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Introduction Rough volatility modeling

Rough volatility models

Universal phenomenon discovered by Gatheral, Jaisson and
Rosenbaum (2014): Volatility is rough

Certain rough volatility models in the class of affine Volterra processes
(Abi Jaber, Larsson, Pulido (2017)), can be obtained as scaling limits
of Hakwes processes (see “The microstructural foundations of
leverage effect and rough volatility” by El Euch, Fukasawa,
Rosenbaum (2016))

Goal of this work

Unifying Markovian framework for Hawkes type processes and affine
Volterra processes via (infinite dimensional) affine processes
Novel (numerical) approximations of rough models via finite
dimensional affine processes
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Introduction Hawkes process and rough Heston model

Motivating examples: Hawkes process and rough Heston
model

A (one-dimensional) Hawkes process N is a process that jumps by 1
with intensity

λt = λ0 +

∫ t

0
ϕ(t − s)b(s)ds +

∫ t

0
ϕ(t − s)dNs .

with a locally integrable kernel ϕ and a deterministic function b.

The rough Heston model consists of a log-price Y and a
instantaneous variance process X such that

Yt = Y0 −
1

2

∫ t

0
Xsds +

∫ t

0

√
X sdBs,2,

Xt = X0 +

∫ t

0

(t − s)α−1

Γ(α)
κ(θ − Xs)ds +

∫ t

0

(t − s)α−1

Γ(α)

√
X sdBs,1,

where α = H + 1
2 ∈ ( 1

2 , 1) and B1 and B2 are correlated Brownian
motions.
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Stochastic Volterra equations and SPDEs Stochastic Volterra equations

Stochastic Volterra equations - Setting

State space E = C × Rn ⊆ Rd , with C a closed proper convex cone.

The components of an E -valued process Z are denoted by Z = (X ,Y ).

Consider an E -valued stochastic Volterra equation with càglàd paths:

Zt = Z0 +

∫ t

0

K (t − s)b(s)ds −
∫ t

0

K (t − s)BZsds +

∫ t

0

K (t − s)dMs ,

where
I Z0 ∈ E
I K denotes a matrix valued kernel in L2

loc(R+,Rd×d) of block diagonal

form K =

(
KX 0
0 KY

)
.

I M denotes an Rd -valued martingale such that each component is in
H2 and 〈M,M〉t,ij =

∫ t

0
cij(Zs)ds +

∫ t

0

∫
Rd ξiξjF (Zs , dξ)ds for some

function c : Rd → Sd+ and some Borel kernel F from Rd into Rd .
I b ∈ L1

loc(R+,Rd)
I B ∈ Rd×d
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Stochastic Volterra equations and SPDEs Stochastic Volterra equations

Resolvents - Notation

The resolvent of K is the kernel R ∈ L2
loc(R+,Rd×d) that satisfies

K ∗ R = R ∗ K = K − R.

We shall also consider the resolvent of the first kind whenever it exists. This
is an Rd×d -valued measure on R+ of locally bounded variation such that

K ∗ L = L ∗ K = Id .

We write RB for the resolvent of KB and NB := K − RB ∗ K .

Examples

K (t) = 1, R(t) = exp(−t), L(dt) = δ0(dt);

K (t) = tα−1

Γ(α) , R(t) = tα−1Eα,α(t−α), L(dt) = t−α

Γ(1−α)dt
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Stochastic Volterra equations and SPDEs “Variance swap curves” and SPDEs

“Variance swap curves” and their state space

Our first goal: Find a Markovian structure behind these Volterra equations

Let Z be a solution of the above stochastic Volterra equation such that it
has finite first moment for every t ≥ 0. Define the “variance swap curve”
process

Wt(x) := E[Zt+x |Ft ]

and note that Wt(0) = Zt .

Proposition (C., Teichmann (2017))

Assume that K admits a resolvent L of the first kind such that it is non-increasing
in the following sense that LX ([s, s + t])x � LX ([0, t])x. Then the function
valued process (x 7→Wt(x))t≥0 takes values in

E =
{
f : R+ → E | f (x) = (Id −

∫ x

0

RB(s)ds)V +

∫ x

0

NB(x − s)h(s)ds

with V ∈ E , hX (x)dx � −LX (dx)VX

}
.
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Stochastic Volterra equations and SPDEs “Variance swap curves” and SPDEs

“Variance Swap curves” and associated SPDE

Proposition (C., Teichmann (2017))

The variance swap curve process (Wt)t≥0 is a time-homogenous Markov process
on E and satisfies the SPDE

dWt(x) =
d

dx
Wt(x)dt + NB(x)dMt ,

W0(x) =

(
Id −

∫ x

0

RB(s)ds

)
Z0 +

∫ x

0

NB(x − s)b(s)ds,

in the following mild pointwise (“Walsh”) sense

Wt(x) = StW0(x) +

∫ t

0

St−sNB(x)dMs

= W0(x + t) +

∫ t

0

NB(x + t − s)dMs ,

where (St)t≥0 denotes the shift semigroup.
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Stochastic Volterra equations and SPDEs “Variance swap curves” and SPDEs

Remarks

Embedding the state space E in an appropriate Hilbert space allows
to consider solutions of the above SPDE in the usual mild sense.

