# Mean Field Games of Controls

P. Cardaliaguet

(Paris-Dauphine)

Based on a joint work with C.-A. Lehalle (CFM - Imperial College) and an ongoing work with I. Ben Tahar (Dauphine)

CIRM November 13-17, 2017 "Advances in Stochastic Analysis for Risk Modeling"

イロト イポト イヨト イヨト

# Mean Field Games (MFG) study stochastic optimal control problems with infinitely many interacting controllers.

Pioneering works of Lasry-Lions (2006) and Huang-Caines-Malhamé (2006)

#### Goal of the talk

Study MFGs where dynamics and costs depend on the distribution of controls.

#### Known as "Extended MFG" or "MFG of controls"

Gomes, Patrizi and Voskanyan (14, 16), Carmona and Lacker (14), Bensoussan and Graber (16), Carmona and Delarue (monograph, 17), Acciaio-Backhoff-Carmona (in preparation).

### The equilibrium configuration in a MFG of controls

- $m_0 =$  initial population density of small agents on the state space  $\mathbb{R}^d$ .
- Controlled SDE for a small agent with initial position  $x_0 \in \mathbb{R}^d$ :

$$\begin{cases} dX_t = b(t, X_t, \alpha_t; \mu_t) dt + \sigma(t, X_t, \alpha_t; \mu_t) dW_t \\ X_0 = x_0 \end{cases}$$

where  $(W_t)_{t \in [0,T]}$  is a standard Brownian Motion (idiosyncratic noise).

 Anticipating the evolution of the population density (m<sub>t</sub>)<sub>t∈[0, T]</sub> and of the (population×control) density (μ<sub>t</sub>)<sub>t∈[0, T]</sub>, the agent solves the optimal control problem

$$\inf_{\alpha} \mathbb{E}\left[\int_0^T L(t, X_t, \alpha_t; \mu_t) dt + g(X_T, m_T)\right].$$

• Let  $\alpha^* = \alpha_t^*(x)$  be the optimal feedback of the agent.

• Under a **mean field assumption**, the actual population density is given by  $\tilde{m}_t = \mathcal{L}(X_t^*)$  where

$$\begin{cases} dX_t^* = b(t, X_t^*, \alpha_t^*(X_t^*); \mu_t)dt + \sigma(t, X_t^*, \alpha_t^*(X_t^*); \mu_t)dW_t \\ X_0^* \equiv m_0 \end{cases}$$

• Equilibrium configuration :  $\mu = (id, \alpha^*) \sharp \tilde{m}$ .

イロン イロン イヨン 一日

### Typical issues

- Existence/uniqueness
- Application to problems with finitely many agents
- Limit of the *N*-player problems
- The formation of the MFG equilibria (Learning)
- Potential MFG (variational aspects)

э

イロト イポト イヨト イヨト



2 MFG of controls : the degenerate case



æ







æ







#### P. Cardaliaguet (Paris-Dauphine)

#### Mean field games

#### 5/22

E



2 MFG of controls : the degenerate case



æ

### An optimal liquidation problem with trade impact

#### Joint work with C.-A. Lehalle.

(Model inspired by Almgren-Chriss (00) - close to Carmona-Lacker (14))

- A continuum of investors indexed by *a* ∈ *A* decide to buy or sell a given quantity Q<sup>a</sup><sub>0</sub> of a tradable instrument.
- All investors have to buy or sell before a given terminal time T,
- Different risk aversion parameters \u03c6<sup>a</sup> and A<sup>a</sup>. The distribution of the risk aversion parameters is independent to anything else.
- Each investor controls its trading speed α<sup>a</sup><sub>t</sub>.
- Dynamics of the the price  $S_t$  of the tradable instrument :

$$dS_t = \theta \nu_t \, dt + \sigma \, dW_t.$$

where ( $W_t$ ) is a standard B.M.,  $\theta > 0$  is a parameter and  $\nu_t$  is the net sum of the trading speed of all investors

• In our model, the crowd impact  $(\nu_t)$  is intrinsic.

