VIABILITY, ARBITRAGE AND PREFERENCES

joint work with F. Riedel and H. M. Soner

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

CIRM Workshop, Luminy, 11th November 2017

M. Burzoni (ETHZ)

VIABILITY

A 3 1 A 3 A

14-11-17

1 / 27

MOTIVATION

メロト メタト メヨト メヨト

Suppose we are given a price system (M, π) as

- a linear space $M \subset X$ of marketed claims,
- a linear pricing rule π defined on M.

A E > A E >

14-11-17

Suppose we are given a price system (M, π) as

- a linear space $M \subset X$ of marketed claims,
- a linear pricing rule π defined on M.

Q: Is it possible to extend π to the market space *X*?

14-11-17

Suppose we are given a price system (M, π) as

- a linear space $M \subset X$ of marketed claims,
- a linear pricing rule π defined on M.

Q: Is it possible to extend π to the market space *X*?

Q: Does this follow from some economic principle?

14-11-17

 (M,π) is defined to be viable if there exists a preference relation \preceq and $m^* \in M$ such that

- satisfies the budget constraint: $\pi(m^*) \leq 0$.
- is optimal: $m^* \succeq m$ for all $m \in M$ with $\pi(m) \le 0$

14-11-17

 (M,π) is defined to be viable if there exists a preference relation \preceq and $m^* \in M$ such that

- satisfies the budget constraint: $\pi(m^*) \leq 0$.
- is optimal: $m^* \succeq m$ for all $m \in M$ with $\pi(m) \leq 0$

Under some restrictions on \preceq (conceivable agents) we have the following

THEOREM (K78, HK79)

viability $\iff \pi$ admits an extension to X

イロト イヨト イヨト イヨト

14-11-17

A fundamental aspect in this work is the class of conceivable preferences **A** in which a preference \leq for equilibrium prices is chosen.

イロト イヨト イヨト イヨト

A fundamental aspect in this work is the class of conceivable preferences **A** in which a preference \leq for equilibrium prices is chosen.

HK['79] "[...] This example shows that \mathbb{P} (a fixed probability measure) plays three roles:

• it determines the space of contingent claims $(X = L^2(\Omega, \mathcal{F}, \mathbb{P}))$,

イロト イポト イヨト イヨト 一日

A fundamental aspect in this work is the class of conceivable preferences **A** in which a preference \leq for equilibrium prices is chosen.

HK['79] "[...] This example shows that \mathbb{P} (a fixed probability measure) plays three roles:

- it determines the space of contingent claims $(X = L^2(\Omega, \mathcal{F}, \mathbb{P}))$,
- through its null sets it plays a role in the requirement that ≤ be strictly increasing:

$$\exists K \subset X \text{ s.t. } x + k \succ x \quad \forall x \in X, k \in K,$$

イロト イヨト イヨト イヨト

14-11-17

A fundamental aspect in this work is the class of conceivable preferences **A** in which a preference \leq for equilibrium prices is chosen.

HK['79] "[...] This example shows that \mathbb{P} (a fixed probability measure) plays three roles:

- it determines the space of contingent claims $(X = L^2(\Omega, \mathcal{F}, \mathbb{P}))$,
- through its null sets it plays a role in the requirement that ≤ be strictly increasing:

$$\exists K \subset X \quad \text{s.t.} \quad x + k \succ x \qquad \forall x \in X, \ k \in K,$$

• it determines the continuity requirement for \leq (level sets are L^2 -closed).

[...] "

イロン 不同 とくほど 不良 とうほ

14-11-17

What are the consequences of such assumptions?

イロト イヨト イヨト イヨト

What are the consequences of such assumptions?

Call ψ the extension of $\pi,$ i.e. $\psi_{|\textit{M}}=\pi.$ Then,

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

14-11-17

What are the consequences of such assumptions?

