Orthogonal Decompositions in Hilbert A-Modules

Simone Cerreia-Vioglio Fabio Maccheroni Massimo Marinacci ERC SDDM-TEA

Università Bocconi-IGIER

CIRM Advances in Stochastic Analysis for Risk Modeling

Let A be an Archimedean f-algebra with (multiplicative) unit e

Definition

An abelian group (H, +) is an A-module if and only if an outer product $\cdot : A \times H \rightarrow H$ is well defined with the following properties, for each $a, b \in A$ and for each $x, y \in H$:

1.
$$a \cdot (x + y) = a \cdot x + a \cdot y$$

2. $(a + b) \cdot x = a \cdot x + b \cdot x$
3. $a \cdot (b \cdot x) = (ab) \cdot x$
4. $e \cdot x = x$

Clearly, if $A = \mathbb{R}$, then we are defining a (real) vector space

Definition

An A-module H is a pre-Hilbert A-module if and only if an inner product $\langle , \rangle_H : H \times H \to A$ is well defined with the following properties, for each $a \in A$ and for each $x, y, z \in H$:

5.
$$\langle x, x \rangle_{H} \ge 0$$
, with equality if and only if $x = 0$
6. $\langle x, y \rangle_{H} = \langle y, x \rangle_{H}$
7. $\langle x + y, z \rangle_{H} = \langle x, z \rangle_{H} + \langle y, z \rangle_{H}$
8. $\langle a \cdot x, y \rangle_{H} = a \langle x, y \rangle_{H}$

Clearly, if $A = \mathbb{R}$, then we are defining a pre-Hilbert space.

Orthogonal complementation

- Let *H* be an Archimedean *f*-algebra with unit *e* and *H* a pre-Hilbert *A*-module
- If $\emptyset \neq M \subseteq H$, then the *orthogonal complement* of M is the set

$$M^{\perp} = \{ y \in H : \langle x, y \rangle_H = 0 \quad \forall x \in M \}$$

 Ø ≠ M ⊆ H is a submodule if and only if for each a, b ∈ A and x, y ∈ M

$$a \cdot x + b \cdot y \in M$$

• Given $\{x_i\}_{i=1}^n \subseteq H$ for some $n \in \mathbb{N}$, then the (module) span of $\{x_i\}_{i=1}^n$, denoted span_A $\{x_i\}_{i=1}^n$, is the set

$$\left\{x \in H : \exists \left\{a_i\right\}_{i=1}^n \subseteq A \text{ s.t. } x = \sum_{i=1}^n a_i \cdot x_i\right\}$$

- The main contributions of this paper are:
 - 1. to provide conditions on A and H that will allow us to conclude that given a submodule M in a pre-Hilbert A-module H, it is complemented i.e.

$$H = M \oplus M^{\perp}$$

- 2. to conclude that $\operatorname{span}_{A} \{x_i\}_{i=1}^n$ is always complemented
- 3. to provide some interesting (cool?) applications of the above result

Topological structure and standard result

• Define $N(x) = \langle x, x \rangle^{\frac{1}{2}}$ for all $x \in H$

Convergence could be defined as

$$x_n \to x \stackrel{def}{\iff} N(x_n - x) \to 0$$

Definition

Let A be an f-algebra of \mathcal{L}^0 type and H a pre-Hilbert A-module. H is an Hilbert A-module if and only if H is d_H complete and

$$d_{H}(x,y) = d\left(N(x-y),0\right).$$

Theorem

Let A be an f-algebra of \mathcal{L}^0 type and H a Hilbert A-module. If M is a submodule, then the following statements are equivalent:

(i)
$$H = M \oplus M^{\perp}$$
;

(ii) M is d_H closed.

