Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000	00		00000

Branching diffusion representation of semi-linear elliptic PDEs and numerical applications

JULIEN CLAISSE (with ANKUSH AGARWAL)

CMAP, École Polytechnique, Paris, France

Advances in Stochastic Analysis for Risk Modeling

November 15, 2017

Branching Diffusion	Semi-Linear PDE I 00	Numerical Applications	Semi-Linear PDE II 00000
Motivations			

> We aim to provide a new probabilistic representation for

 $\mathcal{L}u + f(u, Du) = 0$ in \mathcal{O} , u = h on $\partial \mathcal{O}$

where $\mathcal{O} \subset \mathbb{R}^d$ bounded domain, \mathcal{L} infinitesimal generator of diffusion • BSDE approach:

- Darling & Pardoux '97, Pardoux '99, Briand et al. '03, ...
- Monotonicity assumption in y, *i.e.*, $y \mapsto f(x, y, z)$ is non-increasing
- Linear/Quadratic growth in z
- Branching diffusion approach:
 - Generator f multivariate polynomial
 - No motonicity assumption in y
 - Polynomial growth in z
 - Numerical applications

Branching D	iffusion and PDF	c	
000	00	000	00000
Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II

► Skorokhod '64, given $\beta > 0$, $(p_{\ell})_{\ell \in \mathbb{N}}$ p.m.f., a solution of

$$\partial_t u + \mathcal{L}u + \beta \left(\sum_{\ell \in \mathbb{N}} p_\ell u^\ell - u \right) = 0 \text{ in } [0,T) \times \mathbb{R}^d, \ u(T,\cdot) = g \text{ in } \mathbb{R}^d$$

writes as

$$u(x) = \mathbb{E}\left[\prod_{k=1}^{N_T} g(X_T^k)\right]$$

where $(X_T^1, \ldots, X_T^{N_T})$ are the positions of particles alive at time T• Henry-Labordère et al. '14, '16, extensions of this result for

 $\partial_t u + \mathcal{L}u + f(u, Du) = 0$ in $[0, T) \times \mathbb{R}^d$, $u(T, \cdot) = g$ in \mathbb{R}^d

where f is a multivariate polynomial

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000			
Outline			

2 Semi-Linear PDE I

3 Numerical Applications

4 Semi-Linear PDE II

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000			
Description			

- Start from one particle at position $x \in \mathcal{O}$
 - Its position is given by

$$X_t^x = x + \int_0^t \mu(X_s^x) \, ds + \int_0^t \sigma(X_s^x) \, dW_s, \quad t \ge 0$$

• Its time of death is given by $au \wedge \eta^x$ where $au \sim \operatorname{Exp}(eta)$ and

$$\eta^x := \inf\left\{t \ge 0; \, X_t^x \notin \mathcal{O}\right\}$$

- ▶ If $\tau < \eta^x$, then it gives rise to $I \sim (p_\ell)_{\ell \in \mathbb{N}}$ particles
- Then each child particle follows the same but an independent dynamic as the mother particle
- ▶ Particles are indexed by a label $k \in \bigcup_{n \ge 0} \mathbb{N}^n$ and we denote by
 - ► X^k its position
 - T_k its time of death
 - *I^k* its number of children

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
Assumptions			

The branching diffusion is well-defined if

- $\sum_{\ell \in \mathbb{N}} \ell p_\ell < \infty$
- (μ, σ) are Lipschitz

Assume that the branching diffusion goes extinct a.s.

- Sufficient condition $\sum_{\ell \in \mathbb{N}} \ell p_\ell \leq 1$
- Necessary and sufficient condition for branching Brownian motion

$$\beta\left(\sum_{\ell\in\mathbb{N}}\ell p_{\ell}-1\right)-\frac{\lambda_1}{2}\leq 0$$

where λ_1 is the first positive eigenvalue of the Laplacian operator in $\mathcal{O},$ see $\it Watanabe$ '64

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
	0		
Outline			

2 Semi-Linear PDE I

3 Numerical Applications

4 Semi-Linear PDE II

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000	00	000	00000
Main Result I			