Call ψ the extension of π , i.e. $\psi_{|M} = \pi$. Then,

• $\psi(k) > 0$ for any $k \in K$,

イロト イポト イヨト イヨト 一日

14-11-17

What are the consequences of such assumptions?

Call ψ the extension of $\pi,$ i.e. $\psi_{|\textit{M}}=\pi.$ Then,

- $\psi(k) > 0$ for any $k \in K$,
- ψ is linear and continuous, i.e., $\psi \in X' = L^2(\Omega, \mathcal{F}, \mathbb{P})$,

イロト イボト イヨト イヨト 二日

14-11-17

What are the consequences of such assumptions?

Call ψ the extension of $\pi,$ i.e. $\psi_{|\textit{M}}=\pi.$ Then,

- $\psi(k) > 0$ for any $k \in K$,
- ψ is linear and continuous, i.e., $\psi \in X' = L^2(\Omega, \mathcal{F}, \mathbb{P})$,
- $\psi(x) = \mathbb{E}[\rho x]$ (by Riesz representation Theorem),

イロト イボト イヨト イヨト 二日

What are the consequences of such assumptions?

Call ψ the extension of π , i.e. $\psi_{|M} = \pi$. Then,

- $\psi(k) > 0$ for any $k \in K$,
- ψ is linear and continuous, i.e., $\psi \in X' = L^2(\Omega, \mathcal{F}, \mathbb{P})$,
- $\psi(x) = \mathbb{E}[\rho x]$ (by Riesz representation Theorem),
- If X represents claims in some securities market ψ is an equivalent martingale measure.

イロト イボト イヨト イヨト 二日

What are the consequences of such assumptions?

Call ψ the extension of π , i.e. $\psi_{|M} = \pi$. Then,

- $\psi(k) > 0$ for any $k \in K$,
- ψ is linear and continuous, i.e., $\psi \in X' = L^2(\Omega, \mathcal{F}, \mathbb{P})$,
- $\psi(x) = \mathbb{E}[\rho x]$ (by Riesz representation Theorem),
- If X represents claims in some securities market ψ is an equivalent martingale measure.

THEOREM (HK79)

viability $\iff \mathbb{P}$ admits an equivalent martingale measure

・ロ・・ (日・・ 日・・ (日・

14-11-17

AIM AND GOALS

Q: What about Kinghtian Uncertainty?

・ロ・・ (日・・ 日・・ (日・

3

7 / 27

14-11-17

AIM AND GOALS

Q: What about Kinghtian Uncertainty?

To study:

- viability in a general framework,
- connection with no arbitrage,
- connection with extendability.

14-11-17

OUTLINE

- ► A general framework.
- Arbitrage and Viability.
- Characterization in terms of sublinear expectations.

イロト イヨト イヨト イヨト

M. Burzoni (ETHZ)

メロト メロト メヨト メヨト

- 2

9 / 27

14-11-17

The financial market a four-tuple $\Theta := (\Omega, \mathcal{H}, \leq, \mathcal{I}) = (\leq, \mathcal{I})$ where,

• The set Ω represents all possible *uncertain outcomes*.

イロト イヨト イヨト イヨト

The financial market a four-tuple $\Theta := (\Omega, \mathcal{H}, \leq, \mathcal{I}) = (\leq, \mathcal{I})$ where,

- The set Ω represents all possible *uncertain outcomes*.
- ► The set of all *contracts* is a given ordered space (\mathcal{H}, \leq) with $\mathcal{H} \subset \mathcal{L} = \{X : \Omega \to \mathbb{R}\}$. We then say:
 - $Z \in \mathcal{H}$ is negligible if $Z \sim \mathbf{0}$ (i.e $Z \ge 0$ and $Z \le 0$);
 - $P \in \mathcal{H}$ is non-negative if $P \ge \mathbf{0}$ and positive if $P > \mathbf{0}$.

Notation: \mathcal{Z} , \mathcal{P} and \mathcal{P}^+ respectively.

