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Mean Field Games (MFG) study stochastic optimal control problems with infinitely many
interacting controllers.
Pioneering works of Lasry-Lions (2006) and Huang-Caines-Malhamé (2006)

Goal of the talk

Study MFGs where dynamics and costs depend on the distribution of controls.

Known as “Extended MFG" or “MFG of controls"
Gomes, Patrizi and Voskanyan (14, 16), Carmona and Lacker (14), Bensoussan and Graber
(16), Carmona and Delarue (monograph, 17), Acciaio-Backhoff-Carmona (in preparation).
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The equilibrium configuration in a MFG of controls

m0 = initial population density of small agents on the state space R
d .

Controlled SDE for a small agent with initial position x0 ∈ R
d :

{

dXt = b(t,Xt , αt ;µt )dt + σ(t, Xt , αt ;µt )dWt

X0 = x0

where (Wt )t∈[0,T ] is a standard Brownian Motion (idiosyncratic noise).

Anticipating the evolution of the population density (mt )t∈[0,T ] and of the
(population×control) density (µt )t∈[0,T ], the agent solves the optimal control problem

inf
α

E

[

∫ T

0

L(t,Xt , αt ;µt ) dt + g(XT ,mT )

]

.

Let α∗ = α∗
t (x) be the optimal feedback of the agent.

Under a mean field assumption, the actual population density is given by m̃t = L(X∗
t )

where
{

dX∗
t = b(t,X∗

t , α
∗
t (X

∗
t );µt )dt + σ(t, X∗

t , α
∗
t (X

∗
t );µt )dWt

X∗
0
≡ m0

Equilibrium configuration : µ = (id , α∗)♯m̃.
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Typical issues

Existence/uniqueness

Application to problems with finitely many agents

Limit of the N−player problems

The formation of the MFG equilibria (Learning)

Potential MFG (variational aspects)
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Outline

1 An example

2 MFG of controls : the degenerate case

3 The potential case
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An optimal liquidation problem with trade impact

Joint work with C.-A. Lehalle.
(Model inspired by Almgren-Chriss (00) - close to Carmona-Lacker (14))

A continuum of investors indexed by a ∈ A decide to buy or sell a given quantity Qa
0

of a
tradable instrument.

All investors have to buy or sell before a given terminal time T ,

Different risk aversion parameters φa and Aa. The distribution of the risk aversion
parameters is independent to anything else.

Each investor controls its trading speed αa
t .

Dynamics of the the price St of the tradable instrument :

dSt = θνt dt + σ dWt .

where (Wt ) is a standard B.M., θ > 0 is a parameter and νt is the net sum of the trading
speed of all investors

In our model, the crowd impact (νt ) is intrinsic.
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The equations

Dynamics of the the price St of the tradable instrument :

dSt = θνt dt + σ dWt .

Inventory Qa
t of investor a :

dQa
t = αa

t dt,

Wealth Xa
t of investor a :

dXa
t = −αa

t (St + κ · αa
t ) dt, Xa

0 = 0.

Value function of investor a is given by :

V a
t := sup

α
E

[

Xa
T + Qa

T (ST − Aa · Qa
T )− φa

∫ T

s=t

(Qa
s )

2 ds
∣

∣

∣
Ft

]

.

Distribution of the inventories, wealth and preferences of investors : m(t, ds, dq, da).

Net trading flow νt :

νt =

∫

(s,q,a)
αa

t (s, q)m(t, ds, dq, da)
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The full system

(After simplification) we obtain a Mean Field Game system of controls :















∂t u(t, a, q) − φa q2 +
(∂qu(t, a, q))2

4κ
= −θq νt in (0, T )× A × R

∂t m + ∂q

(

m
∂qu(t,a,q)

2κ

)

= 0 in (0,T )× A × R

where u = u(t, a, q) is the value function of a typical agent,

νt =

∫

q,a

∂qu(t, a, q)

2κ
m(t, dq, da).

and with initial condition (for m) and terminal condition (for u) :

m(0, dq, da) = m0(dq, da), u(t, a, q) = −Aaq2
in A × R.

Main results (C.-Lehalle) :
— Explicit solution in the case of identical preferences,
— For general preferences, existence/uniqueness of a solution for small θ,
— Learning procedures.
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Description of the model

m̄0 = initial population density of small agents on the state space R
d .

(µt )t∈[0,T ] is the density of positions and controls of the agents.

(µt is a Borel probability measure on R
d × A with π1♯µ0 = m̄0).

Dynamics of a small agent with initial position (t0, x0) ∈ [0,T ]× R
d :

{

dXt = b(t,Xt , αt ;µt )dt + σ(t, Xt)dWt

Xt0 = x0

where (Wt )t∈[0,T ] is a standard D−dimensional Brownian Motion.

Value function of the agent :

u(t0, x0) = inf
α

E

[

∫ T

t0

L(t,Xt , αt ;µt) dt + g(XT ,mT )

]

.