Main application: (stochastic processes)

- Consider a discrete-time filtered space $\left\{\Omega, \mathcal{F}, \left(\mathcal{F}_{t}\right)_{t \in \mathbb{N}_{0}}, P\right\}$
- Denote 𝔼 (·||𝒯_t) by 𝔼_t (·) for all t ∈ ℕ₀. We consider two spaces of processes x = (x_t)_{t∈ℕ₀}
 - 1. $x \in S_0$ if and only if $x_0 = 0$ and x is adapted $(x_t \in \mathcal{L}^0 (\mathcal{F}_t)$ for all $t \in \mathbb{N}_0)$
 - 2. $x \in M_0^{2,loc}$ if and only if $x \in S_0$, $\mathbb{E}_{t-1}(x_t^2) \in \mathcal{L}^0(\mathcal{F}_{t-1})$, and $\mathbb{E}_{t-1}(x_t) = x_{t-1}$ for all $t \in \mathbb{N}$
- Given $x \in \mathcal{S}_0$, we define $\Delta_t x = x_t x_{t-1}$ for all $t \in \mathbb{N}$
- $H = \left\{ x \in \mathcal{S}_0 : \mathbb{E}_{t-1} \left(x_t^2 \right) \in \mathcal{L}^0 \left(\mathcal{F}_{t-1} \right) \quad \forall t \in \mathbb{N} \right\}$
- $a \in A$ if and only if $a = (a_t)_{t \in \mathbb{N}}$ is predictable, that is, $a_t \in \mathcal{L}^0 (\mathcal{F}_{t-1})$ for all $t \in \mathbb{N}$

• $+: H \times H \to H$ to be such that $(x + y)_t = x_t + y_t$ for all $t \in \mathbb{N}_0$ • $\cdot: A \times H \to H$ to be such that

$$(\mathbf{a} \cdot \mathbf{x})_0 = 0 \text{ and } (\mathbf{a} \cdot \mathbf{x})_t = \sum_{s=1}^t \mathbf{a}_s (\mathbf{x}_s - \mathbf{x}_{s-1}) = \sum_{s=1}^t \mathbf{a}_s \Delta_s \mathbf{x} \quad \forall t \in \mathbb{N}.$$

We can also define a generalized inner product $\langle , \rangle_H : H \times H \to A$ by $(x, y) \mapsto \langle x, y \rangle_H$ where the latter is the process

$$(\langle x, y \rangle_H)_t = \mathbb{E}_{t-1} ((\Delta_t x) (\Delta_t y)) \qquad \forall t \in \mathbb{N}$$

Theorem

 $(H, +, \cdot, \langle , \rangle_H)$ is an Hilbert A-module.

Theorem

 $(M_0^{2,loc}, +, \cdot, \langle , \rangle_H)$ is an Hilbert A-module. In particular, $M_0^{2,loc}$ is a closed submodule of H.

•
$$H^{pre} = \left\{ x \in \mathcal{S}_0 : x_t \in \mathcal{L}^0\left(\mathcal{F}_{t-1}\right) \quad \forall t \in \mathbb{N} \right\}$$

Corollary

 $H^{pre} = \left(M_0^{2,loc}\right)^{\perp}$. In particular, for each $x \in H$ there exists a predictable process $x_{pre} \in H^{pre}$ and a conditionally square integrable martingale $x_{mar} \in M_0^{2,loc}$ such that $x = x_{pre} + x_{mar}$. Moreover, this decomposition is unique.

Martingale decompositions: Kunita-Watanabe

• Observe that, if x and y are two square integrable martingales, then they are orthogonal in our sense, that is $\langle x, y \rangle_H = 0$, if and only if they are strongly orthogonal

Corollary

Let $\{x_i\}_{i=1}^n \in M_0^{2,loc}$. For each $x \in M_0^{2,loc}$, there exist $\{a_i\}_{i=1}^n \subseteq A$ and $y \in M_0^{2,loc}$ such that

$$x = \sum_{i=1}^{n} a_i \cdot x_i + y$$
 and $\langle x_i, y \rangle_H = 0$ $\forall i \in \{1, ..., n\}$.

Moreover, this decomposition is unique, in the sense that y is uniquely determined.

- We provide characterizations for complementability in Hilbert modules
- Applications:
 - Stochastic processes (Doob decomposition and Kunita-Watanabe decomposition)
 - Stricker's Lemma
 - Conditional version of Von Neumann-Koopman Decomposition Theorem