3

### The equations

• Dynamics of the the price  $S_t$  of the tradable instrument :

$$dS_t = \theta \nu_t \, dt + \sigma \, dW_t.$$

• Inventory  $Q_t^a$  of investor *a* :

$$dQ_t^a = \alpha_t^a dt$$

• Wealth  $X_t^a$  of investor a:

$$dX_t^a = -\alpha_t^a (S_t + \kappa \cdot \alpha_t^a) dt, \qquad X_0^a = 0.$$

Value function of investor a is given by :

$$V_t^a := \sup_{\alpha} \mathbb{E}\left[X_T^a + Q_T^a(S_T - A^a \cdot Q_T^a) - \phi^a \int_{s=t}^T (Q_s^a)^2 ds \Big| \mathcal{F}_t\right].$$

Distribution of the inventories, wealth and preferences of investors : m(t, ds, dq, da).
 Net trading flow ν<sub>t</sub> :

$$\nu_t = \int_{(s,q,a)} \overline{\alpha}_t^a(s,q) \, m(t,ds,dq,da)$$

э

### The full system

(After simplification) we obtain a Mean Field Game system of controls :

$$\begin{cases} \partial_t u(t, a, q) - \phi^a q^2 + \frac{(\partial_q u(t, a, q))^2}{4\kappa} &= -\theta q \nu_t & \text{in } (0, T) \times A \times \mathbb{R} \\ \\ \partial_t m + \partial_q \left( m \frac{\partial_q u(t, a, q)}{2\kappa} \right) &= 0 & \text{in } (0, T) \times A \times \mathbb{R} \end{cases}$$

where u = u(t, a, q) is the value function of a typical agent,

$$\nu_t = \int_{q,a} \frac{\partial_q u(t,a,q)}{2\kappa} m(t,dq,da).$$

and with initial condition (for m) and terminal condition (for u) :

 $m(0, dq, da) = m_0(dq, da),$   $u(t, a, q) = -A^a q^2$  in  $A \times \mathbb{R}$ .

Main results (C.-Lehalle) :

- Explicit solution in the case of identical preferences,
- For general preferences, existence/uniqueness of a solution for small  $\theta$ ,
- Learning procedures.







æ

### Description of the model

- $\bar{m}_0 =$ **initial population density** of small agents on the state space  $\mathbb{R}^d$ .
- $(\mu_t)_{t \in [0, T]}$  is the density of positions and controls of the agents.  $(\mu_t \text{ is a Borel probability measure on } \mathbb{R}^d \times A \text{ with } \pi_1 \sharp \mu_0 = \overline{m}_0).$

• Dynamics of a small agent with initial position  $(t_0, x_0) \in [0, T] \times \mathbb{R}^d$ :

$$\begin{cases} dX_t = b(t, X_t, \alpha_t; \mu_t)dt + \sigma(t, X_t)dW_t \\ X_{t_0} = x_0 \end{cases}$$

where  $(W_t)_{t \in [0,T]}$  is a standard *D*-dimensional Brownian Motion.

Value function of the agent :

$$u(t_0, x_0) = \inf_{\alpha} \mathbb{E}\left[\int_{t_0}^T L(t, X_t, \alpha_t; \mu_t) dt + g(X_T, m_T)\right].$$

It is a viscosity solution of the HJ equation

$$\begin{cases} -\partial_t u(t,x) - \operatorname{tr}(a(t,x)D^2 u(t,x)) + H(t,x,Du(t,x);\mu_t) = 0 & \text{in } (0,T) \times \mathbb{R}^d \\ u(T,x) = g(x) & \text{in } \mathbb{R}^d \end{cases}$$
  
where  $a = (a_{ij}) = \sigma\sigma^T$  and  
 $H(t,x,p;\nu) = \sup_{\alpha} \{-p \cdot b(t,x,\alpha;\nu) - L(t,x,\alpha;\nu)\}.$ 

Optimal feedback : b(t, x, \alpha^\*(t, x); \mu\_t) := -D\alpha H(t, x, Du(t, x); \mu\_t) is the optimal drift for the agent at position x and at time t.

Uniqueness assumption. We suppose that the map α → b(t, x, α; ν) is one-to-one with a smooth inverse.
 Let α\* = α\*(t, x, p; ν) be the unique control such that

$$b(t, x, \alpha^*; \nu) = -D_{\rho}H(t, x, \rho; \nu).$$

• At equilibrium, the population density  $m = m_t(x)$  solves the Kolmogorov equation

$$\begin{pmatrix} \partial_t m_t(x) - \sum_{i,j} \partial_{ij}(a_{ij}(t,x)m_t(x)) - \operatorname{div}(m_t(x)D_{\mathcal{P}}\mathcal{H}(t,x,Du(t,x);\mu_t)) = 0 \\ & \text{in } (0,T) \times \mathbb{R}^d \\ m_0(x) = \bar{m}_0(x) & \text{in } \mathbb{R}^d \end{cases}$$

