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___________________________
VIABILITY IN KREPS [78], HARRISON-KREPS [79]

Suppose we are given a price system (M, 7) as
@ a linear space M C X of marketed claims,

@ a linear pricing rule 7 defined on M.
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VIABILITY IN KREPS [78], HARRISON-KREPS [79]

Suppose we are given a price system (M, 7) as
@ a linear space M C X of marketed claims,

@ a linear pricing rule 7 defined on M.

Q: Is it possible to extend 7 to the market space X7

Q: Does this follow from some economic principle?
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___________________________
VIABILITY IN KREPS [78], HARRISON-KREPS [79]

(M, 7) is defined to be viable if there exists a preference relation < and
m* € M such that

o satisfies the budget constraint: w(m*) < 0.

@ is optimal: m* = m for all m € M with 7(m) <0
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___________________________
VIABILITY IN KREPS [78], HARRISON-KREPS [79]

(M, 7) is defined to be viable if there exists a preference relation < and
m* € M such that

o satisfies the budget constraint: w(m*) < 0.

@ is optimal: m* = m for all m € M with 7(m) <0

Under some restrictions on < (conceivable agents) we have the following

THEOREM (K78, HK79)
viability <= m admits an extension to X J
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-
VIABILITY IN HARRISON-KREPS [79]

A fundamental aspect in this work is the class of conceivable preferences A
in which a preference =< for equilibrium prices is chosen.
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VIABILITY IN HARRISON-KREPS [79]

A fundamental aspect in this work is the class of conceivable preferences A
in which a preference =< for equilibrium prices is chosen.

HK['79] “[...] This example shows that P (a fixed probability measure)
plays three roles:

o it determines the space of contingent claims (X = L2(Q, F,P)),

e through its null sets it plays a role in the requirement that < be
strictly increasing:

dKcCc X st. x+k>=x Vxe X, ke K,
e it determines the continuity requirement for < (level sets are
L2-closed).
[...] ”
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VIABILITY IN HARRISON-KREPS [79]

What are the consequences of such assumptions?
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-
VIABILITY IN HARRISON-KREPS [79]

What are the consequences of such assumptions?

Call ¢ the extension of 7, i.e. 1|y = 7. Then,

e (k) >0 for any k € K,
e 1 is linear and continuous, i.e., ¥ € X' = L%(Q, F,P),
e 9(x) = E[px] (by Riesz representation Theorem),

o If X represents claims in some securities market v/ is an equivalent
martingale measure.

THEOREM (HK79) J

viability <= P admits an equivalent martingale measure
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AIM AND GOALS
Q: What about Kinghtian Uncertainty?

To study:
@ viability in a general framework,
@ connection with no arbitrage,

@ connection with extendability.
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N
OUTLINE

» A general framework.
» Arbitrage and Viability.

» Characterization in terms of sublinear expectations.
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THE SETUP

The financial market a four-tuple © := (Q,H,<,7) = (<,Z) where,
» The set Q represents all possible uncertain outcomes.
» The set of all contracts is a given ordered space (H, <) with
HCL={X:Q—R}. We then say:

o Z € His negligibleif Z ~ 0 (i.e Z>0and Z <0);

e P € H is non-negative if P > 0 and positive if P > 0.
Notation: Z, P and P respectively.

» The set of contracts achievable with zero initial cost or in short,
achievable contracts is a given convex cone Z.
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N
THE SETUP

The class of conceivable agents A is a set of complete and transitive
binary relations =< on H satisfying,

» X <Y implies X XY,

» the upper contour set of < is convex, i..e,

F<X and FXY =F=<AX+(1-A\)Y, Vrelo,1];

» < is weakly continuous, i.e., for every sequence {c,} C Ry with ¢, |0
we have

X—c,<Y,VneN = X<Y, X, YcH.
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ARBITRAGE AND VIABILITY

M. Burzont (ETHZ) VIABILITY 14-11-17 12 /27



DEFINITION

Let © be a financial market and R C P a class of relevant contracts.

> We say that a sequence of achievable contracts {¢"}°°; C Z is a free
lunch with vanishing risk, if there exists a relevant contract R* € R and a
sequence {c,}°°; C Ry with ¢, | O satisfying,

c,+{">R*, n=12...

write NAs(©, R) when (©,R) has no free lunches with vanishing risk.
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VIABILITY

Economically, a price system in a financial market is viable if it can be
derived from an economic equilibrium in which agents have preferences
from A.

Equilibrium in this context would mean that one can find a best net trade
0* € T so that by adding an achievable contract with zero cost, ¢ € Z, to

0* we cannot obtain a preferable contract.

The existence of such an optimal contract £* is a necessary condition for
equilibrium.
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DEFINITION

Let (©,R) be a financial market. We say that (©,R) is viable, if there
exists <€ A and a net trade vector £* € T satisfying

0+ X=X, VeI, XeH.
* — R <0, VR € R.

The first is an equilibrium condition. In particular, for X = 0,
=<', YIeT.