Existence of stochastic Volterra equations for enough curves b can be
translated to existence of the above SPDE and vice versa.

Note that by construction via E[Zt+x |Ft ], WX ,t(x) ∈ C for all x ≥ 0.
This necessarily implies that whenever WX ,t(x) ∈ ∂C for some x > 0
that WX ,t(0) ∈ ∂C because this enters in the volatility. This is one of
the invariance properties the state space E satisfies.
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Affine case Setting

Affine characteristics - Setting

For notational simplicity we let E = C .

We now take the martingale of the following form

Mt =

∫ t

0

√
c(Wt(0))dBt +

∫ t

0

∫
Rd

ξ(µM(dξ, dt)− F (Wt(0), dξ)dt,

where B is a d-dimensional Brownian motion, µM the random measure of
the jumps and F its compensator.

We assume that the characteristics c and F are linear, i.e.

c(x) =
d∑

i=1

cixi , ci ∈ Sd s.t. c(x) ∈ Sd+ on E ,

F (x , dξ) = x>ν(dξ)

where ν is a d-dimensional vector valued measure on Rd with bounded
support s.t. F (x , dξ) is a measure for every x ∈ E .
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Affine case Setting

Affine characteristics - Setting

Define the polar cone of E

U = {µ ∈M| 〈f , µ〉 ≤ 0 ∀f ∈ E},

where M denotes the set of d-dimensional vector valued signed
measures on R+. For a function f ∈ E and µ ∈M we write
〈f , µ〉 =

∫∞
0 f >(x)µ(dx).

For a function V :M→ R, ∂µV denotes the directional derivative in
directions δx , i.e.

lim
ε→0

V (µ+ εδx)− V (µ)

ε
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Affine case Affine transform formula

Existence assumption

Assumption A

Assume that the SPDE

dWt(x) =
d

dx
Wt(x)dt + NB(x)dMs , W0 = f ∈ E ,

with M an affine martingale admits a weak solution with values in
E ⊆ C (R+,E ), i.e. for every µ ∈M∩D(− d

dx )∫
W>

t (x)µ(dx) =

∫
W>

0 (x)µ(dx)−
∫ t

0

∫
W>

s (x)
d

dx
µ(dx)ds

+

∫ t

0

(∫ √
c(Wt(0))

>
NB(x)>µ(dx)

)>
dBs

+

∫ t

0

(∫
NB(x)>µ(dx)

)> ∫
Rd

ξ(µ(dξ, dt)− F (Wt(0), dξ)dt).
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Affine case Affine transform formula

Affine transform formula

Theorem (C., Teichmann (2017))

Under assumption A, (Wt(x))t≥0 is an affine process on E in the sense that for all
µ ∈ U ∩ D(− d

dx )
Ew [exp(〈Wt , µ〉)]

solves the following transport equation

∂tV (t, µ,w) = 〈R(µ), ∂µV (t, µ,w)〉, V (0, µ,w) = exp(〈µ,w〉),

where R(µ) is given by

R(µ)(dx) = − d

dx
µ(dx) +

1

2
δ0(dx)C (

∫
N>B (x)µ(dx))

+ δ0(dx)

∫ (
e(

∫
N>B (x)µ(dx))>ξ − 1− (

∫
N>B (x)µ(dx))>ξ

)
ν(dξ)

with C (u) := (u>c1u, . . . , u
>cdu)>.
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Affine case Affine transform formula

Affine transform formula

Theorem (cont.)

Assume that we have a mild solution to the Riccati PDE, i.e.

ψ(t, µ)(dx) = µ(dx − t) +
1

2

∫ t

0
δ0(dx − t + s)C (ψ̃(s, µ))ds

+

∫ t

0
δ0(dx − t + s)

∫ (
e(ψ̃(s,µ))>ξ − 1− (ψ̃(s, µ))>ξ

)
ν(dξ)ds

where ψ̃(t, µ) =
∫
N>B (x)ψ(t, µ)(dx). Then the unique solution of the

transport equation is given by exp(〈ψ(t, µ),w〉) so that

Ew [exp(〈Wt , µ〉)] = exp(〈ψ(t, µ),w〉).
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Affine case Affine transform formula

Connection to Riccati Volterra equations

Approximate µ(dx) = uδ0(dx) with u ∈ C∗.