• The density of the state  $\times$  controls  $\mu_t$  is given by the fixed-point relation :

$$\mu_t = (id, \alpha^*(t, \cdot, Du(t, \cdot); \mu_t)) \, \sharp m_t.$$

To summarize, the MFG of controls takes the form :

$$\begin{array}{ll} (i) & -\partial_t u(t,x) - \operatorname{tr}(a(t,x)D^2 u(t,x)) + H(t,x,Du(t,x);\mu_t) = 0 & \text{ in } (0,T) \times \mathbb{R}^d, \\ (ii) & \partial_t m_t(x) - \sum_{i,j} \partial_{ij}(a_{ij}(t,x)m_t(x)) - \operatorname{div}(m_t(x)D_p H(t,x,Du(t,x);\mu_t)) = 0 & \\ & \text{ in } (0,T) \times \mathbb{R}^d, \\ (iii) & m_0(x) = \bar{m}_0(x), \ u(T,x) = g(x,m_T) & \text{ in } \mathbb{R}^d, \\ (iv) & \mu_t = (id,\alpha^*(t,\cdot,Du(t,\cdot);\mu_t)) \, \sharp m_t & \text{ in } [0,T]. \end{array}$$

#### Previous results :

- Gomes, Patrizi, Voskanyan (14, 16)
   Extended MFG Existence/uniqueness of classical solutions without diffusion or ergodic.
- Carmona and Lacker (14)
   Existence/uniqueness of weak solutions when D = d.
- Bensoussan and Graber (16) Cournot-Nash equilibria - LQ framework
- Carmona and Delarue (monograph, 17) Second order problems - Probabilistic approach for existence/uniqueness.

### New here : degenerate diffusion, regularity issues.

(classical for standard MFG systems : Lasry-Lions)

### Main existence result

### Theorem (C.-Lehalle)

Assume that



The drift has a separate form :  $b(t, x, \alpha, \mu_t) = b_0(t, x, \mu_t) + b_1(t, x, \alpha)$ ,

Solution The map  $L : [0, T] \times \mathbb{R}^d \times A \times \mathcal{P}_1(\mathbb{R}^d \times A) \to \mathbb{R}$  satisfies the Lasry-Lions monotonicity condition : for any  $\nu_1, \nu_2 \in \mathcal{P}_1(\mathbb{R}^d \times A)$  with the same first marginal,

$$\int_{\mathbb{R}^d\times A} (L(t,x,\alpha;\nu_1) - L(t,x,\alpha;\nu_2)) d(\nu_1 - \nu_2)(x,\alpha) \ge 0,$$

+ technical regularity conditions.

Then there exists at least one solution  $(u, \mu)$  to the MFG system of controls such that

- u is continuous in (t, x), Lipschitz continuous in x (uniformly with respect to t),
- *m* is in  $L^{\infty}$
- and  $(\mu_t)$  is continuous from [0, T] to  $\mathcal{P}_1(\mathbb{R}^d \times A)$ .

By a solution, we mean :

- *u* is satisfies equation the HJ eq. in the viscosity sense,
- *m* is satisfies the Kolmogorov eq. in the sense of distribution.

3

### Ideas of proof

As usual, by Schauder-type fixed point argument :

- start with a family  $(\mu_t)$ ,
- solve HJ eq. u,
- solve the Kolmogorov eq.  $(\tilde{m}_t)$ ,
- find  $(\tilde{\mu}_t)$  solution of the local fixed point problem

$$\tilde{\mu}_t = (\mathit{id}, \alpha^*(t, \cdot, \mathit{Du}(t, \cdot); \tilde{\mu}_t)) \, \sharp \tilde{m}_t \quad \text{in } [0, T].$$

— show that the map  $(\mu_t) \rightarrow (\tilde{\mu}_t)$  has a fixed point.

- Main issues :
  - the local fixed point and its stability
  - stability of the map Du.

э

イロト イポト イヨト イヨト

### The local fixed point

### Lemma

Let  $m \in \mathcal{P}_2(\mathbb{R}^d)$  with a bounded density and  $p \in L^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ .

