Obliquely Reflected Backward Stochastic Differential Equations

J-F Chassagneux (Université Paris Diderot) joint work with A. Richou (Université de Bordeaux)

Advances in Stochastic Analysis for Risk Modelling, CIRM, 16 November 2017

(4月) (4日) (4日)

Introduction

Obliquely Reflected BSDEs Motivation: around switching problems

Results on Obliquely RBSDE

State of the art New approaches

Concluding remarks

(4月) (4日) (4日)

Obliquely Reflected BSDEs Motivation: around switching problems

イロト イヨト イヨト

Outline

Introduction Obliquely Reflected BSDEs Motivation: around switching problems

Results on Obliquely RBSDE

State of the art New approaches

Concluding remarks

Obliquely Reflected BSDEs Motivation: around switching problems

Ξ

Definition

• Equation: Let $\mathcal{D} \subset \mathbb{R}^d$ be an open convex domain: (Y, Z, K) solution to

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds - \int_{t}^{T} Z_{s} dW_{s} + \int_{t}^{T} dK_{s}$$

(C1) $Y_{t} \in \bar{\mathcal{D}}$ (constrained value process)
(C2) $\int_{0}^{T} \mathbf{1}_{\{Y_{t} \notin \partial \mathcal{D}\}} dK_{t} = 0$ ("minimality" condition)

Obliquely Reflected BSDEs Motivation: around switching problems

・ロト ・回ト ・ヨト・

Definition

• Equation: Let $\mathcal{D} \subset \mathbb{R}^d$ be an open convex domain: (Y, Z, K) solution to

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds - \int_{t}^{T} Z_{s} dW_{s} + \int_{t}^{T} dK_{s}$$

(C1) $Y_{t} \in \bar{\mathcal{D}}$ (constrained value process)
(C2) $\int_{0}^{T} \mathbf{1}_{\{Y_{t} \notin \partial \mathcal{D}\}} dK_{t} = 0$ ("minimality" condition)

- ▶ Direction of Reflection? n(y) denotes the (set of) outward normal for $y \in \partial D$
 - 1. Normal reflection: $dK_t = -\Phi_t dt$, $\Phi_t \in \mathfrak{n}(Y_t)$.
 - 2. Oblique reflection: $dK_t = -H(t, Y_t, Z_t)\Phi_t dt$, H matrix valued s.t. $\nu(t, Y_t, Z_t) = H_t \mathfrak{n}(Y_t)$ is the oblique outward direction.

Obliquely Reflected BSDEs Motivation: around switching problems

イロト イポト イヨト イヨト

Definition

• Equation: Let $\mathcal{D} \subset \mathbb{R}^d$ be an open convex domain: (Y, Z, K) solution to

$$Y_{t} = \xi + \int_{t}^{T} f(s, Y_{s}, Z_{s}) ds - \int_{t}^{T} Z_{s} dW_{s} + \int_{t}^{T} dK_{s}$$

(C1) $Y_{t} \in \bar{\mathcal{D}}$ (constrained value process)
(C2) $\int_{0}^{T} \mathbf{1}_{\{Y_{t} \notin \partial \mathcal{D}\}} dK_{t} = 0$ ("minimality" condition)

- ▶ Direction of Reflection? n(y) denotes the (set of) outward normal for $y \in \partial D$
 - 1. Normal reflection: $dK_t = -\Phi_t dt$, $\Phi_t \in \mathfrak{n}(Y_t)$.
 - 2. Oblique reflection: $dK_t = -H(t, Y_t, Z_t)\Phi_t dt$, H matrix valued s.t. $\nu(t, Y_t, Z_t) = H_t \mathfrak{n}(Y_t)$ is the oblique outward direction.
- Remarks: start from ν to build H symmetric → follows Lions & Sznitman (84)
 we require < ^ν/_{||ν|}, ⁿ/_{||π|} ≥ ε > 0.
 if f = 0, Y_t ∈ D
 naturally (K = 0).