イロン 不良 とくほう イロン 一日

The financial market a four-tuple $\Theta := (\Omega, \mathcal{H}, \leq, \mathcal{I}) = (\leq, \mathcal{I})$ where,

- The set Ω represents all possible *uncertain outcomes*.
- ► The set of all *contracts* is a given ordered space (\mathcal{H}, \leq) with $\mathcal{H} \subset \mathcal{L} = \{X : \Omega \to \mathbb{R}\}$. We then say:
 - $Z \in \mathcal{H}$ is negligible if $Z \sim \mathbf{0}$ (i.e $Z \ge 0$ and $Z \le 0$);
 - $P \in \mathcal{H}$ is non-negative if $P \ge \mathbf{0}$ and positive if $P > \mathbf{0}$.

Notation: \mathcal{Z} , \mathcal{P} and \mathcal{P}^+ respectively.

► The set of contracts achievable with zero initial cost or in short, *achievable contracts* is a given convex cone \mathcal{I} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

The class of conceivable agents A is a set of complete and transitive binary relations \leq on H satisfying,

► $X \leq Y$ implies $X \leq Y$;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

The class of conceivable agents A is a set of complete and transitive binary relations \leq on H satisfying,

- ► $X \leq Y$ implies $X \leq Y$;
- ▶ the upper contour set of \leq is convex, i..e,

$$F \preceq X$$
 and $F \preceq Y \Rightarrow F \preceq \lambda X + (1 - \lambda)Y, \quad \forall \lambda \in [0, 1];$

イロト イボト イヨト イヨト 二日

14-11-17

The class of conceivable agents A is a set of complete and transitive binary relations \leq on H satisfying,

- ► $X \leq Y$ implies $X \leq Y$;
- ▶ the upper contour set of \leq is convex, i..e,

$$F \preceq X$$
 and $F \preceq Y \Rightarrow F \preceq \lambda X + (1 - \lambda)Y, \quad \forall \lambda \in [0, 1];$

▶ \leq is *weakly continuous*, i.e., for every sequence $\{c_n\} \subset \mathbb{R}_+$ with $c_n \downarrow 0$ we have

$$X - \mathbf{c}_n \preceq Y, \ \forall n \in \mathbb{N} \quad \Rightarrow \quad X \preceq Y, \qquad X, Y \in \mathcal{H}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

ARBITRAGE AND VIABILITY

イロト イヨト イヨト イヨト

DEFINITION

Let Θ be a financial market and $\mathcal{R} \subset \mathcal{P}^+$ a class of *relevant contracts*. \triangleright We say that a sequence of achievable contracts $\{\ell^n\}_{n=1}^{\infty} \subset \mathcal{I}$ is a *free lunch with vanishing risk*, if there exists a relevant contract $R^* \in \mathcal{R}$ and a sequence $\{c_n\}_{n=1}^{\infty} \subset \mathbb{R}_+$ with $c_n \downarrow 0$ satisfying,

$$\mathbf{c}_n + \ell^n \ge R^*, \quad n = 1, 2, \dots$$

write $NA_s(\Theta, \mathcal{R})$ when (Θ, \mathcal{R}) has no free lunches with vanishing risk.

Economically, a price system in a financial market is viable if it can be derived from an economic equilibrium in which agents have preferences from A.

Equilibrium in this context would mean that one can find a best net trade $\ell^* \in \mathcal{I}$ so that by adding an achievable contract with zero cost, $\ell \in \mathcal{I}$, to ℓ^* we cannot obtain a preferable contract.

The existence of such an optimal contract ℓ^* is a necessary condition for equilibrium.