Consider the semi-linear PDE

 $\begin{aligned} \mathcal{L}u + \beta \left(f(u) - u\right) &= 0 \quad \text{in } \mathcal{O}, \quad u = h \quad \text{on } \partial \mathcal{O} \\ \text{where } \beta > 0, \ f(x, y) &:= \sum_{\ell \in \mathbb{N}} c_{\ell}(x) y^{\ell}. \text{ Denote} \\ \psi^x &:= \prod h(X_{T_k}^k) \prod \frac{c_{I^k}(X_{T_k}^k)}{2} \end{aligned}$

$$\psi^{x} := \prod_{\substack{k \text{ such that} \\ X_{T_{k}}^{k} \notin \mathcal{O}}} h(X_{T_{k}}^{n}) \prod_{\substack{k \text{ such that} \\ X_{T_{k}}^{k} \in \mathcal{O}}} \frac{1}{p_{I^{k}}}$$

Theorem

Assume that

(i) $\eta^x < \infty$ a.s.

(ii) σ is uniformly elliptic on $\partial \mathcal{O}$

(iii) $\partial \mathcal{O}$ satisfies an exterior cone condition

(iv) $(\psi^x)_{x\in\mathcal{O}}$ is uniformly integrable

Then the map $u: x \mapsto \mathbb{E}[\psi^x] \in \mathcal{C}(\bar{\mathcal{O}})$ is a viscosity solution of (1)

(1)

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
		000	
Outline			

2 Semi-Linear PDE I

3 Numerical Applications

4 Semi-Linear PDE II

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
		000	
Numerical A	oplications		

- Estimation of solution to semi-linear elliptic PDE by using the Monte Carlo method
 - Alternative to BSDE and deterministic methods
 - Accuracy depends on the dimensionless CLT
- ► The main difficulty is to simulate the exit time and position of a diffusion from a domain
- We restrict to branching Brownian motion in a hyperrectangle and use the walk on square method for Brownian motion
 - ▶ Introduced by Faure '92, Milstein & Tretyakov '99,...
 - Implemented by Lejay '09 in the library exitbm
 - Exact simulation

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000	00	000	00000
Examples			

1D. Consider the following ODE

$$u'' + u^3 - u = 0$$
 in $\mathcal{O} = (-0.3, 0.3)$

with explicit solution $u(x) = \frac{\sqrt{2}}{\cosh(x)}$

x	Exact	Estimate	99% conf. int.	StdDev/Mean	Time (secs)
0	1.4142	1.4144	[1.4134, 1.4153]	0.2644	13
-0.2	1.3864	1.3859	[1.3852, 1.3866]	0.1872	26

Table: Numerical results for $\beta = 1$, $p_1 = \frac{1}{2}$, $p_3 = \frac{1}{2}$ with 10^6 sample paths

4D. Consider the following PDE

$$\Delta u - 8(u^3 - u) = 0$$
 in $\mathcal{O} = (-0.3, 0.3)^4$

with explicit solution $u(x) = \tanh(\sum_{i=1}^{4} x_i)$

x	Exact	Estimate	99% conf. int.	StdDev/Mean	Time (secs)
(0.1, 0, 0, 0)	0.1003	0.1010	[0.0996, 0.1024]	5.2787	514
(0.1, 0.1, 0.1, 0)	0.2913	0.2903	[0.2890, 0.2915]	1.6685	818

Table: Numerical results for $\beta = \frac{5}{2}$, $p_1 = \frac{13}{21}$, $p_3 = \frac{8}{21}$ with 10^6 sample paths

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000	00	000	00000
Outline			

2 Semi-Linear PDE I

3 Numerical Applications

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
			00000
Semi-linear PDE	: II		

Consider the semi-linear PDE

 $\mathcal{L}u + \beta (f(u, Du) - u) = 0 \text{ in } \mathcal{O}, \quad u = h \text{ on } \partial \mathcal{O}$ (2)

where $f:\mathbb{R}^d\times\mathbb{R}\times\mathbb{R}^d\to\mathbb{R}$ is defined as

$$f(x, y, z) := \sum_{\ell = (\ell_0, \dots, \ell_m) \in \mathbb{N}^{m+1}} c_\ell(x) y^{\ell_0} \prod_{i=1}^m (b_i(x) \cdot z)^{\ell_i}$$

- Consider a larger class of branching diffusion
 - Age-dependent, *i.e.*, each particle lives a random time distributed according to p.d.f. $\rho(t) \neq \beta e^{-\beta t}$
 - ▶ Marked particles, *i.e.*, each particle gives rise to $|\ell| = \sum_{i=0}^{m} \ell_i$ particles with probability p_{ℓ} , among which ℓ_0 have mark 0, ℓ_1 have mark 1, ...