Obliquely Reflected BSDEs Motivation: around switching problems

Revisiting switching problems

- ► (1) Classical switching problem: e.g. Hamadene and Jeanblanc (01)
 - d modes of production, switching from one mode to another has a cost c > 0,
 - the strategy consists in: 1. a sequence of switching times (θ_j)

2. the choice of production mode at each switch

 \hookrightarrow the current state is a and the goal is to maximise the expected reward

$$Y_0^1 = \max_{a} \mathbb{E}[J(a, 0)] \text{ with } J(a, 0) = \int_0^T f^{a_s}(s) ds - \sum_{j \ge 0} c \mathbf{1}_{\{t \le \theta_j \le T\}}$$
(starting from mode 1)

- 4 回 ト 4 ヨ ト 4 ヨ ト

Obliquely Reflected BSDEs Motivation: around switching problems

イロト イポト イヨト イヨト

Revisiting switching problems

- ► (1) Classical switching problem: e.g. Hamadene and Jeanblanc (01)
 - d modes of production, switching from one mode to another has a cost c > 0,
 - the strategy consists in: 1. a sequence of switching times $(heta_j)$

2. the choice of production mode at each switch

 \hookrightarrow the current state is *a* and the goal is to maximise the expected reward

$$Y_0^1 = \max_a \mathbb{E}[J(a, 0)]$$
 with $J(a, 0) = \int_0^T f^{a_s}(s) \mathrm{d}s - \sum_{j \ge 0} c \mathbf{1}_{\{t \le \theta_j \le T\}}$

(starting from mode 1)

▶ (2) Randomised switching problem: the mode at each switch is chosen randomly according to some Markov chain (ξ_n) such that $\mathbb{P}(\xi_n = j | \xi_{n-1} = i) = p_{ij}$ and $p_{ii} = 0$. \hookrightarrow The agent know the (p_{ij}) . (Same optimisation)

Obliquely Reflected BSDEs Motivation: around switching problems

Revisiting switching problems

- ► (1) Classical switching problem: e.g. Hamadene and Jeanblanc (01)
 - d modes of production, switching from one mode to another has a cost c > 0,
 - the strategy consists in: 1. a sequence of switching times $(heta_j)$

2. the choice of production mode at each switch \hookrightarrow the current state is *a* and the goal is to maximise the expected reward

$$Y_0^1 = \max_a \mathbb{E}[J(a, 0)]$$
 with $J(a, 0) = \int_0^T f^{a_s}(s) \mathrm{d}s - \sum_{j \ge 0} c \mathbf{1}_{\{t \le \theta_j \le T\}}$

(starting from mode 1)

- ▶ (2) Randomised switching problem: the mode at each switch is chosen randomly according to some Markov chain (ξ_n) such that $\mathbb{P}(\xi_n = j | \xi_{n-1} = i) = p_{ij}$ and $p_{ii} = 0$. \hookrightarrow The agent know the (p_{ij}) . (Same optimisation)
- ▶ Solution: A system of reflected BSDEs $Y_t^i = \int_t^T f^i(s) ds - \int_t^T Z_s^i dW_s + \int_t^T dK_s^i, \ i \in \{1, ..., d\}, \ Y_t \in \overline{\mathcal{D}}$ for (1) $\mathcal{D} = \{ y \in \mathbb{R}^d | y^i \ge \max_i (y_i - c), \ 1 \le i \le d \}$ (+ minimality) for (2) $\mathcal{D} = \{ y \in \mathbb{R}^d | y^i \ge \sum_j p_{ij} y_j - c, \ 1 \le i \le d \}$ (+ minimality)

State of the art New approaches

Outline

ntroduction Obliquely Reflected BSDEs Motivation: around switching problems

Results on Obliquely RBSDE State of the art New approaches

Concluding remarks

<ロト <回ト < 臣ト < 臣ト

State of the art New approaches

Known results

- Normal Reflection:
 - Existence and uniqueness in classical L², Lipschitz setting for a fixed domain (Gegout-Petit & Pardoux 95), some extension to random domain (Ma & Yong 99)
 - 2. One dimensional case: Simply reflected BSDEs (El Karoui, Kapoudjian, Peng & Quenez 97), Doubly reflected BSDEs (Cvitanic & Karatzas) and many others (applications to math. finance)

