0 × [0,T ]× R. Then,

I (Y ) = HM − Π0(HM)−
∫ T

0
g(s,ZY

s )ds +

∫ T

0
ZY
s dWs ,

where ZY
s (ω) = Z (ω, s,Ys(ω)).



Hedging Theorem

Extend the domain of the nonlinear integral I (Y ):

S =

{
Y : Ω× [0,T ] → R; adapted with

∫ T

0
|ZY

s |2ds < ∞
}
.

Theorem. In addition to the assumption of Lemma, if there exist
a progressively measurable map

Z− : Ω× [0,T ]× R → R

and Ω0 ∈ F with P(Ω0) = 1 such that Z (ω, t,Z−(ω, t, z)) = z for
all (ω, t, z) ∈ Ω0 × [0,T ]× R. Then, for any −HL ∈ DT , we have

−HL = Π0(HM)− Π0(HM + HL) + I (Y ∗),

where Y ∗
t (ω) = Z−(ω, t,Zt(HM + HL)(ω)).



Proof

Since Π is the g expectation, there exists Z ∗ := Z (HM + HL) s.t.

HM + HL = Π0(HM + HL) +

∫ T

0
g(s,Z ∗

s )ds −
∫ T

0
Z ∗
s dWs .

Define Y ∗ by Y ∗
t (ω) = Z−(ω, t,Z ∗

t (ω)). Then,

ZY ∗
t (ω) = Z (ω, t,Y ∗

t (ω)) = Z ∗
t (ω).

Therefore by Lemma,

I (Y ∗) = HM − Π0(HM)−
∫ T

0
g(s,Z ∗

s )ds +

∫ T

0
Z ∗
s dWs ,

which implies the result.



Completeness condition
When does Z− exist ?

• In the linear case, i.e., g(t, z) = Gtz , then

Πt(X ) = EQ [X |Ft ],
dQ

dP
= exp

{∫ T

0
GtdWt −

1

2

∫ T

0
G 2
t dt

}
and so, Pt(y) = ySt with St = EQ [Θ|Ft ] and

Z y
t = y

d

dt
⟨S ,W ⟩t .

This means that Z− exists iff the volatility is positive.

• In the quadratic case, i.e., g(t, z) = γz2/2, γ > 0, we have

Πt(X ) = −1

γ
log E [exp {−γX} |Ft ]

with DT := {X ∈ L1(FT );E [exp{a|X |}] < ∞,∀a > 0}, so ...



The case of exponential utilities

Proposition: Let Θ = s(WT ) and HM = hM(WT ). Then,

1. The assumptions of Lemma and Theorem are satisfied if s and
hM are of linear growth and s is strictly monotone on R.

2. If s(w) = (w − k)+ with k ∈ R, then

lim
y→∞

Z y
t = ∞, lim

y→−∞
Z y
t = −

ϕ
(

k−Wt√
T−t

)
γ
√
T − tΦ

(
k−Wt√
T−t

) .
In particular Z− does not exist.

Markov Lipschitz cases → Fukasawa and Stadje, to appear in FS.



Bachelier-type model

Let Θ = b + cWT , c > 0, HM = aWT and HL = hL(Θ)
(European payoff for a normally distributed asset).
Let g(t, z) = γz2/2 (an exponential utility). Then,

Πt(HM − yΘ) = −1

γ
log E [exp{−γ(a− y)(b + cWT )}|Wt ]

= (a− y)(b + cWt)−
T − t

2
γ(a− y)2c2

and so,

Z y
t = −(a− y)c , Z−(ω, t, z) = a+

z

c
.

The hedging strategy for −hL(Θ) is

Y ∗
t = a− 1

c
u(Wt , t),

where u is a solution of Burgers’ equation ut + uxx/2 = γuux .



Example : Put-like payoff
Suppose γ > 0, a = 0 and consider to hedge

2λ(K−Θ)+ ≈ λ

(
K −Θ+

1

λγ
log cosh(−λγ(K −Θ))

)
=: −hL(Θ).

Since
h′L(s) = λ(1− tanh(−λγ(K − s))),

and the solution u of (backward) Burgers’ equation

ut(x , t) +
1

2
uxx(x , t) = γuux , u(x ,T ) = ac + ch′L(b + cx)

is given by

u(x , t) = λc(1− tanh(γλcx + γ2λ2c2t + δ)),

where δ = λγ(b − K )− γ2λ2c2T , the hedging strategy is

Y ∗
t = −λ(1− tanh(γλ(b + cWt − K )− γ2λ2c2(T − t))).



The delta of a call option under the Bachelier model
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A solution of the heat equation (diffusion).



Hedging strategy under g(t, z) = γ
2z

2
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A solution of Burgers’ equation (shockwave).



Comment : backward stochastic flow

The existence of Z− (roughly) ⇔ y 7→ Z y
t is a bijection for all t.

Recall (Π(HM − yΘ),Z y ) is the solution of the BSDE with
terminal condition HM − yΘ

In Markov cases, e.g., HM = hM(WT ) and Θ = s(WT ), then a
BSDE with terminal condition h′M(WT )− ys ′(WT ) has a solution

(Z y , Ẑ y ). The comparison theorem is applicable if s ′ > 0 to show
the monotonicity of Z y in y .

Regularity: Ankirchner et al (2007)

Future work : the flow property of y 7→ Z y