It is a viscosity solution of the HJ equation
{

−∂t u(t, x)− tr(a(t, x)D2u(t, x)) + H(t, x,Du(t, x);µt ) = 0 in (0,T )× R
d

u(T , x) = g(x) in R
d

where a = (aij ) = σσT and

H(t, x, p; ν) = sup
α

{−p · b(t, x, α; ν)− L(t, x, α; ν)} .
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Optimal feedback : b(t, x, α∗(t, x);µt ) := −DpH(t, x,Du(t, x);µt ) is the optimal drift for
the agent at position x and at time t.

Uniqueness assumption. We suppose that the map α → b(t, x, α; ν) is one-to-one with a
smooth inverse.
Let α∗ = α∗(t, x, p; ν) be the unique control such that

b(t, x, α∗; ν) = −DpH(t, x, p; ν).

At equilibrium, the population density m = mt (x) solves the Kolmogorov equation







∂t mt (x) −
∑

i,j ∂ij(aij (t, x)mt (x)) − div (mt (x)DpH(t, x,Du(t, x); µt )) = 0

in (0,T )× R
d

m0(x) = m̄0(x) in R
d

The density of the state×controls µt is given by the fixed-point relation :

µt = (id , α∗(t, ·,Du(t, ·);µt )) ♯mt .
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To summarize, the MFG of controls takes the form :







































(i) −∂t u(t, x)− tr(a(t, x)D2u(t, x)) + H(t, x,Du(t, x);µt ) = 0 in (0,T )× R
d ,

(ii) ∂t mt (x) −
∑

i,j ∂ij (aij (t, x)mt (x)) − div (mt (x)DpH(t, x,Du(t, x);µt )) = 0

in (0, T )× R
d ,

(iii) m0(x) = m̄0(x), u(T , x) = g(x,mT ) in R
d ,

(iv) µt = (id , α∗(t, ·,Du(t, ·);µt )) ♯mt in [0,T ].

Previous results :

Gomes, Patrizi, Voskanyan (14, 16)
Extended MFG - Existence/uniqueness of classical solutions without diffusion or ergodic.

Carmona and Lacker (14)
Existence/uniqueness of weak solutions when D = d .

Bensoussan and Graber (16)
Cournot-Nash equilibria - LQ framework

Carmona and Delarue (monograph, 17)
Second order problems - Probabilistic approach for existence/uniqueness.

New here : degenerate diffusion, regularity issues.
(classical for standard MFG systems : Lasry-Lions)
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Main existence result

Theorem (C.-Lehalle)

Assume that

1 m0 ∈ L∞

2 The drift has a separate form : b(t, x, α, µt ) = b0(t, x, µt ) + b1(t, x, α),

3 The map L : [0,T ]× R
d × A × P1(R

d × A) → R satisfies the Lasry-Lions monotonicity
condition : for any ν1, ν2 ∈ P1(R

d × A) with the same first marginal,

∫

Rd×A

(L(t, x, α; ν1) − L(t, x, α; ν2))d(ν1 − ν2)(x, α) ≥ 0,

4 + technical regularity conditions.

Then there exists at least one solution (u, µ) to the MFG system of controls such that

u is continuous in (t, x), Lipschitz continuous in x (uniformly with respect to t),

m is in L∞

and (µt ) is continuous from [0,T ] to P1(R
d × A).

By a solution, we mean :

u is satisfies equation the HJ eq. in the viscosity sense,

m is satisfies the Kolmogorov eq. in the sense of distribution.
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Ideas of proof

As usual, by Schauder-type fixed point argument :
— start with a family (µt ),
— solve HJ eq. u,
— solve the Kolmogorov eq. (m̃t ),
— find (µ̃t ) solution of the local fixed point problem

µ̃t = (id , α∗(t, ·,Du(t, ·); µ̃t )) ♯m̃t in [0,T ].

— show that the map (µt ) → (µ̃t ) has a fixed point.

Main issues :
- the local fixed point and its stability
- stability of the map Du.
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The local fixed point

Lemma

Let m ∈ P2(R
d ) with a bounded density and p ∈ L∞(Rd ,Rd ).

(Existence and uniqueness.) There exists a unique fixed point µ = F (p,m) ∈ P1(R
d × A)

to the relation
µ = (id , α∗(t, ·, p(·);µ))♯m. (1)

Moreover, there exists a constant C0, depending only on ‖p‖∞ and on the second order
moment of m, such that

∫

Rd×A

{

|x|2 + δA(α0, α)
}

dµ(x, α) ≤ C0.

(Stability.) Let (mn) be a family of P1(R
d ), with a uniformly bounded density in L∞ and

uniformly bounded second order moment, which converges in P1(R
d ) to some m, (pn) be

a uniformly bounded family in L∞ which converges a.e. to some p. Then F (pn,mn)
converges to F (p,m) in P1(R

d × A).