イロト イヨト イヨト

State of the art New approaches

Known results

- Normal Reflection:
 - Existence and uniqueness in classical L², Lipschitz setting for a fixed domain (Gegout-Petit & Pardoux 95), some extension to random domain (Ma & Yong 99)
 - 2. One dimensional case: Simply reflected BSDEs (El Karoui, Kapoudjian, Peng & Quenez 97), Doubly reflected BSDEs (Cvitanic & Karatzas) and many others (applications to math. finance)
- Oblique Reflection:
 - 1. Reflection in an orthant: Ramasubramanian (02), f := f(Y).
 - Switching problem: fⁱ(Y, Z) = fⁱ(Y, Zⁱ) (do not cover non-zero sum game), contributions by several authors: Hu & Tang (08), Hamadene & Zhang (09), C., Elie & Kharroubi (11)
 - Attempt to general case: existence of a (weak) solution when f = f(Y) and H = H(t, Y) is Lipschitz in the Markovian setting. By Gassous, Rascanu & Rotenstein (15)

・ロト ・回ト ・ヨト ・ヨト

State of the art New approaches

Penalised BSDEs

• Let d(y, D) distance to convex, $\mathcal{P}(y)$ normal projection, $\mathfrak{n}(y)$ outward normal:

$$\begin{aligned} Y_t^m &= \xi + \int_t^T f(Y_s^m, Z_s^m) \mathrm{d}s - \int_t^T Z_s^m \mathrm{d}W_s - \int_t^T H(s, Y_s^m, Z_s^m) \Phi_s^m \mathrm{d}s \\ &\text{with } \Phi^m = md(Y^m, \mathcal{D}) \mathfrak{n}(\mathcal{P}(Y^m)) , m \geq 0 . \end{aligned}$$

イロト イヨト イヨト イヨト

Ξ

State of the art New approaches

Penalised BSDEs

• Let $d(y, \mathcal{D})$ distance to convex, $\mathcal{P}(y)$ normal projection, $\mathfrak{n}(y)$ outward normal:

$$\begin{split} Y_t^m &= \xi + \int_t^T f(Y_s^m, Z_s^m) \mathrm{d}s - \int_t^T Z_s^m \mathrm{d}W_s - \int_t^T H(s, Y_s^m, Z_s^m) \Phi_s^m \mathrm{d}s \\ & \text{with } \Phi^m = md(Y^m, \mathcal{D}) \mathfrak{n}(\mathcal{P}(Y^m)) \ , m \geq 0 \ . \end{split}$$

▶ Estimates yield $(Y, Z) \in S^2 \times H^2$ with norms uniform in *m* and

$$\sup_{t} \mathbb{E}\left[md^{2}(\boldsymbol{Y}_{t}^{m}, \mathcal{D})\right] + \mathbb{E}\left[\int_{0}^{T} |\Phi_{s}^{m}|^{2} \mathrm{d}s\right] \leq C$$

 \hookrightarrow At the limit $m \to \infty$ the process Y^m is in $\overline{\mathcal{D}}!$

イロト イヨト イヨト イヨト

3

State of the art New approaches

Penalised BSDEs

• Let $d(y, \mathcal{D})$ distance to convex, $\mathcal{P}(y)$ normal projection, $\mathfrak{n}(y)$ outward normal:

$$\begin{split} Y_t^m &= \xi + \int_t^T f(Y_s^m, Z_s^m) \mathrm{d}s - \int_t^T Z_s^m \mathrm{d}W_s - \int_t^T H(s, Y_s^m, Z_s^m) \Phi_s^m \mathrm{d}s \\ & \text{with } \Phi^m = md(Y^m, \mathcal{D}) \mathfrak{n}(\mathcal{P}(Y^m)) \ , m \geq 0 \ . \end{split}$$

▶ Estimates yield $(Y, Z) \in S^2 \times H^2$ with norms uniform in *m* and

$$\sup_{t} \mathbb{E}\left[md^{2}(Y_{t}^{m}, \mathcal{D})\right] + \mathbb{E}\left[\int_{0}^{T} |\Phi_{s}^{m}|^{2} \mathrm{d}s\right] \leq C$$

 \hookrightarrow At the limit $m \to \infty$ the process Y^m is in $\overline{\mathcal{D}}!$

Is there a limit and does it satisfy an oblique RBSDE?