(Existence and uniqueness.) There exists a unique fixed point µ = F(p, m) ∈ P<sub>1</sub>(ℝ<sup>d</sup> × A) to the relation

$$\mu = (id, \alpha^*(t, \cdot, p(\cdot); \mu)) \sharp m.$$
(1)

・ロット 御マ キョン・

Moreover, there exists a constant  $C_0$ , depending only on  $\|p\|_{\infty}$  and on the second order moment of *m*, such that

$$\int_{\mathbb{R}^d\times A} \left\{ |x|^2 + \delta_{\mathcal{A}}(\alpha_0, \alpha) \right\} \ d\mu(x, \alpha) \leq C_0.$$

• (Stability.) Let  $(m_n)$  be a family of  $\mathcal{P}_1(\mathbb{R}^d)$ , with a uniformly bounded density in  $L^{\infty}$  and uniformly bounded second order moment, which converges in  $\mathcal{P}_1(\mathbb{R}^d)$  to some m,  $(p_n)$  be a uniformly bounded family in  $L^{\infty}$  which converges a.e. to some p. Then  $F(p_n, m_n)$  converges to F(p, m) in  $\mathcal{P}_1(\mathbb{R}^d \times A)$ .

Uniqueness borrowed from Carmona-Delarue.

### Uniform time stability stability of the gradient

Let

$$\mathcal{D} := \{ p \in L^{\infty}(\mathbb{R}^d), \ \exists v \in W^{1,\infty}(\mathbb{R}^d), \ p = Dv, \ \|v\|_{\infty} \leq M, \ \|Dv\|_{\infty} \leq M, \ D^2v \leq M \ I_d \}$$

endowed with the distance

$$d_{\mathcal{D}}(p_1,p_2)=\int_{\mathbb{R}^d}\frac{|p_1(x)-p_2(x)|}{(1+|x|)^{d+1}}dx \qquad \forall p_1,p_2\in\mathcal{D}.$$

### Lemma

There is a modulus  $\omega$  such that, for any  $(\mu_t) \in C^0([0, T], \mathcal{P}_1(\mathbb{R}^d \times A))$ , the viscosity solution u to

$$\begin{cases} -\partial_t u(t,x) - \operatorname{tr}(a(t,x)D^2 u(t,x)) + H(t,x,Du(t,x);\mu_t) = 0 & \text{in } (0,T) \times \mathbb{R}^d \\ u(T,x) = g(x) & \text{in } \mathbb{R}^d \end{cases}$$

satisfies

$$d_{\mathcal{D}}(Du(t_1,\cdot),Du(t_2,\cdot)) \leq \omega(|t_1-t_2|) \qquad \forall t_1,t_2 \in [0,T].$$

ъ

(a)







#### P. Cardaliaguet (Paris-Dauphine)

#### Mean field games

# ・ 目 ・ 目 ・ の へ (や)

### Potential for standard MFG

- Problem : find MFG equilibrium configuration as minima of an energy functional.
   Motivations : Numerical aspects, stability.
- For classical MFG systems, a potential is given by

$$\inf_{(m,\alpha)} J(m,\alpha), \qquad J(m,\alpha) := \int_0^T \int_{\mathbb{R}^d} L(x,\alpha_t(x)) m_t(dx) dt + \int_0^T \mathcal{F}(m_t) dt + \mathcal{G}(m_T),$$

where (m, v) solves

$$\partial_t m_t - \Delta m_t + \operatorname{div}(m_t \alpha_t) = 0, \qquad m_0 = \bar{m}_0.$$

Link with the MFG system : Following Lasry-Lions, if (m, v) is a minimizer, then there exists u such that the pair (u, m) solves the MFG system

$$\begin{cases} (i) & -\partial_t u_t(x) - \Delta u_t(x) + H(t, x, Du_t(x)) = \frac{\delta \mathcal{F}}{\delta m}(m_t, x) & \text{in } (0, T) \times \mathbb{R}^d, \\ (ii) & \partial_t m_t(x) - \Delta m_t(x)) - \operatorname{div} (m_t(x) D_p H(t, x, Du_t(x))) = 0 & \text{in } (0, T) \times \mathbb{R}^d, \\ (iii) & m_0(x) = \bar{m}_0(x), \ u_T(x) = \frac{\delta \mathcal{G}}{\delta m}(m_T, x) & \text{in } \mathbb{R}^d. \end{cases}$$

where  $H(x,p) = \sup_{a \in \mathbb{R}^d} \{-a \cdot p - L(x,a)\}.$ 

3

(a)