Define ψ̃(t) :=
∫∞

0
N>B (x)ψ(t, uδ0)(dx).

Then the above result translates to

Ew

[
exp(Wt(0)>u)

]
= exp

(
w(t)>u +

1

2

∫ t

0

w(s)>C (ψ̃(t))ds

)
× exp

(∫ t

0

w(s)>
∫ (

eψ̃
>(t)ξ − 1− ψ̃>(t)ξ

)
ν(dξ)ds

)
.

Since Wt(0) satisfies the stochastic affine Volterra equation

Wt(0) = V +

∫ t

0

K (t − s)h(s)ds −
∫ t

0

K (t − s)BWs(0) +

∫
K (t − s)dMs

this give the (Fourier)-Laplace transform of affine Volterra processes in
terms of their variance swaps.
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Affine case Affine transform formula

Connection to Riccati Volterra equations

In the diffusion case this is the same representation as in Abi Jaber,
Larsson, Pulido (2017), since

ψ̃(t) :=

∫ ∞
0

N>B (x)ψ(t, δ0u)(dx)

satisfies the generalized Riccati Volterra equation

ψ̃(t) = N>B (t)u +

∫ t

0
N>B (t − s)C (ψ̃(s, u))ds

+

∫ t

0
N>B (t − s)

(∫ (
eψ̃

>(s)ξ − 1− ψ̃>(s)ξ
)
ν(dξ)

)
ds
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Affine case Towards existence and uniqueness

Towards existence & uniqueness - via standard affine
processes

Consider a standard affine process with time-inhomogeneous
“constant” drift t 7→ b(t) on E = Rm

+ × D with D ⊆ Rn of the form
Z = (X ,Y )

Zt = Z0 +

∫ t

0
b(s)ds +

∫ t

0
AZsds +

∫ t

0

(
Σ 0
0 0

)
︸ ︷︷ ︸

(m+n)×(m+n)

dBs ,

where B is an m + n-dimensional Brownian motion
Σ = diag(σ1

√
Xt,1, . . . , σm

√
Xt,m) and A an R(n+m)×(n+m) matrix.

By variation of constants the R+
m-valued process

Xt = (eAtZ0)X +

∫ t

0
(eA(t−s)b(s))Xds +

∫ t

0
(eA(t−s))XXΣdBs,X ,

is of Volterra form.
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Affine case Towards existence and uniqueness

Towards existence & uniqueness - via standard affine
processes

The assumptions in the above theorem on the primal side (existence
of Wt(x) = E[Xt+x |Ft ]) and on the dual side (Riccati equations) are
satisfied. In particular we have the following representation of the
Riccati PDE in terms of the characteristic exponent ψ̂ of the original
affine process Z

ψ(t, µ)(dx)

= µ(dx − t) +
1

2

∫ t

0
δ0(dx − t + s)C (

∫
(eAx)XXψ(t, µ)(dx))

= µ(dx − t) +
1

2

∫ t

0
δ0(dx − t + s)C (ψ̂X (t,

∫
(eA

>x(µ(dx), 0)>)))
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Affine case Towards existence and uniqueness

Towards existence & uniqueness - kernel approximation

Consider a sequence of matrices An ∈ R(m+n)×(m+n) growing in the
dimension and σn

i for i ∈ {1, . . . ,m}. Then we can consider the following
types of kernels

K (x) = lim
n→∞

(eA
nx)XX diag(σn

1 , . . . , σ
n
m) in L2

loc(R+,Rm×m).

We can go beyond diagonal kernels. In particular, in the one-dimensional
case, completely monotone kernels can be generated.

For these types of kernels, we (conjecture to) obtain

I (probabilistically) strong (PDE) weak solutions of the variance swap
curve SPDE (Wt)t≥0;

I existence of global solutions to the Riccati equations;

I uniqueness in law;

I numerical approximations by standard affine processes.
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Conclusion

Conclusion

We provide a generic Markovian structure for general Volterra
equations via the variance swap curve process (Wt)t≥0.

In the case of affine characteristics, we have an affine transform
formula for the process (Wt)t≥0.

For a big class of kernels obtained as limit of scaled entries of matrix
exponentials, we obtain numerical approximations in the case of affine
characteristics.

Thank you for your attention!
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