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Motivations

» We aim to provide a new probabilistic representation for
Lu+ f(u,Du) =0 in O, wu=h ondO

where O C R? bounded domain, £ infinitesimal generator of diffusion
» BSDE approach:

> Darling & Pardoux '97, Pardoux '99, Briand et al. 03, ...
» Monotonicity assumption in y, i.e.,, y — f(z,y, z) is non-increasing
> Linear/Quadratic growth in z

» Branching diffusion approach:

v

Generator f multivariate polynomial
No motonicity assumption in y
Polynomial growth in z

Numerical applications
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Branching Diffusion and PDEs

» Skorokhod '64, given 8 > 0, (p¢)een p-m.f., a solution of

Ou+ Lu+ <Zmuzu> =0in[0,7) x R? w(T,)=ginR?

LeN
writes as
Nt
u(@) =E | [] g(Xéi)]
k=1
where (X1, ... 7Xé\lT) are the positions of particles alive at time T'

» Henry-Labordere et al. '14, '16, extensions of this result for
Ou+ Lu+ f(u,Du) =0 in [0,T) xRY,  w(T,")=g inR?

where f is a multivariate polynomial
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Branching Diffusion
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Description

» Start from one particle at position z € O

> Its position is given by
t t
th:x—&—/ M(Xf)ds—&-/ o(X7)dWs, t>0
0 0

> Its time of death is given by 7 A n” where 7 ~ Exp(3) and
n® := inf {t >0; X; ¢ O}
» If 7 < n®, then it gives rise to I ~ (p¢)een particles

» Then each child particle follows the same but an independent dynamic
as the mother particle

> Particles are indexed by a label & € |J,,~,N" and we denote by
» X" its position

» T} its time of death
» I* its number of children
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Assumptions

» The branching diffusion is well-defined if

> ZZGN lpe < o0
> (u,0) are Lipschitz

» Assume that the branching diffusion goes extinct a.s.

» Sufficient condition ZKN lpe <1
> Necessary and sufficient condition for branching Brownian motion

where A is the first positive eigenvalue of the Laplacian operator in O,
see Watanabe '64
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Main Result |

Consider the semi-linear PDE
Lu+B(f(u)—u)=0 inO, wu=h ondO (1)
where 3> 0, f(2,y) == > o ce(z)y". Denote

Crk Xéi
N | I |

i : Prw
k SLiCh that k sukch that
XTk ¢0 XTk €O

Theorem

Assume that
(i) n* < o0 a.s.
(ii) o is uniformly elliptic on 0O
(iii) 0O satisfies an exterior cone condition
(iv) (¥™)zeco is uniformly integrable

Then the map u : x — E[¢*] € C(O) is a viscosity solution of (1)
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Numerical Applications

» Estimation of solution to semi-linear elliptic PDE by using the Monte
Carlo method
> Alternative to BSDE and deterministic methods
> Accuracy depends on the dimensionless CLT
» The main difficulty is to simulate the exit time and position of a
diffusion from a domain
» We restrict to branching Brownian motion in a hyperrectangle and
use the walk on square method for Brownian motion
> Introduced by Faure ‘92, Milstein & Tretyakov '99,. ..

> Implemented by Lejay ‘09 in the library exitbm
» Exact simulation
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1D. Consider the following ODE
w4+ u’ —u=0 inO=(-03,03)

with explicit solution u(z) = COTJF(”

x Exact Estimate 99% conf. int. StdDev/Mean  Time (secs)
0 1.4142 1.4144 [1.4134,1.4153] 0.2644 13
—0.2 1.3864 1.3859 [1.3852, 1.3866] 0.1872 26

Table: Numerical results for B =1, p1 = %, p3 = % with 106 sample paths

4D. Consider the following PDE
Au—8u® —u)=0 inO=(-0.3,0.3)"

with explicit solution u(z) = tanh(> ] | =)

T Exact Estimate 99% conf. int. StdDev/Mean  Time (secs)
(0.1,0,0,0) 0.1003 0.1010 [0.0996, 0.1024] 5.2787 514
(0.1,0.1,0.1,0) 0.2913 0.2903 [0.2890, 0.2915] 1.6685 818

Table: Numerical results for 8 = g, p1 = %, p3 = % with 106 sample paths
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Semi-linear PDE I

» Consider the semi-linear PDE
Lu + 5(f(u,Du) — u) =0 in0O, wu=h ondO (2)

where f : R% x R x R — R is defined as

m

fz,y,2) = Z C/J(l')i'fo H(bI(L) : Z)A

=(Lo,...,¢m)ENTT1 =1

» Consider a larger class of branching diffusion

> Age-dependent, i.e., each particle lives a random time distributed ac-
cording to p.d.f. p(t) # Be?!

» Marked particles, i.e., each particle gives rise to || = Zjio {; particles
with probability p¢, among which ¢y have mark 0, ¢; have mark 1, ...
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Main Result Il

Denote

o = H eiﬁéTkh(Xﬁ)Wk H 5676AT’€CI’C(X%C)
e F(ATy) p(ATy)p

xk ¢o xk co
T, & T, €

k

’CCL‘
where F(t) := ftoo p(s)ds, ATy := Ty —T)—, T),— and my are the time of birth

and the mark of particle k,

Wy = lmk:O + lmk#obmk (Xé‘A, ) : W(ATkv X’éik, ) I’1/1")

Theorem

Assume that
(i) 9O is of class C*
(i) o is uniformly elliptic in O
(iii) w, o, h are of class C*® in O
(iv) (¥™)zeo, ("bi(x) - W(T An®,2,W))sco are bounded in L'
Then the map u : x +— E[y)"] € C*(O) NC(O) is a viscosity solution of (2)
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Automatic Differentiation Formula

Fix T > 0 and denote for x € O, s > 0,
CsAT
W (s,z, W) :/ O, p(r, X o (XY, dW,
0
where Y is the tangent process and

0.(r,y) :=d (y,00)* (s —r), (s :=inf {t >0 : / 0" (r, X5) dr = 1}

0

Proposition ( Thalmaier ‘97, Delarue '03, Gobet '04)

(i) The map ¢ : z +— E[e_ﬁ"zh(Xﬁfz)} €C'(0) s.t.

Do(z) = E [e‘ﬁnzh(Xf,z)W(T, - W)]

(i) For any g bounded, the map v : x — ]E[fonz e Pog(X%)ds] € CH(O) s.t.

Dy(z) = IE[/O17 e P g(XEYW(s, z, W) ds]
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Thank you for your attention!
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