Potential for MFG of controls For MFG of controls, the potential becomes :

$$\inf_{\mu} J(\mu), \qquad J(\mu) := \int_0^T \int_{\mathbb{R}^d \times \mathbb{R}^d} L(x, a) \mu_t(dx, da) dt + \int_0^T \Phi(m_t, \mu_t) dt + \mathcal{G}(m_T)$$

where  $\mu_t(dx, da)$  is a probability measure on  $\mathbb{R}^d \times \mathbb{R}^d$ ,  $m_t = \pi_1 \sharp \mu_t$  and, for any  $\phi \in C_c^{\infty}$ ,

$$\int_0^T \int_{\mathbb{R}^d \times \mathbb{R}^d} (-\partial_t \phi_t(x) - \Delta \phi_t(x) + D\phi_t(x) \cdot a) \mu_t(dx, da) dt - \int_{\mathbb{R}^d} \phi_0(x) \bar{m}_0(dx) = 0.$$

#### Theorem (Ben Tahar-C.)

Under "suitable" conditions, there exists at least one minimizer to *J*. Moreover, if  $\mu$  minimizes *J*, then there exists (u, m) such that  $(u, m, \mu)$  solves the extended MFG system

$$\begin{cases} (i) & -\partial_t u_t(x) - \Delta u_t(x) + \mathbf{H}(x, Du_t(x); m_t, \mu_t) = \frac{\delta \Phi}{\delta m}(m_t, \mu_t, x), \\ (ii) & \partial_t m_t(x) - \Delta m_t(x) - \operatorname{div}(m_t(x)D_p\mathbf{H}(x, Du_t(t, x); m_t, \mu_t)) = 0 \\ (iii) & \mu_t = (id, -D_p\mathbf{H}(\cdot, Du_t(\cdot); m_t, \mu_t)) \sharp m_t, \\ (iv) & m_0 = \bar{m}_0, \ u_T = \frac{\delta \mathcal{G}}{\delta m}(m_T, \cdot). \end{cases}$$

where  $\mathbf{H}(x,p;m,\mu) := \sup_{a \in \mathbb{R}^d} \left\{ -a \cdot p - L(x,a) - \frac{\delta \Phi}{\delta \mu}(m,\mu,x,a) \right\}.$ 

### Conclusion and open problems

We have developed

- For a simple model of trade crowding : well-posedness, learning,
- General existence result for MFG of controls with degenerate diffusion,
- Conditions under which the MFG of controls is a potential game.

Open problems :

- Use of the solution of the MFG system of controls in problems with N players,
- Learning procedures.

э

### Assumptions

- $\ \, \textcircled{0} \ \, g: \mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d) \to \mathbb{R} \text{ and } \sigma: [0, T] \times \mathbb{R}^d \to \mathbb{R}^{d \times D} \text{ are smooth and bounded},$ 
  - 2 The drift has a separate form :  $b(t, x, \alpha, \mu_t) = b_0(t, x, \mu_t) + b_1(t, x, \alpha)$ ,
- The map  $L: [0, T] \times \mathbb{R}^d \times A \times \mathcal{P}_1(\mathbb{R}^d \times A) \to \mathbb{R}$  satisfies the Lasry-Lions monotonicity condition : for any  $\nu_1, \nu_2 \in \mathcal{P}_1(\mathbb{R}^d \times A)$  with the same first marginal,

$$\int_{\mathbb{R}^d\times A} (L(t,x,\alpha;\nu_1)-L(t,x,\alpha;\nu_2))d(\nu_1-\nu_2)(x,\alpha)\geq 0,$$

**3** The map  $\alpha^* : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d \times A) \to \mathbb{R}$  is continuous, with a linear growth : for any L > 0, there exists  $C_L > 0$  such that

$$\delta_A(\alpha_0, \alpha^*(t, x, p; \nu)) \leq C_L(|x|+1) \quad \forall (t, x, p, \nu) \text{ with } |p| \leq L,$$

(where  $\alpha_0$  is a fixed element of *A*).

- **5** The Hamiltonian  $H : [0, T] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d \times A) \to \mathbb{R}$  is continuous; *H* is bounded in  $C^2$  in (x, p) uniformly with respect to  $(t, \nu)$ , and convex in *p*.
- **b** The initial measure  $\bar{m}_0$  is a continuous probability density on  $\mathbb{R}^d$  with a finite second order moment.