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Motivation

It5 integral as Profit & Loss :

/ HydS: ~ ZHt, (St = St4)

(buy Hy, , units of S at t;_; and sell them at t;).
The P&L is linear in the strategy H.
The price process S is exogenously modeled.

Reality ?



Limit order book
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Price is nonlinear |



Nonlinear Profit & Loss

1. Denote by © the value of a security at future time T.

. Let Y be a simple predictable process with Yy = 0,
representing a trading strategy (holding Y units at time t).

. Denote by P:(y) the market quote (price) for the quantity y
of the security at time t.

. The P&L = terminal value - total amount of money paid :

I(Y)=Yr0— > P(AY:)
0<t<T

. If Pi(y) = yS; for a semimartingale S with St = ©, then
T
I(Y)=YrSt— > AY:S: = / Y:dS;
0<t<T 0

by integration-by-parts.



How to think about a market ?

Market is not big enough ...
e You (large trader) are not a price taker anymore.
e Price is nonlinear due to market (price) impact.
Market is still big ...
e The market doesn't care of your utility and your endowment
(your payoff to hedge), to reach an equilibrium.
e You are a noise trader.
e The Bertrand competition among the liquidity suppliers
e Bank and Kramkov (2013,2014)
o Utility-indifference pricing
e A representative agent with concave, cash-additive utility.

e ex. exponential utility
e ambiguity aversion
e Horst et al (2010)



(Concave, cash-additive) g-expectation

(Q, F, P): a prob. space supporting a Brownian motion {W;}.
Let {F;} be the augmentation of the natural filtration.

Let g: Q2 x [0, T] x R — R be a progressively measurable map
with g(w, t,0) =0 and z — g(w, t, z) being convex.

A map D7 5 X — N = {M:(X)} is called the g expectation if
there exists Z = Z(X) such that (1, Z) solves the BSDE

T T
X =1, +/ g(-,s,Zs)ds —/ Z AW, te€|0,T]
t t
where Dt is a vector space of F1 random variables.

Ex. My = E[X|F;] is the g expectation with g = 0, D = L2(F7).



Utility
If (and essentially only if) X — [(X) is the g expectation, then
1. N(0)=0
2. Me(X 4+ X' =Ny(X)+ X" if X" is Fr measurable
3. Me(AX + (1= M\)X') > 0if A e [0,1], Me(X) >0, NMe(X') >0
4. M(X) > Ny(X) if Ng(X) > Ng(X’) for some s > ¢t

[T can be called time-consistent monetary utility function.
—I1is a dynamic risk measure.

Consider a representative liquidity supplier (“market”) to make a
price quote P:(y) according to the utility indifference principle:

P:(y) =inf{p e R;N¢(Hy + (Z: — y)© + p) > N:(Hy + Z:©)}
=MN¢(Hy + Z:©) — Ne(Hum + (Z: — y)©)

where Hyy and Z; are resp. the initial endowment and inventory.



Nonlinear price
Concave cash-additive utility indifference price P¢(y) = P:(Z:,y),

Pi(z,y) .= Mi(Hpm + z0) — Ne(Hy + (z — y)©).

Hp and © are exogenous, F1 m'ble random variables.
Z; : inventory of the security © at time t (Zp = 0).

Properties
e y — P(z,y) is convex and increasing with P:(z,0) =0

e In particular,
7Pt(27 7y) < 'Dt(zvy)
e zero round-trip-cost (no arbitrage) :

Pt(ZaY)‘i‘Pt(Z_ya_Y):O

e nonlinear permanent market impact (cf. Guéant 2014)



Nonlinear stochastic integral

By clearing between you and the market, it holds Z; = —Y} and so,

I(Y)=Yr0— > Pi(Z:,AYr)
0<t<T

=Yr®— Y Ne(Hu - Yi®) = Ni(Hy — Ye1©)
0<t<T

= Y70 =Y (Ny(Hm — Y,0) — Ny (Hu — Y,,0))
j=1
= Hp — Mo(Hm)

n
- Z(nTjH(HM - Y‘Fj+1e) - I_ITj(HM - YTj+1 ))7
j=0

where 7; is the j-th transaction time, 79 = 0 and 7,41 = T.
Earlier works: Kunita (1990), Bank and Kramkov (2013,2014)



Representation in terms of BSDE

Since

Tj+1 Tj+1
M, (Hu=y@) T (Hu—y@) = [ g(s.20)s= [ zzaws,

J J

where Z¥ is a part of the BSDE solution for [(Hy — y©).