イロト イポト イヨト イヨト

DEFINITION

Let (Θ, \mathcal{R}) be a financial market. We say that (Θ, \mathcal{R}) is *viable*, if there exists $\leq' \in \mathcal{A}$ and a net trade vector $\ell^* \in \mathcal{I}$ satisfying

$$\ell + X \preceq' \ell^* + X, \qquad \forall \ell \in \mathcal{I}, \ X \in \mathcal{H}.$$

 $\ell^* - R \prec' \ell^*, \qquad \forall R \in \mathcal{R}.$

The first is an equilibrium condition. In particular, for X = 0,

$$\ell \preceq' \ell^*, \quad \forall \ \ell \in \mathcal{I}.$$

The second replaces and weaken the classical monotonicity condition assumed in Kreps, Harrison and Kreps ['79]. Strict monotonicity is required only at the optimal.

14-11-17

THEOREM

Let (Θ, \mathcal{R}) be a financial market. The following are equivalent: • (Θ, \mathcal{R}) is viable;

2 (Θ, \mathcal{R}) has no free lunch with vanishing risk.

14-11-17

We introduce the superhedgding functional:

 $\mathcal{D}(X) := \inf \left\{ c \in \mathbb{R} : \exists \ell \in \mathcal{I} \text{ so that } c + \ell \ge X \right\}, \quad X \in \mathcal{H}$

PROPOSITION

The financial market satisfies $NA_s(\Theta)$ if and only if $\mathcal{D}(p) > 0$, $\forall p \in \mathcal{R}$.

M. BURZONI (ETHZ)

イロト イボト イヨト イヨト 二日

14-11-17

 $NA_{s}(\Theta) \Rightarrow$ Viability. Define the utility function $U(X) := -\mathcal{D}(-X)$ for $X \in \mathcal{H}$.

Define \preceq on \mathcal{H} by

$$X \preceq Y \quad \Leftrightarrow \quad U(X) \leq U(Y).$$

It is clear that \leq is monotone, cash additive, convex and rational.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

14-11-17 18 / 27

 $NA_{s}(\Theta) \Rightarrow$ Viability. Define the utility function $U(X) := -\mathcal{D}(-X)$ for $X \in \mathcal{H}$.

Define \leq on \mathcal{H} by

$$X \preceq Y \quad \Leftrightarrow \quad U(X) \leq U(Y).$$

It is clear that \leq is monotone, cash additive, convex and rational.

Moreover, if $Y - \mathbf{c}_n \leq X$ with $c_n \downarrow 0$. Then,

 $U(Y)-c_n = U(Y-\mathbf{c}_n) \leq U(X) \ \forall n \quad \Rightarrow \quad U(Y) \leq U(X) \quad \Rightarrow \quad Y \preceq X.$

Hence, \leq is weakly continuous. This shows that $\leq \in \mathcal{A}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

14-11-17 18 / 27

 $NA_s(\Theta) \Rightarrow$ Viability. Next we show viability. For any $X \in \mathcal{H}, \ell \in \mathcal{I}$,

$$U(X+\ell)=-\mathcal{D}(-[X+\ell])\leq -\mathcal{D}(-[X+\ell]+\ell)=-\mathcal{D}(-X)=U(X).$$

Hence, $X + \ell \preceq X$ for any $X \in \mathcal{H}$ and $\ell \in \mathcal{I}$.

M. Burzoni (ETHZ)

イロト イポト イヨト イヨト 一日

14-11-17

 $NA_s(\Theta) \Rightarrow$ Viability. Next we show viability. For any $X \in \mathcal{H}, \ell \in \mathcal{I}$,

$$U(X+\ell)=-\mathcal{D}(-[X+\ell])\leq -\mathcal{D}(-[X+\ell]+\ell)=-\mathcal{D}(-X)=U(X).$$

Hence, $X + \ell \preceq X$ for any $X \in \mathcal{H}$ and $\ell \in \mathcal{I}$.

Also $NA_s(\Theta)$ implies that $\mathcal{D}(R) > 0$ and $\mathcal{D}(\mathbf{0}) = 0$. Therefore,

$$U(-R) = -\mathcal{D}(R) < 0 = U(\mathbf{0}) \quad \Rightarrow \quad -R \prec \mathbf{0}.$$

We conclude that (Θ, \mathcal{R}) is viable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

14-11-17

CHARACTERIZATION IN TERMS OF SUBLINEAR EXPECTATIONS

イロト イヨト イヨト イヨト

3

20 / 27

14-11-17

 $\mathcal{E} : \mathcal{H} \mapsto \mathbb{R}$ is a *(coherent) sublinear expectation* if it is (positively homogeneous,) monotone w.r.t. \leq , cash-invariant and subadditive.