イロト イポト イヨト イヨト

State of the art New approaches

Strong convergence of Y^m

- In a Markovian setting: compactness arguments à la Hamadene, Lepeltier & Peng (97)
- Stability approach: $H^{-1} = H^{-1}(t, y)$ and \mathcal{D} are smooth

・ロト ・回ト ・ヨト ・ヨト

3

Strong convergence of Y^m

- In a Markovian setting: compactness arguments à la Hamadene, Lepeltier & Peng (97)
- Stability approach: $H^{-1} = H^{-1}(t, y)$ and \mathcal{D} are smooth
 - 1. Apply Ito's formula to $||Y_t Y'_t||^2$... works well in the normal case, thanks to

$$\langle y' - y, \mathfrak{n}(y)
angle \leq 0 \quad , \, y \in \mathbb{R}^d, y' \in \bar{\mathcal{D}}$$

but we have $\langle y' - y, H(t, y)n(y) \rangle$ when oblique reflection

・ロッ ・雪 ・ ・ ヨ ・

3

Strong convergence of Y^m

- In a Markovian setting: compactness arguments à la Hamadene, Lepeltier & Peng (97)
- Stability approach: $H^{-1} = H^{-1}(t, y)$ and \mathcal{D} are smooth
 - 1. Apply Ito's formula to $\|Y_t Y'_t\|^2$... works well in the normal case, thanks to

$$\langle y' - y, \mathfrak{n}(y) \rangle \leq 0$$
 , $y \in \mathbb{R}^d, y' \in \bar{\mathcal{D}}$

but we have $\langle y' - y, H(t, y)n(y) \rangle$ when oblique reflection

2. Apply Ito's formula to $(Y_t - Y'_t)^{\top} H(t, Y_t)^{-1} (Y_t - Y'_t)$: extra terms appear coming from covariation terms and some reflection terms.

・ロト ・回ト ・ヨト ・ヨト

Strong convergence of Y^m

- In a Markovian setting: compactness arguments à la Hamadene, Lepeltier & Peng (97)
- Stability approach: $H^{-1} = H^{-1}(t, y)$ and \mathcal{D} are smooth
 - 1. Apply Ito's formula to $||Y_t Y'_t||^2$... works well in the normal case, thanks to

$$\langle y' - y, \mathfrak{n}(y) \rangle \leq 0$$
 , $y \in \mathbb{R}^d, y' \in \bar{\mathcal{D}}$

but we have $\langle y' - y, H(t, y)n(y) \rangle$ when oblique reflection

- 2. Apply Ito's formula to $(Y_t Y'_t)^\top H(t, Y_t)^{-1}(Y_t Y'_t)$: extra terms appear coming from covariation terms and some reflection terms.
- 3. Apply Ito's formula to $\Gamma_t(\alpha,\beta)(Y_t Y'_t)^{\top}H(t,Y_t)^{-1}(Y_t Y'_t)$ where

$$\Gamma_t = e^{\alpha t + \beta \int_0^t \left(|\Phi_s| + |\Phi'_s| + |Z_s|^2 \right) \mathrm{d}s}.$$

 \hookrightarrow Control of Γ uses BMO tools

(ロ) (同) (E) (E) (E)

Outline

ntroduction Obliquely Reflected BSDEs Motivation: around switching problems

Results on Obliquely RBSDE State of the art New approaches

Concluding remarks

(日) (部) (王) (王)

Markovian case: Existence in very general setting for H (discontinuous OK) and any convex domain (+ some weak hypothesis on the law of the forward process)

Non markovian case: Existence and Uniqueness for smooth H and \mathcal{D} + some conditions on the BMO integral $\mathbb{E}[\xi | \mathcal{F}_t]$.

Various applications to switching problem:

- RBSDEs for randomised switching is well posed,
- For d = 2 and RBSDEs for switching problem, *existence and uniqueness* for full dependence in Z for f.

Open questions: *H* only Lipschitz? Non Convex domain?

イロト イポト イヨト イヨト