Lemma. Assume there exist a progressively measurable map
Z:Qx[0,T]xR—R

and Qo € F with P(Qg) = 1 such that Z(w, t,y) = Z/(w) for all
(w,t,y) € Qo x [0, T] x R. Then,

T T
I(Y) = HM—I‘IO(HM)—/ g(s,ZsY)ds+/ zYdw,
0 0

where ZY (w) = Z(w, 5, Ys(w)).



Hedging Theorem

Extend the domain of the nonlinear integral /(Y):
T
S = {Y : Q2 x [0, T] — R; adapted with / 1Z)|2ds < oo} .
0

Theorem. In addition to the assumption of Lemma, if there exist
a progressively measurable map

Z7:Qx[0,T]xR—=R

and Qg € F with P(Qp) = 1 such that Z(w, t,Z" (w, t,z)) = z for
all (w,t,z) € Qo x [0, T] x R. Then, for any —H, € D, we have

—Hy = Mo(Hum) — Mo(Hp + Hy) + 1(Y*),

where Y (w) = Z7 (w, t, Ze(Hm + H)(w)).



Proof
Since I is the g expectation, there exists Z* := Z(Hym + H|) s.t.

T T
Hur + Hy = No(Hy + Hy) +/ g(s, Z7)ds —/ Z:dW..
0 0
Define Y* by Y (w) = Z7 (w, t, Z;(w)). Then,
Zty* (w) = Z(wv t? Yt*(w)) = Z:(w)
Therefore by Lemma,
T T
I(Y*) = Hy — No(Hm) — / g(s, Zs*)ds+/ ZXdWs,
0 0

which implies the result.



Completeness condition
When does Z~ exist 7

e In the linear case, i.e., g(t,z) = G;z, then

0 dQ T 1 T )
I—It(X):E [X|ft], - — exXp thWt—* tht
and so, P;(y) = yS; with S; = EQ[O|F,] and

Z =y, <5 W):.

This means that Z~ exists iff the volatility is positive.

e In the quadratic case, i.e., g(t,z) = vz?/2, v > 0, we have
1
Me(X) = - log E[exp {—7X} | F¢]

with D7 := {X € L}(Fr); E[exp{a|X|}] < 00,Va > 0}, so ...



The case of exponential utilities

Proposition: Let © = s(W7) and Hy = hy(Wr). Then,
1. The assumptions of Lemma and Theorem are satisfied if s and
hps are of linear growth and s is strictly monotone on R.

2. If s(w) = (w — k)4 with k € R, then

o(s72)
lim Z/ =00, lim Z!=— Tt .
y—00 y——o0 ,qu) (k}Vi/ )

N

h

In particular Z~ does not exist.

Markov Lipschitz cases — Fukasawa and Stadje, to appear in FS.



Bachelier-type model

Let © = b+ cWr, ¢ >0, Hy = aWr and H. = h (©)
(European payoff for a normally distributed asset).
Let g(t,z) = vz?/2 (an exponential utility). Then,

Me(H — y©) = —,1Y log Efexp{—(a — y)(b + cWr)}| W]

=(a—y)b+ W) — T2_ t'y(a —y)3c?

and so, ,
ZY =—(a—y)e, Z (w,t,z)=a+ p

The hedging strategy for —h;(©) is
. 1
Y, =a-— Eu(Wt’ t),

where u is a solution of Burgers' equation u; + Uy /2 = yuuy.



Example : Put-like payoff
Suppose v > 0, a = 0 and consider to hedge

2AK=0)4 = A <K -0+ )\17 log cosh(—A\y(K — @))) =:—h.(O).

Since
;i (s) = M1 — tanh(=Xy(K — s))),

and the solution u of (backward) Burgers' equation
ur(x, t) + %uxx(x, t) = yuuy, u(x,T) = ac+ chj(b+ cx)
is given by
u(x, t) = Ac(1 — tanh(yAex + 42 A2c%t + 6)),
where § = Ay(b — K) — 4?)\2c? T, the hedging strategy is
Y = —\(1 —tanh(yA(b + Wi — K) — °X2c3(T — t))).



The delta of a call option under the Bachelier model
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A solution of the heat equation (diffusion).
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Hedging strategy under g(t,z) = 3z
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A solution of Burgers' equation (shockwave).



Comment : backward stochastic flow

The existence of Z~ (roughly) < y +— Z/ is a bijection for all t.

Recall (M(Hp — y©), ZY) is the solution of the BSDE with
terminal condition Hy — y©

In Markov cases, e.g., Hy = hy(W7) and © = s(W7), then a
BSDE with terminal condition h),(W7) — ys'(W7) has a solution
(27, 2y) The comparison theorem is applicable if s’ > 0 to show
the monotonicity of Z¥ in y.

Regularity: Ankirchner et al (2007)

Future work : the flow property of y — Z¥