イロト イヨト イヨト イヨト

 $\mathcal{E} : \mathcal{H} \mapsto \mathbb{R}$ is a *(coherent) sublinear expectation* if it is (positively homogeneous,) monotone w.r.t. \leq , cash-invariant and subadditive.

14-11-17

21 / 27

DEFINITION

We say that a functional $\mathcal{E}: \mathcal{H} \mapsto \mathbb{R}$

 \triangleright is absolutely continuous, if $\mathcal{E}(Z) = 0$, for every $Z \in \mathcal{Z}$.

 $\mathcal{E} : \mathcal{H} \mapsto \mathbb{R}$ is a *(coherent) sublinear expectation* if it is (positively homogeneous,) monotone w.r.t. \leq , cash-invariant and subadditive.

DEFINITION

We say that a functional $\mathcal{E}: \mathcal{H} \mapsto \mathbb{R}$

 \triangleright is absolutely continuous, if $\mathcal{E}(Z) = 0$, for every $Z \in \mathcal{Z}$.

 \triangleright has *full support*, if $\mathcal{E}(R) > 0$, for every $R \in \mathcal{R}$.

14-11-17

 $\mathcal{E} : \mathcal{H} \mapsto \mathbb{R}$ is a *(coherent) sublinear expectation* if it is (positively homogeneous,) monotone w.r.t. \leq , cash-invariant and subadditive.

DEFINITION

- We say that a functional $\mathcal{E}: \mathcal{H} \mapsto \mathbb{R}$
- \triangleright is absolutely continuous, if $\mathcal{E}(Z) = 0$, for every $Z \in \mathcal{Z}$.
- \triangleright has *full support*, if $\mathcal{E}(R) > 0$, for every $R \in \mathcal{R}$.
- \triangleright has the super-martingale property, if $\mathcal{E}(\ell) \leq 0$ for every $\ell \in \mathcal{I}$.

 $\mathcal{E} : \mathcal{H} \mapsto \mathbb{R}$ is a *(coherent) sublinear expectation* if it is (positively homogeneous,) monotone w.r.t. \leq , cash-invariant and subadditive.

DEFINITION

We say that a functional $\mathcal{E}:\mathcal{H}\mapsto\mathbb{R}$

- \triangleright is absolutely continuous, if $\mathcal{E}(Z) = 0$, for every $Z \in \mathcal{Z}$.
- \triangleright has *full support*, if $\mathcal{E}(R) > 0$, for every $R \in \mathcal{R}$.

 \triangleright has the *super-martingale property*, if $\mathcal{E}(\ell) \leq 0$ for every $\ell \in \mathcal{I}$.

We denote by $\mathcal{M}(\Theta, \mathcal{R})$ the class of sublinear expectations, which satisfies the properties listed above. $\mathcal{M}^{c}(\Theta, \mathcal{R})$ those which are, in addition, coherent.

イロト イヨト イヨト イヨト

14-11-17

CHARACTERIZATION

Suppose for the moment $\mathcal{H} = \mathcal{B}_b$.

THEOREM

For a financial market $\Theta = (\preceq, \mathcal{I}, \mathcal{R})$, the following are equivalent:

- The financial market is viable.
- NA_s(Θ) holds true.
- The set $\mathcal{M}(\Theta, \mathcal{R})$ is non-empty.