The second replaces and weaken the classical monotonicity condition
assumed in Kreps, Harrison and Kreps ['79]. Strict monotonicity is
required only at the optimal.
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N
MAIN RESULT

THEOREM

Let (©,R) be a financial market. The following are equivalent:
Q (©,R) is viable;
@ (©,R) has no free lunch with vanishing risk.
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SKETCH OF THE PROOF

We introduce the superhedgding functional:

D(X):=inf{ceR : 3¢e€Tsothatc+¢>X}, XeH

PROPOSITION

The financial market satisfies NAs(©) if and only if D(p) >0,V p € R. }

M. Burzont (ETHZ) VIABILITY 14-11-17 17 /27



N
SKETCH OF THE PROOF

NA(©) = Viability.
Define the utility function U(X) := — D(—X) for X € H.

Define < on H by
X=<Y < UX)<UY).

It is clear that < is monotone, cash additive, convex and rational.
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SKETCH OF THE PROOF

NA(©) = Viability.
Define the utility function U(X) := — D(—X) for X € H.

Define < on H by
X=<Y < UX)<UY).
It is clear that < is monotone, cash additive, convex and rational.
Moreover, if Y —c, < X with ¢, | 0. Then,
UY)—cn=UY—c,) <UX)Vn = UY)<UX) = Y=X

Hence, < is weakly continuous. This shows that <€ A.
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N
SKETCH OF THE PROOF

NAs(©) = Viability.
Next we show viability. For any X € H,¢ € T,

UX +0) = —D(~[X + ]) < ~D(~[X + €] + £) = —D(~X) = U(X).

Hence, X + ¢ < X forany X €¢ H and £ € .
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SKETCH OF THE PROOF

NAs(©) = Viability.
Next we show viability. For any X € H,¢ € T,

UX+10)=-D(-[X+1]) <-D(-[X+{+¢)=—-D(—X) = UX).
Hence, X + ¢ < X forany X €¢ H and £ € .
Also NAs(©) implies that D(R) > 0 and D(0) = 0. Therefore,
U-R)=-D(R)<0=U(0) = —-R<0.

We conclude that (©,R) is viable.
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CHARACTERIZATION IN TERMS OF
SUBLINEAR EXPECTATIONS
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___________________________
SUBLINEAR MARTINGALE EXPECTATIONS

E :H — Ris a (coherent) sublinear expectation if it is (positively
homogeneous,) monotone w.r.t. <, cash-invariant and subadditive.
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___________________________
SUBLINEAR MARTINGALE EXPECTATIONS

E :H — Ris a (coherent) sublinear expectation if it is (positively
homogeneous,) monotone w.r.t. <, cash-invariant and subadditive.

DEFINITION

We say that a functional £ : H — R

D> is absolutely continuous, if £(Z) =0, for every Z € Z.

> has full support, if E(R) > 0, for every R € R.

> has the super-martingale property, if £(¢) < 0 for every ¢ € 7.

We denote by M(©,R) the class of sublinear expectations, which satisfies
the properties listed above. M€¢(©,R) those which are, in addition,
coherent.
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N
CHARACTERIZATION

Suppose for the moment H = B,

THEOREM
For a financial market © = (=,Z,R), the following are equivalent:

@ The financial market is viable.
@ NA4(©) holds true.
@ The set M(©,R) is non-empty.

© There exists a convex set of linear functionals Q(©) C ba satisfying
p(Q) =1,

©(P) > 0 for every P € P.

»(€) <0 forevery L € T,

for any R € R, there exists pr € Q such that pr(R) > 0.
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EXAMPLES
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___________________________
PROBABILISTIC FRAMEWORK

Let F be a sigma algebra on Q and P be a probability measure on (2, F).
» Weak Market Efficient Hypothesis

X<Y < EP[X]<EF[Y]

Z is the set of all functions with mean zero. Typically R = P~.
» Strong Market Efficient Hypothesis

X<Y & PX<Y)=L

Z is the set of P-a.s. zero functions. Typically R = P~.
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MARKET EFFICIENT HYPOTHESIS UNDER AMBIGUITY

Let M be a given set of probability measures on (2, F). Define

X):= inf EP[X], X )
Em(X) ant (X1, EH

We can extend the previous examples by incorporating ambiguity through
the nonlinear expectation Exq. In particular, for the Strong Market
Efficient Hypothesis under Ambiguity,

X<Y & 0<EmY-X]

Z is the set of M-q.s. zero functions and, typically,
R:=Pt={P>0M—gq.s., P(P>0)>0 for somePe M}.
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N
POINTWISE FRAMEWORK

In the following examples we let Q be a metric space. We say X < Y if
inf X <infY,
Q Q

which implies Z = {0}. Different choices for R leads to different notion of
arbitrage.

Q@ R:={Pe&P : Jwy € Q such that P(wp) >0 }. One point arb.
Q@ R :={Pec () : 3wy € Q2 such that P(wp) >0 }. Open arb.
@ R={Pe€P : Jce(0,00) such that P >q ¢ }. Uniform arb.
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N
CONCLUSIONS

We have provided a general framework to study arbitrage and viability.

@ This framework allows for probabilistic and non-probabilistic
descriptions. Continuous or discrete time markets. General set of
investement opportunities.

A market with no free lunch is viable and viceversa.

Pricing mechanism arising from the market might be in ba.

Pricing rules with full support are in general non-linear.
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We have provided a general framework to study arbitrage and viability.

@ This framework allows for probabilistic and non-probabilistic
descriptions. Continuous or discrete time markets. General set of
investement opportunities.

A market with no free lunch is viable and viceversa.

Pricing mechanism arising from the market might be in ba.

Pricing rules with full support are in general non-linear.

Thank you for your kind attention.
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