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
000	00	000	00000
Main Result II			

Denote

$$\psi^{x} := \prod_{\substack{k \in \mathcal{K}^{x} \\ X_{T_{k}}^{k} \notin \mathcal{O}}} \frac{e^{-\beta \Delta T_{k}} h(X_{T_{k}}^{k})}{\bar{F}(\Delta T_{k})} \mathcal{W}_{k} \prod_{\substack{k \in \mathcal{K}^{x} \\ X_{T_{k}}^{k} \in \mathcal{O}}} \frac{\beta e^{-\beta \Delta T_{k}} c_{I^{k}}(X_{T_{k}}^{k})}{\rho(\Delta T_{k}) p_{I^{k}}} \mathcal{W}_{k}$$

where $\bar{F}(t) := \int_t^{\infty} \rho(s) \, ds$, $\Delta T_k := T_k - T_{k-}$, T_{k-} and m_k are the time of birth and the mark of particle k,

$$\mathcal{W}_k := \mathbf{1}_{m_k=0} + \mathbf{1}_{m_k\neq 0} b_{m_k}(X_{T_{k-}}^k) \cdot \mathcal{W}(\Delta T_k, X_{T_{k-}}^k, W^k)$$

Theorem

Assume that

- (i) $\partial \mathcal{O}$ is of class \mathcal{C}^2
- (ii) σ is uniformly elliptic in $\bar{\mathcal{O}}$
- (iii) μ , σ , h are of class $\mathcal{C}^{1,\alpha}$ in $\bar{\mathcal{O}}$

(iv) $(\psi^x)_{x\in\mathcal{O}}$, $(\psi^x b_i(x) \cdot \mathcal{W}(\tau \wedge \eta^x, x, W))_{x\in\mathcal{O}}$ are bounded in L^1

Then the map $u: x \mapsto \mathbb{E}[\psi^x] \in \mathcal{C}^1(\mathcal{O}) \cap \mathcal{C}(\bar{\mathcal{O}})$ is a viscosity solution of (2)

Branching Diffusion	Semi-I	_inear PDE I	Numerical Ap	plications Semi-Li	near PDE II
000	00		000	0000	0

Automatic Differentiation Formula

Fix T > 0 and denote for $x \in \mathcal{O}$, $s \ge 0$,

$$\mathcal{W}(s,x,W) = \int_0^{\zeta_{s\wedge T}} \theta_{s\wedge T}^{-1}(r,X_r^x) \sigma^{-1}(X_r^x) Y_r^x \, dW_r$$

where Y^x is the tangent process and

$$\theta_s(r,y) := d(y,\partial \mathcal{O})^2(s-r), \quad \zeta_s := \inf\left\{t > 0 : \int_0^t \theta_s^{-1}(r,X_r^x) dr = 1\right\}$$

Proposition (Thalmaier '97, Delarue '03, Gobet '04)

(i) The map
$$\varphi: x \mapsto \mathbb{E}[e^{-\beta \eta^x} h(X^x_{\eta^x})] \in \mathcal{C}^1(\mathcal{O})$$
 s.t.

$$D\varphi(x) = \mathbb{E}\left[e^{-\beta\eta^x}h(X^x_{\eta^x})\mathcal{W}(T,x,W)\right]$$

(ii) For any g bounded, the map $\psi: x \mapsto \mathbb{E}[\int_0^{\eta^x} e^{-\beta s} g(X_s^x) ds] \in \mathcal{C}^1(\mathcal{O})$ s.t.

$$D\psi(x) = \mathbb{E}\bigg[\int_0^{\eta^x} e^{-\beta s} g(X_s^x) \mathcal{W}(s, x, W) \, ds\bigg]$$

Branching Diffusion	Semi-Linear PDE I	Numerical Applications	Semi-Linear PDE II
			00000

Thank you for your attention!