• There exists a convex set of linear functionals $\mathcal{Q}(\Theta) \subset$ ba satisfying

- $\varphi(\Omega) = 1$,
- $\varphi(P) \ge 0$ for every $P \in \mathcal{P}$.
- $\varphi(\ell) \leq 0$ for every $\ell \in \mathcal{I}$,
- for any $R \in \mathcal{R}$, there exists $\varphi_R \in \mathcal{Q}$ such that $\varphi_R(R) > 0$.

イロト イポト イヨト イヨト 二日

EXAMPLES

M. Burzoni (ETHZ)

= 990

メロト メロト メヨト メヨト

Let \mathcal{F} be a sigma algebra on Ω and \mathbb{P} be a probability measure on (Ω, \mathcal{F}) . • Weak Market Efficient Hypothesis

$$X \leq Y \quad \Leftrightarrow \quad \mathbb{E}^{\mathbb{P}}[X] \leq \mathbb{E}^{\mathbb{P}}[Y].$$

 ${\mathcal Z}$ is the set of all functions with mean zero. Typically ${\mathcal R}={\mathcal P}^+.$

Strong Market Efficient Hypothesis

$$X \leq Y \quad \Leftrightarrow \quad \mathbb{P}(X \leq Y) = 1.$$

 \mathcal{Z} is the set of \mathbb{P} -a.s. zero functions. Typically $\mathcal{R} = \mathcal{P}^+$.

イロン 不同 とくほう 不良 とうほ

Let \mathcal{M} be a given set of probability measures on (Ω, \mathcal{F}) . Define

$$\mathcal{E}_{\mathcal{M}}(X) := \inf_{\mathbb{P}\in\mathcal{M}} \mathbb{E}^{\mathbb{P}}[X], \quad X\in\mathcal{H}.$$

We can extend the previous examples by incorporating ambiguity through the nonlinear expectation $\mathcal{E}_{\mathcal{M}}$. In particular, for the Strong Market Efficient Hypothesis under Ambiguity,

$$X \leq Y \quad \Leftrightarrow \quad 0 \leq \mathcal{E}_{\mathcal{M}}[Y - X].$$

 $\begin{aligned} \mathcal{Z} \text{ is the set of } \mathcal{M}\text{-q.s., zero functions and, typically,} \\ \mathcal{R} := \mathcal{P}^+ = \{ P \geq 0 \ \mathcal{M} - q.s., \ \mathbb{P}(P > 0) > 0 \ \text{ for some } \mathbb{P} \in \mathcal{M} \}. \end{aligned}$

In the following examples we let Ω be a metric space. We say $X \leq Y$ if

 $\inf_{\Omega} X \leq \inf_{\Omega} Y ,$

which implies $\mathcal{Z} = \{0\}$. Different choices for \mathcal{R} leads to different notion of arbitrage.

• $\mathcal{R} := \{ P \in \mathcal{P} : \exists \omega_0 \in \Omega \text{ such that } P(\omega_0) > 0 \}$. One point arb.

2 $\mathcal{R} := \{ P \in C_b(\Omega) : \exists \omega_0 \in \Omega \text{ such that } P(\omega_0) > 0 \}.$ *Open arb.*

 $\ \, {\mathfrak O} \ \, {\mathcal R}=\{P\in {\mathcal P} \ : \ \exists c\in (0,\infty) \text{ such that } P\geq_\Omega c \ \} \, . \ \, \textit{Uniform arb.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

CONCLUSIONS

- We have provided a general framework to study arbitrage and viability.
- This framework allows for probabilistic and non-probabilistic descriptions. Continuous or discrete time markets. General set of investement opportunities.
- A market with no free lunch is viable and viceversa.
- Pricing mechanism arising from the market might be in ba.
- Pricing rules with full support are in general non-linear.

CONCLUSIONS

- We have provided a general framework to study arbitrage and viability.
- This framework allows for probabilistic and non-probabilistic descriptions. Continuous or discrete time markets. General set of investement opportunities.
- A market with no free lunch is viable and viceversa.
- Pricing mechanism arising from the market might be in ba.
- Pricing rules with full support are in general non-linear.

Thank you for your kind attention.