Uniqueness borrowed from Carmona-Delarue.
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Uniform time stability stability of the gradient

Let

D := {p ∈ L∞(Rd ), ∃v ∈ W 1,∞(Rd ), p = Dv , ‖v‖∞ ≤ M, ‖Dv‖∞ ≤ M, D2v ≤ M Id}

endowed with the distance

dD(p1, p2) =

∫

Rd

|p1(x) − p2(x)|

(1 + |x|)d+1
dx ∀p1, p2 ∈ D.

Lemma

There is a modulus ω such that, for any (µt ) ∈ C0([0,T ],P1(R
d × A)), the viscosity solution u to

{

−∂t u(t, x)− tr(a(t, x)D2u(t, x)) + H(t, x,Du(t, x);µt ) = 0 in (0,T )× R
d

u(T , x) = g(x) in R
d

satisfies
dD(Du(t1, ·),Du(t2, ·)) ≤ ω(|t1 − t2|) ∀t1, t2 ∈ [0,T ].
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Potential for standard MFG

Problem : find MFG equilibrium configuration as minima of an energy functional.
Motivations : Numerical aspects, stability.

For classical MFG systems, a potential is given by

inf
(m,α)

J(m, α), J(m, α) :=

∫ T

0

∫

Rd
L(x, αt (x))mt (dx)dt +

∫ T

0

F(mt )dt + G(mT ),

where (m, v) solves

∂t mt −∆mt + div(mtαt ) = 0, m0 = m̄0.

Link with the MFG system : Following Lasry-Lions, if (m, v) is a minimizer, then there
exists u such that the pair (u,m) solves the MFG system



















(i) −∂t ut(x) −∆ut(x) + H(t, x,Dut(x)) =
δF

δm
(mt , x) in (0,T )× R

d ,

(ii) ∂t mt (x) −∆mt(x)) − div (mt (x)DpH(t, x,Dut (x))) = 0 in (0, T )× R
d ,

(iii) m0(x) = m̄0(x), uT (x) =
δG

δm
(mT , x) in R

d .

where H(x, p) = sup
a∈Rd

{−a · p − L(x, a)}.
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Potential for MFG of controls
For MFG of controls, the potential becomes :

inf
µ

J(µ), J(µ) :=

∫ T

0

∫

Rd×Rd
L(x, a)µt (dx, da)dt +

∫ T

0

Φ(mt , µt )dt + G(mT )

where µt (dx, da) is a probability measure on R
d × R

d , mt = π1♯µt and, for any φ ∈ C∞
c ,

∫ T

0

∫

Rd×Rd
(−∂tφt (x) −∆φt(x) + Dφt(x) · a)µt (dx, da)dt −

∫

Rd
φ0(x)m̄0(dx) = 0.

Theorem (Ben Tahar-C.)

Under “suitable" conditions, there exists at least one minimizer to J. Moreover, if µ minimizes J,
then there exists (u,m) such that (u,m, µ) solves the extended MFG system



























(i) −∂t ut(x) −∆ut(x) + H(x,Dut (x);mt , µt ) =
δΦ

δm
(mt , µt , x),

(ii) ∂t mt (x) −∆mt(x) − div(mt (x)DpH(x,Dut(t, x);mt , µt )) = 0,
(iii) µt = (id ,−DpH(·,Dut(·);mt , µt ))♯mt ,

(iv) m0 = m̄0, uT =
δG

δm
(mT , ·).

where H(x, p;m, µ) := sup
a∈Rd

{

−a · p − L(x, a)−
δΦ

δµ
(m, µ, x, a)

}

.
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Conclusion and open problems

We have developed

For a simple model of trade crowding : well-posedness, learning,

General existence result for MFG of controls with degenerate diffusion,

Conditions under which the MFG of controls is a potential game.

Open problems :

Use of the solution of the MFG system of controls in problems with N players,

Learning procedures.
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Assumptions

1 g : Rd × P1(R
d ) → R and σ : [0,T ]× R

d → R
d×D are smooth and bounded,

2 The drift has a separate form : b(t, x, α, µt ) = b0(t, x, µt ) + b1(t, x, α),

3 The map L : [0,T ]× R
d × A × P1(R

d × A) → R satisfies the Lasry-Lions monotonicity
condition : for any ν1, ν2 ∈ P1(R

d × A) with the same first marginal,

∫

Rd×A

(L(t, x, α; ν1) − L(t, x, α; ν2))d(ν1 − ν2)(x, α) ≥ 0,

4 The map α∗ : [0,T ]× R
d × R

d × P1(R
d × A) → R is continuous, with a linear growth : for

any L > 0, there exists CL > 0 such that

δA(α0, α
∗(t, x, p; ν)) ≤ CL(|x|+ 1) ∀(t, x, p, ν) with |p| ≤ L,

(where α0 is a fixed element of A).

5 The Hamiltonian H : [0,T ]× R
d × R

d × P1(R
d × A) → R is continuous ; H is bounded in

C2 in (x, p) uniformly with respect to (t, ν), and convex in p.

6 The initial measure m̄0 is a continuous probability density on R
d with a finite second order

moment.
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